메뉴 건너뛰기




Volumn 180, Issue 2, 2010, Pages 209-224

Attribute selection with fuzzy decision reducts

Author keywords

Attribute selection; Data analysis; Decision reducts; Fuzzy sets; Rough sets

Indexed keywords

ATTRIBUTE SELECTION; ATTRIBUTE VALUES; DATA ANALYSIS; DATA DEPENDENCIES; DECISION MODELS; DECISION REDUCTS; DISCERNIBILITY; FEATURE SELECTION; FUZZY DECISION; FUZZY ROUGH SET THEORY; ROUGH SET; ROUGH SETS; TOLERANCE RELATIONS;

EID: 70350576588     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2009.09.008     Document Type: Article
Times cited : (227)

References (61)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithm
    • Aha D. Instance-based learning algorithm. Machine Learning 6 (1991) 37-66
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1
  • 2
    • 70350611274 scopus 로고    scopus 로고
    • J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problem, Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems. Studies in Fuzziness and Soft Computing, 56, Physica-Verlag, 2000, pp. 49-88.
    • J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wróblewski, Rough set algorithms in classification problem, Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems. Studies in Fuzziness and Soft Computing, vol. 56, Physica-Verlag, 2000, pp. 49-88.
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 45 1 (2001) 5-32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 40949088607 scopus 로고    scopus 로고
    • An approach of attributes reduction based on fuzzy rough sets
    • Man, and Cybernetics
    • D. Chen, E. Tsang, S. Zhao, An approach of attributes reduction based on fuzzy rough sets, in: Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, 2007, pp. 486-491.
    • (2007) Proc. IEEE Int. Conf. on Systems , pp. 486-491
    • Chen, D.1    Tsang, E.2    Zhao, S.3
  • 6
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorisation
    • Chouchoulas A., and Shen Q. Rough set-aided keyword reduction for text categorisation. Applied Artificial Intelligence 15 9 (2001) 843-873
    • (2001) Applied Artificial Intelligence , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 7
    • 57049171821 scopus 로고    scopus 로고
    • Fuzzy rough sets: from theory into practice
    • Pedrycz W., Skowron A., and Kreinovich V. (Eds), John Wiley and Sons
    • Cornelis C., De Cock M., and Radzikowska A.M. Fuzzy rough sets: from theory into practice. In: Pedrycz W., Skowron A., and Kreinovich V. (Eds). Handbook of Granular Computing (2008), John Wiley and Sons 533-552
    • (2008) Handbook of Granular Computing , pp. 533-552
    • Cornelis, C.1    De Cock, M.2    Radzikowska, A.M.3
  • 9
    • 0037448306 scopus 로고    scopus 로고
    • On (un)suitable fuzzy relations to model approximate equality
    • De Cock M., and Kerre E.E. On (un)suitable fuzzy relations to model approximate equality. Fuzzy Sets and Systems 133 2 (2003) 137-153
    • (2003) Fuzzy Sets and Systems , vol.133 , Issue.2 , pp. 137-153
    • De Cock, M.1    Kerre, E.E.2
  • 11
    • 34250357173 scopus 로고    scopus 로고
    • A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets
    • Chen D., Wang C.Z., and Hu Q.H. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Information Sciences 17 1 (2007) 3500-3518
    • (2007) Information Sciences , vol.17 , Issue.1 , pp. 3500-3518
    • Chen, D.1    Wang, C.Z.2    Hu, Q.H.3
  • 13
    • 0038667021 scopus 로고
    • Putting rough sets and fuzzy sets together
    • S.Y. Huang, Ed
    • D. Dubois, H. Prade, Putting rough sets and fuzzy sets together, in: S.Y. Huang, (Ed.), Intelligent Decision Support, 1992, pp. 203-232.
    • (1992) Intelligent Decision Support , pp. 203-232
    • Dubois, D.1    Prade, H.2
  • 17
    • 0001819987 scopus 로고    scopus 로고
    • Rough set processing of vague information using fuzzy similarity relations
    • Calude C.S., and Paun G. (Eds), Springer-Verlag
    • Greco S., Matarazzo B., and Slowiński R. Rough set processing of vague information using fuzzy similarity relations. In: Calude C.S., and Paun G. (Eds). Finite Versus Infinite - Contributions to an Eternal Dilemma (2000), Springer-Verlag 149-173
    • (2000) Finite Versus Infinite - Contributions to an Eternal Dilemma , pp. 149-173
    • Greco, S.1    Matarazzo, B.2    Slowiński, R.3
  • 21
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Hu Q.H., Xie X.Z., and Yu D.R. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition 40 12 (2007) 3509-3521
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3509-3521
    • Hu, Q.H.1    Xie, X.Z.2    Yu, D.R.3
  • 22
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • Jensen R., and Shen Q. Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and Systems 141 3 (2004) 469-485
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.3 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 23
    • 33947421283 scopus 로고    scopus 로고
    • Fuzzy-rough sets assisted attribute selection
    • Jensen R., and Shen Q. Fuzzy-rough sets assisted attribute selection. IEEE Transactions on Fuzzy Systems 15 1 (2007) 73-89
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.1 , pp. 73-89
    • Jensen, R.1    Shen, Q.2
  • 24
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • Jensen R., and Shen Q. New approaches to fuzzy-rough feature selection. IEEE Transactions on Fuzzy Systems 17 4 (2009) 824-838
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 25
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF
    • Kononenko I., Simec E., and Robnik-Sikonja M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Applied Intelligence 7 1 (1997) 39-55
    • (1997) Applied Intelligence , vol.7 , Issue.1 , pp. 39-55
    • Kononenko, I.1    Simec, E.2    Robnik-Sikonja, M.3
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artificial Intelligence 97 1-2 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 29
    • 33749682962 scopus 로고    scopus 로고
    • Maimon O.Z., and Rokach L. (Eds), Springer Science & Business
    • In: Maimon O.Z., and Rokach L. (Eds). Data Mining and Knowledge Discovery Handbook (2005), Springer Science & Business
    • (2005) Data Mining and Knowledge Discovery Handbook
  • 30
    • 45649084633 scopus 로고    scopus 로고
    • Generalized fuzzy rough sets determined by a triangular norm
    • Mi J.S., Leung Y., Zhao H.Y., and Feng T. Generalized fuzzy rough sets determined by a triangular norm. Information Sciences 178 16 (2008) 3203-3213
    • (2008) Information Sciences , vol.178 , Issue.16 , pp. 3203-3213
    • Mi, J.S.1    Leung, Y.2    Zhao, H.Y.3    Feng, T.4
  • 31
    • 37349000869 scopus 로고    scopus 로고
    • Approximate boolean reasoning: Foundations and applications in data mining
    • Transactions on Rough Sets, 4100, Springer
    • H.S. Nguyen, Approximate boolean reasoning: foundations and applications in data mining, Transactions on Rough Sets V, Lecture Notes in Computer Science 4100, Springer, 2006, pp. 334-506.
    • (2006) Lecture Notes in Computer Science , vol.5 , pp. 334-506
    • Nguyen, H.S.1
  • 36
    • 33749668975 scopus 로고    scopus 로고
    • Rough sets and boolean reasoning
    • Pawlak Z., and Skowron A. Rough sets and boolean reasoning. Information Sciences 177 (2007) 41-73
    • (2007) Information Sciences , vol.177 , pp. 41-73
    • Pawlak, Z.1    Skowron, A.2
  • 38
    • 0036532805 scopus 로고    scopus 로고
    • Feature analysis through information granulation and fuzzy sets
    • Pedrycz W., and Vukovich G. Feature analysis through information granulation and fuzzy sets. Pattern Recognition 35 4 (2002) 825-834
    • (2002) Pattern Recognition , vol.35 , Issue.4 , pp. 825-834
    • Pedrycz, W.1    Vukovich, G.2
  • 39
    • 35048848534 scopus 로고    scopus 로고
    • Rough mereology as a link between rough and fuzzy set theories
    • Transactions on Rough Sets, 3135, Springer
    • L. Polkowski, Rough mereology as a link between rough and fuzzy set theories, Transactions on Rough Sets II, Lecture Notes in Computer Science 3135, Springer, 2004, pp. 253-277.
    • (2004) Lecture Notes in Computer Science , vol.2 , pp. 253-277
    • Polkowski, L.1
  • 43
    • 70350603074 scopus 로고    scopus 로고
    • D. Ślȩzak, Various approaches to reasoning with frequency based decision reducts, Rough Set Methods and Applications, New Developments in Knowledge Discovery in Information Systems, Studies in Fuzziness and Soft Computing, 56, Physica-Verlag, 2000, pp. 235-288.
    • D. Ślȩzak, Various approaches to reasoning with frequency based decision reducts, Rough Set Methods and Applications, New Developments in Knowledge Discovery in Information Systems, Studies in Fuzziness and Soft Computing, vol. 56, Physica-Verlag, 2000, pp. 235-288.
  • 44
    • 56149118708 scopus 로고    scopus 로고
    • Degrees of conditional (in)dependence: a framework for approximate Bayesian networks and examples related to the rough set-based feature selection
    • Ślȩzak D. Degrees of conditional (in)dependence: a framework for approximate Bayesian networks and examples related to the rough set-based feature selection. Information Sciences 179 (2009) 197-209
    • (2009) Information Sciences , vol.179 , pp. 197-209
    • Ślȩzak, D.1
  • 45
  • 47
    • 42649112727 scopus 로고    scopus 로고
    • Fuzzy rough set theory for the interval-valued fuzzy information systems
    • Sun B., Gong Z., and Chen D. Fuzzy rough set theory for the interval-valued fuzzy information systems. Information Sciences 178 13 (2008) 2794-2815
    • (2008) Information Sciences , vol.178 , Issue.13 , pp. 2794-2815
    • Sun, B.1    Gong, Z.2    Chen, D.3
  • 48
    • 0005035095 scopus 로고
    • Some experiments to compare rough sets theory and ordinal statistical methods
    • Intelligent Decision Support. Slowiński R. (Ed), Kluwer Academic Publishers
    • Teghem J., and Benjelloun M. Some experiments to compare rough sets theory and ordinal statistical methods. In: Slowiński R. (Ed). Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory (1992), Kluwer Academic Publishers 267-284
    • (1992) Handbook of Applications and Advances of the Rough Sets Theory , pp. 267-284
    • Teghem, J.1    Benjelloun, M.2
  • 51
    • 34447536352 scopus 로고    scopus 로고
    • Learning fuzzy rules from fuzzy samples based on rough set technique
    • Wang X., Tsang X.E., Zhao S., Chen D., and Yeung D. Learning fuzzy rules from fuzzy samples based on rough set technique. Information Sciences 177 20 (2007) 4493-4514
    • (2007) Information Sciences , vol.177 , Issue.20 , pp. 4493-4514
    • Wang, X.1    Tsang, X.E.2    Zhao, S.3    Chen, D.4    Yeung, D.5
  • 54
    • 0030406574 scopus 로고    scopus 로고
    • Theoretical foundations of order-based genetic algorithms
    • Wróblewski J. Theoretical foundations of order-based genetic algorithms. Fundamenta Informaticae 28 (1996) 423-430
    • (1996) Fundamenta Informaticae , vol.28 , pp. 423-430
    • Wróblewski, J.1
  • 56
    • 36549059218 scopus 로고    scopus 로고
    • Dominance-based rough set approach and knowledge reductions in incomplete ordered information system
    • Yang X., Yang J., Wu C., and Yu D. Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Information Sciences 178 4 (2008) 1219-1234
    • (2008) Information Sciences , vol.178 , Issue.4 , pp. 1219-1234
    • Yang, X.1    Yang, J.2    Wu, C.3    Yu, D.4
  • 57
    • 0012821345 scopus 로고    scopus 로고
    • Combination of rough and fuzzy sets based on α-level sets
    • Lin T.Y., and Cercone N. (Eds), Kluwer Academic Publishers
    • Yao Y. Combination of rough and fuzzy sets based on α-level sets. In: Lin T.Y., and Cercone N. (Eds). Rough Sets and Data Mining: Analysis for Imprecise Data (1997), Kluwer Academic Publishers 301-321
    • (1997) Rough Sets and Data Mining: Analysis for Imprecise Data , pp. 301-321
    • Yao, Y.1
  • 58
    • 45849092954 scopus 로고    scopus 로고
    • Attribute reduction in decision-theoretic rough set models
    • Yao Y., and Zhao Y. Attribute reduction in decision-theoretic rough set models. Information Sciences 178 17 (2008) 3356-3373
    • (2008) Information Sciences , vol.178 , Issue.17 , pp. 3356-3373
    • Yao, Y.1    Zhao, Y.2
  • 60
    • 34548258153 scopus 로고    scopus 로고
    • Data analysis based on discernibility and indiscernibility
    • Zhao Y., Yao Y., and Luo F. Data analysis based on discernibility and indiscernibility. Information Sciences 177 22 (2007) 4959-4976
    • (2007) Information Sciences , vol.177 , Issue.22 , pp. 4959-4976
    • Zhao, Y.1    Yao, Y.2    Luo, F.3
  • 61
    • 45849111442 scopus 로고    scopus 로고
    • On fuzzy approximation operators in attribute reduction with fuzzy rough sets
    • Zhao S., and Tsang E.C.C. On fuzzy approximation operators in attribute reduction with fuzzy rough sets. Information Sciences 178 16 (2007) 3163-3176
    • (2007) Information Sciences , vol.178 , Issue.16 , pp. 3163-3176
    • Zhao, S.1    Tsang, E.C.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.