메뉴 건너뛰기




Volumn 42, Issue 1, 2012, Pages 86-100

A taxonomy and experimental study on prototype generation for nearest neighbor classification

Author keywords

Classification; learning vector quantization (LVQ); nearest neighbor (NN); prototype generation (PG); taxonomy

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION RULES; DATA SETS; EXPERIMENTAL STUDIES; FORMER PROCESS; LARGE DATASETS; LEARNING VECTOR QUANTIZATION; MAIN CHARACTERISTICS; NEAREST NEIGHBOR CLASSIFICATION; NEAREST NEIGHBOR RULE; NEAREST NEIGHBORS; NOISE SENSITIVITY; PROTOTYPE GENERATION (PG); PROTOTYPE SELECTION; REDUCTION TECHNIQUES; STORAGE REQUIREMENTS; THEORETICAL POINTS; TIME RESPONSE; TRAINING DATA;

EID: 84655176618     PISSN: 10946977     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCC.2010.2103939     Document Type: Article
Times cited : (256)

References (84)
  • 8
    • 84944611438 scopus 로고    scopus 로고
    • (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series). Boca Raton, FL: CRC
    • X. Wu and V. Kumar, Eds., The Top Ten Algorithms in Data Mining. (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series). Boca Raton, FL: CRC, 2009.
    • (2009) The Top Ten Algorithms in Data Mining
    • Wu, X.1    Kumar, V.2
  • 9
    • 58649122867 scopus 로고    scopus 로고
    • Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming
    • Jan.
    • A. Shintemirov, W. Tang, and Q. Wu, "Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming, " IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 39, no. 1, pp. 69-79, Jan. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.39 , Issue.1 , pp. 69-79
    • Shintemirov, A.1    Tang, W.2    Wu, Q.3
  • 10
    • 77249174228 scopus 로고    scopus 로고
    • A survey on the application of genetic programming to classification
    • Mar.
    • P. G. Espejo, S. Ventura, and F. Herrera, "A survey on the application of genetic programming to classification, " IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 2, pp. 121-144, Mar. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.40 , Issue.2 , pp. 121-144
    • Espejo, P.G.1    Ventura, S.2    Herrera, F.3
  • 11
    • 58249141434 scopus 로고    scopus 로고
    • Model-basedmean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories
    • S. Magnussen, R. McRoberts, and E. Tomppo, "Model-basedmean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories, " Remote Sens. Environ., vol. 113, no. 3, pp. 476-488, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.3 , pp. 476-488
    • Magnussen, S.1    McRoberts, R.2    Tomppo, E.3
  • 12
    • 70349472688 scopus 로고    scopus 로고
    • Evaluation of k-nearest neighbor classifier performance for direct marketing
    • M. Govindarajan and R. Chandrasekaran, "Evaluation of k-nearest neighbor classifier performance for direct marketing, " Expert Syst. Appl., vol. 37, no. 1, pp. 253-258, 2009.
    • (2009) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 253-258
    • Govindarajan, M.1    Chandrasekaran, R.2
  • 15
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor lassification
    • K. Weinberger and L. Saul, "Distance metric learning for large margin nearest neighbor lassification, " J. Mach. Learning Res., vol. 10, pp. 207-244, 2009.
    • (2009) J. Mach. Learning Res. , vol.10 , pp. 207-244
    • Weinberger, K.1    Saul, L.2
  • 16
    • 39549117816 scopus 로고    scopus 로고
    • Local feature weighting in nearest prototype classification
    • DOI 10.1109/TNN.2007.902955
    • F. Fernández and P. Isasi, "Local feature weighting in nearest prototype classification, " IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 40-53, Jan. 2008. (Pubitemid 351279224)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.1 , pp. 40-53
    • Fernandez, F.1    Isasi, P.2
  • 17
    • 56049108351 scopus 로고    scopus 로고
    • Beyond traditional kernels: Classification in two dissimilarity-based representation spaces
    • Nov.
    • E. Pekalska and R. P. Duin, "Beyond traditional kernels: Classification in two dissimilarity-based representation spaces, " IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 6, pp. 729-744, Nov. 2008.
    • (2008) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , vol.38 , Issue.6 , pp. 729-744
    • Pekalska, E.1    Duin, R.P.2
  • 18
    • 70350653805 scopus 로고    scopus 로고
    • A taxonomy of similarity mechanisms for case-based reasoning
    • Nov.
    • P. Cunningham, "A taxonomy of similarity mechanisms for case-based reasoning, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 11, pp. 1532-1543, Nov. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.11 , pp. 1532-1543
    • Cunningham, P.1
  • 20
    • 61449115942 scopus 로고    scopus 로고
    • On the design and applicability of distance functions in high-dimensional data space
    • Apr.
    • C.-M. Hsu and M.-S. Chen, "On the design and applicability of distance functions in high-dimensional data space, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 4, pp. 523-536, Apr. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.4 , pp. 523-536
    • Hsu, C.-M.1    Chen, M.-S.2
  • 21
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • DOI 10.1023/A:1007626913721
    • D. R. Wilson and T. R. Martinez, "Reduction techniques for instancebased learning algorithms, " Mach. Learning, vol. 38, no. 3, pp. 257-286, 2000. (Pubitemid 30572450)
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Randall Wilson, D.1    Martinez, T.R.2
  • 22
    • 0346331906 scopus 로고    scopus 로고
    • A brief taxonomy and ranking of creative prototype reduction schemes
    • S. W. Kim and J. Oomenn, "A brief taxonomy and ranking of creative prototype reduction schemes, " Pattern Anal. Appl., vol. 6, pp. 232-244, 2003.
    • (2003) Pattern Anal. Appl. , vol.6 , pp. 232-244
    • Kim, S.W.1    Oomenn, J.2
  • 23
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • DOI 10.1023/A:1014043630878
    • H. Brighton and C. Mellish, "Advances in instance selection for instancebased learning algorithms, " Data Mining Knowl. Discov., vol. 6, no. 2, pp. 153-172, 2002. (Pubitemid 37113870)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 24
    • 73849133622 scopus 로고    scopus 로고
    • Class conditional nearest neighbor for large margin instance selection
    • Feb.
    • E. Marchiori, "Class conditional nearest neighbor for large margin instance selection, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 2, pp. 364-370, Feb. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.2 , pp. 364-370
    • Marchiori, E.1
  • 25
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • Feb.
    • N. García-Pedrajas, "Constructing ensembles of classifiers by means of weighted instance selection, " IEEE Trans. Neural Netw., vol. 20, no. 2, pp. 258-277, Feb. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 258-277
    • García-Pedrajas, N.1
  • 26
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • DOI 10.1016/j.patcog.2005.06.012, PII S0031320305002633, Complexity Reduction
    • E. Pekalska, R. P. W. Duin, and P. Paclík, "Prototype selection for dissimilarity-based classifiers, " Pattern Recognit., vol. 39, no. 2, pp. 189-208, 2006. (Pubitemid 41586089)
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 189-208
    • Pekalska, E.1    Duin, R.P.W.2    Paclik, P.3
  • 27
    • 33745421067 scopus 로고    scopus 로고
    • Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
    • DOI 10.1016/j.patcog.2006.04.005, PII S0031320306001592
    • M. Lozano, J. M. Sotoca, J. S. Sánchez, F. Pla, E. Pekalska, and R. P. W. Duin, "Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces, " Pattern Recognit., vol. 39, no. 10, pp. 1827-1838, 2006. (Pubitemid 43947094)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1827-1838
    • Lozano, M.1    Sotoca, J.M.2    Sanchez, J.S.3    Pla, F.4    Pekalska, E.5    Duin, R.P.W.6
  • 28
    • 33846316693 scopus 로고    scopus 로고
    • Self-generating prototypes for pattern classification
    • DOI 10.1016/j.patcog.2006.10.018, PII S0031320306004523
    • H. A. Fayed, S. R. Hashem, and A. F. Atiya, "Self-generating prototypes for pattern classification, " Pattern Recognit., vol. 40, no. 5, pp. 1498-1509, 2007. (Pubitemid 46123389)
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 1498-1509
    • Fayed, H.A.1    Hashem, S.R.2    Atiya, A.F.3
  • 29
    • 0036684204 scopus 로고    scopus 로고
    • Discovering useful concept prototypes for classification based on filtering and abstraction
    • Aug.
    • W. Lam, C. K. Keung, and D. Liu, "Discovering useful concept prototypes for classification based on filtering and abstraction, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 8, pp. 1075-1090, Aug. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.14 , Issue.8 , pp. 1075-1090
    • Lam, W.1    Keung, C.K.2    Liu, D.3
  • 30
    • 18144451785 scopus 로고    scopus 로고
    • High training set size reduction by space partitioning and prototype abstraction
    • DOI 10.1016/j.patcog.2003.12.012, PII S0031320304000147
    • J. S. Sánchez, "High training set size reduction by space partitioning and prototype abstraction, " Pattern Recognit., vol. 37, no. 7, pp. 1561-1564, 2004. (Pubitemid 38653386)
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1561-1564
    • Sanchez, J.S.1
  • 31
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu and D. Wunsch, "Survey of clustering algorithms, " IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 645-678, May 2005. (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 32
    • 0016127071 scopus 로고
    • Finding prototypes for nearest neighbor classifiers
    • Nov.
    • C.-L. Chang, "Finding prototypes for nearest neighbor classifiers, " IEEE Trans.comput., vol. C-23, no. 11, pp. 1179-1184, Nov. 1974.
    • (1974) IEEE Trans.comput. , vol.C23 , Issue.11 , pp. 1179-1184
    • Chang, C.-L.1
  • 33
    • 0025489075 scopus 로고
    • The self organizing map
    • Sep.
    • T. Kohonen, "The self organizing map, " Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, Sep. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 34
    • 0030196853 scopus 로고    scopus 로고
    • A sample set condensation algorithm for the class sensitive artificial neural network
    • DOI 10.1016/0167-8655(96)00041-4, PII S0167865596000414
    • C. H. Chen and A. Józwik, "A sample set condensation algorithm for the class sensitive artificial neural network, " Pattern Recognit. Lett., vol. 17, no. 8, pp. 819-823, Jul. 1996. (Pubitemid 126384186)
    • (1996) Pattern Recognition Letters , vol.17 , Issue.8 , pp. 819-823
    • Chen, C.H.1    Jozwik, A.2
  • 35
    • 79951952936 scopus 로고    scopus 로고
    • Particle swarm optimization in wireless-sensor networks: A brief survey
    • to be published. DOI: 10. 1109/TSMCC
    • R. Kulkarni and G. Venayagamoorthy, "Particle swarm optimization in wireless-sensor networks: A brief survey, " IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. to be published. DOI: 10. 1109/TSMCC. 2010. 2054080.
    • (2010) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. , pp. 2054080
    • Kulkarni, R.1    Venayagamoorthy, G.2
  • 36
    • 3142672346 scopus 로고    scopus 로고
    • Evolutionary design of nearest prototype classifiers
    • F. Fernández and P. Isasi, "Evolutionary design of nearest prototype classifiers, " J. Heurist., vol. 10, no. 4, pp. 431-454, 2004.
    • (2004) J. Heurist. , vol.10 , Issue.4 , pp. 431-454
    • Fernández, F.1    Isasi, P.2
  • 37
    • 58149475488 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • L. Nanni and A. Lumini, "Particle swarm optimization for prototype reduction, " Neurocomputing, vol. 72, no. 4-6, pp. 1092-1097, 2008.
    • (2008) Neurocomputing , vol.72 , Issue.4-6 , pp. 1092-1097
    • Nanni, L.1    Lumini, A.2
  • 39
    • 0019392071 scopus 로고
    • On the relation of performance to editing in nearest neighbor rules
    • DOI 10.1016/0031-3203(81)90102-3
    • J. Koplowitz and T. Brown, "On the relation of performance to editing in nearest neighbor rules, " Pattern Recognit., vol. 13, pp. 251-255, 1981. (Pubitemid 11413647)
    • (1981) Pattern Recognition , vol.13 , Issue.3 , pp. 251-255
    • Koplowitz Jack1    Brown Thomas, A.2
  • 40
    • 0026119582 scopus 로고
    • Adaptive nearest neighbor pattern classification
    • Mar.
    • S. Geva and J. Sitte, "Adaptive nearest neighbor pattern classification, " IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 318-322, Mar. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.2 , pp. 318-322
    • Geva, S.1    Sitte, J.2
  • 41
    • 0027876065 scopus 로고
    • Vector quantization technique for nonparametric classifier design
    • Dec.
    • Q. Xie, C. A. Laszlo, and R. K. Ward, "Vector quantization technique for nonparametric classifier design, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 12, pp. 1326-1330, Dec. 1993.
    • (1993) IEEE Trans. Pattern Anal. Mach. Intell. , vol.15 , Issue.12 , pp. 1326-1330
    • Xie, Q.1    Laszlo, C.A.2    Ward, R.K.3
  • 43
    • 0031214181 scopus 로고    scopus 로고
    • Learning vector quantization with training count (LVQTC)
    • DOI 10.1016/S0893-6080(97)00012-9, PII S0893608097000129
    • R. Odorico, "Learning vector quantization with training count (LVQTC), " Neural Netw., vol. 10, no. 6, pp. 1083-1088, 1997. (Pubitemid 27431589)
    • (1997) Neural Networks , vol.10 , Issue.6 , pp. 1083-1088
    • Odorico, R.1
  • 44
    • 0031062148 scopus 로고    scopus 로고
    • Finding prototypes for nearest neighbour classification by means of gradient descent and deterministic annealing
    • PII S0031320396000726
    • C. Decaestecker, "Finding prototypes for neares neghbour classification by means of gradient descent and deterministic annealing, " Pattern Recognit., vol. 30, no. 2, pp. 281-288, 1997. (Pubitemid 127407618)
    • (1997) Pattern Recognition , vol.30 , Issue.2 , pp. 281-288
    • Decaestecker, C.1
  • 46
    • 0036790661 scopus 로고    scopus 로고
    • A merge-based condensing strategy for multiple prototype classifiers
    • Oct.
    • R. Mollineda, F. Ferri, and E. Vidal, "A merge-based condensing strategy for multiple prototype classifiers, " IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 32, no. 5, pp. 662-668, Oct. 2002.
    • (2002) IEEE Trans. Syst., Man Cybern. B, Cybern. , vol.32 , Issue.5 , pp. 662-668
    • Mollineda, R.1    Ferri, F.2    Vidal, E.3
  • 47
    • 0347895067 scopus 로고    scopus 로고
    • Analysis of new techniques to obtain quality training sets
    • DOI 10.1016/S0167-8655(02)00225-8, PII S0167865502002258
    • J. S. Sánchez, R. Barandela, A. I. Marqués, R. Alejo, and J. Badenas, "Analysis of new techniques to obtain quality training sets, " Pattern Recognit. Lett., vol. 24, no. 7, pp. 1015-1022, 2003. (Pubitemid 36049311)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.7 , pp. 1015-1022
    • Sanchez, J.S.1    Barandela, R.2    Marques, A.I.3    Alejo, R.4    Badenas, J.5
  • 48
    • 0037404505 scopus 로고    scopus 로고
    • Enhancing prototype reduction schemes with lvq3-type algorithms
    • S. W. Kim and J. Oomenn, "Enhancing prototype reduction schemes with lvq3-type algorithms, " Pattern Recognit., vol. 36, pp. 1083-1093, 2003.
    • (2003) Pattern Recognit. , vol.36 , pp. 1083-1093
    • Kim, S.W.1    Oomenn, J.2
  • 49
    • 1842787628 scopus 로고    scopus 로고
    • A vector quantization method for nearest neighbor classifier design
    • DOI 10.1016/j.patrec.2004.01.012, PII S016786550400025X
    • C.-W. Yen, C.-N. Young, and M. L. Nagurka, "A vector quantization method for nearest neighbor classifier design, " Pattern Recognit. Lett., vol. 25, no. 6, pp. 725-731, 2004. (Pubitemid 38459484)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.6 , pp. 725-731
    • Yen, C.-W.1    Young, C.-N.2    Nagurka, M.L.3
  • 50
    • 33746242351 scopus 로고    scopus 로고
    • Prototype classifier design with pruning
    • J. Li, M. T. Manry, C. Yu, and D. R. Wilson, "Prototype classifier design with pruning, " Int. J. Artif. Intell. Tools, vol. 14, no. 1-2, pp. 261-280, 2005.
    • (2005) Int. J. Artif. Intell. Tools , vol.14 , Issue.1-2 , pp. 261-280
    • Li, J.1    Manry, M.T.2    Yu, C.3    Wilson, D.R.4
  • 51
    • 19744376790 scopus 로고    scopus 로고
    • A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm
    • DOI 10.1016/j.patrec.2005.01.003, PII S0167865505000115
    • T. Raicharoen and C. Lursinsap, "A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm, " Pattern Recognit. Lett., vol. 26, no. 10, pp. 1554-1567, 2005. (Pubitemid 40744195)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.10 , pp. 1554-1567
    • Raicharoen, T.1    Lursinsap, C.2
  • 52
    • 67449091641 scopus 로고    scopus 로고
    • AMPSO: A new particle swarm method for nearest neighborhood classification
    • Oct.
    • A. Cervantes, I. M. Galván, and P. Isasi, "AMPSO: A new particle swarm method for nearest neighborhood classification, " IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 5, pp. 1082-1091, Oct. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.39 , Issue.5 , pp. 1082-1091
    • Cervantes, A.1    Galván, I.M.2    Isasi, P.3
  • 53
    • 50549086165 scopus 로고    scopus 로고
    • Prototype reduction using an artificial immune model
    • U. Garain, "Prototype reduction using an artificial immune model, " Pattern Anal. Appl., vol. 11, no. 3-4, pp. 353-363, 2008.
    • (2008) Pattern Anal. Appl. , vol.11 , Issue.3-4 , pp. 353-363
    • Garain, U.1
  • 54
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Jul.
    • D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data, " IEEE Trans. Syst., Man Cybern., vol. SMC-2, no. 3, pp. 408-421, Jul. 1972.
    • (1972) IEEE Trans. Syst., Man Cybern. , vol.SMC-2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 55
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • May
    • P. E. Hart, "The condensed nearest neighbor rule, " IEEE Trans. Inf. Theory, vol. IT-18, no. 3, pp. 515-516, May 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-18 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 57
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: A scaling up approach
    • S. García, J. R. Cano, and F. Herrera, "A memetic algorithm for evolutionary prototype selection: A scaling up approach, " Pattern Recognit., vol. 41, no. 8, pp. 2693-2709, 2008.
    • (2008) Pattern Recognit. , vol.41 , Issue.8 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 58
    • 67349169047 scopus 로고    scopus 로고
    • A novel template reduction approach for the k-nearest neighbor method
    • May
    • H. A. Fayed and A. F. Atiya, "A novel template reduction approach for the k-nearest neighbor method, " IEEE Trans. Neural Netw., vol. 20, no. 5, pp. 890-896, May 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.5 , pp. 890-896
    • Fayed, H.A.1    Atiya, A.F.2
  • 59
    • 76749096459 scopus 로고    scopus 로고
    • IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • J. Derrac, S. García, and F. Herrera, "IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule, " Pattern Recognit., vol. 43, no. 6, pp. 2082-2105, 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 60
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • P. Domingos, "Unifying instance-based and rule-based induction, " Mach. Learning, vol. 24, no. 2, pp. 141-168, 1996. (Pubitemid 126724383)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 141-168
    • Domingos, P.1
  • 61
    • 0242273412 scopus 로고    scopus 로고
    • Inflating examples to obtain rules
    • O. Luaces and A. Bahamonde, "Inflating examples to obtain rules, " Int. J. Intell. Syst., vol. 18, pp. 1113-1143, 2003.
    • (2003) Int. J. Intell. Syst. , vol.18 , pp. 1113-1143
    • Luaces, O.1    Bahamonde, A.2
  • 63
    • 0031073477 scopus 로고    scopus 로고
    • A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms
    • D. Wettschereck, D. W. Aha, and T. Mohri, "A reviewand empirical evaluation of feature weightingmethods for a class of lazy learning algorithms, " Artif. Intell. Rev., vol. 11, no. 1-5, pp. 273-314, 1997. (Pubitemid 127508242)
    • (1997) Artificial Intelligence Review , vol.11 , Issue.1-5 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 64
    • 33746412073 scopus 로고    scopus 로고
    • Learning weighted metrics to minimize nearestneighbor classification error
    • Jul.
    • R. Paredes and E. Vidal, "Learning weighted metrics to minimize nearestneighbor classification error, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1100-1110, Jul. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.7 , pp. 1100-1110
    • Paredes, R.1    Vidal, E.2
  • 65
    • 67549091208 scopus 로고    scopus 로고
    • A method of learning weighted similarity function to improve the performance of nearest neighbor
    • M. Z. Jahromi, E. Parvinnia, and R. John, "A method of learning weighted similarity function to improve the performance of nearest neighbor, " Inf. Sci., vol. 179, no. 17, pp. 2964-2973, 2009.
    • (2009) Inf. Sci. , vol.179 , Issue.17 , pp. 2964-2973
    • Jahromi, M.Z.1    Parvinnia, E.2    John, R.3
  • 66
    • 71549160037 scopus 로고    scopus 로고
    • InstanceRank: Bringing order to datasets
    • C. Vallejo, J. Troyano, and F. Ortega, "InstanceRank: Bringing order to datasets, " Pattern Recognit. Lett., vol. 31, no. 2, pp. 133-142, 2010.
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.2 , pp. 133-142
    • Vallejo, C.1    Troyano, J.2    Ortega, F.3
  • 69
    • 0019610270 scopus 로고
    • Optimal distance measure for nearest neighbor classification
    • R. D. Short and K. Fukunaga, "Optimal distance measure for nearest neighbor classification, " IEEE Trans. Inf. Theory, vol. IT-27, no. 5, pp. 622-627, Sep. 1981. (Pubitemid 12446969)
    • (1981) IEEE Transactions on Information Theory , vol.IT-27 , Issue.5 , pp. 622-627
    • Short Robert, D.1    Fukunaga Keinosuke2
  • 71
    • 33750796974 scopus 로고    scopus 로고
    • Improving nearest neighbor rule with a simple adaptive distance measure
    • DOI 10.1016/j.patrec.2006.07.002, PII S0167865506001917
    • J. Wang, P. Neskovic, and L. Cooper, "Improving nearest neighbor rule with a simple adaptive distance measure, " Pattern Recognit. Lett., vol. 28, no. 2, pp. 207-213, 2007. (Pubitemid 44716403)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.2 , pp. 207-213
    • Wang, J.1    Neskovic, P.2    Cooper, L.N.3
  • 73
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep.
    • H. He and E. A. Garcia, "Learning from imbalanced data, " IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 74
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
    • S. García and F. Herrera, "Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy, " Evol.comput., vol. 17, no. 3, pp. 275-306, 2009.
    • (2009) Evol.comput. , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 76
    • 50549101751 scopus 로고    scopus 로고
    • Automatically countering imbalance and its empirical relationship to cost
    • N. V. Chawla, D. A. Cieslak, L. O. Hall, and A. Joshi, "Automatically countering imbalance and its empirical relationship to cost, " Data Mining Knowl. Discov., vol. 17, no. 2, pp. 225-252, 2008.
    • (2008) Data Mining Knowl. Discov. , vol.17 , Issue.2 , pp. 225-252
    • Chawla, N.V.1    Cieslak, D.A.2    Hall, L.O.3    Joshi, A.4
  • 78
    • 34548677479 scopus 로고    scopus 로고
    • A lot of randomness is hiding in accuracy
    • DOI 10.1016/j.engappai.2007.01.001, PII S0952197607000061
    • A. Ben-David, "A lot of randomness is hiding in accuracy, " Eng. Appl. Artif. Intell., vol. 20, pp. 875-885, 2007. (Pubitemid 47419312)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.7 , pp. 875-885
    • Ben-David, A.1
  • 80
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • S. García, A. Fernández, J. Luengo, and F. Herrera, "A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability, " Soft Comput., vol. 13, no. 10, pp. 959-977, 2009.
    • (2009) Soft Comput. , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 82
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets, " J. Mach. Learning Res., vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 83
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers overmultiple data sets" for all pairwise comparisons
    • S. García and F. Herrera, "An extension on "statistical comparisons of classifiers overmultiple data sets" for all pairwise comparisons, " J. Mach. Learning Res., vol. 9, pp. 2677-2694, 2008.
    • (2008) J. Mach. Learning Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 84
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera, "Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power, " Inf. Sci., vol. 180, pp. 2044-2064, 2010.
    • Inf. Sci. , vol.180 , Issue.2010 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.