-
1
-
-
0034172483
-
Learning to construct knowledge bases from the World Wide Web
-
Craven M, DiPasquoa D, Freitagb D, McCalluma A, Mitchella T, Nigama K, Slatterya S. Learning to construct knowledge bases from the World Wide Web. Artif Intell 2000, 118:69-113.
-
(2000)
Artif Intell
, vol.118
, pp. 69-113
-
-
Craven, M.1
DiPasquoa, D.2
Freitagb, D.3
McCalluma, A.4
Mitchella, T.5
Nigama, K.6
Slatterya, S.7
-
2
-
-
0141771188
-
A survey of methods for scaling up inductive learning algorithms
-
Provost FJ, Kolluri V. A survey of methods for scaling up inductive learning algorithms. Data Min Knowl Discovery 1999, 2:131-169.
-
(1999)
Data Min Knowl Discovery
, vol.2
, pp. 131-169
-
-
Provost, F.J.1
Kolluri, V.2
-
3
-
-
4644347255
-
A selective sampling approach to active feature selection
-
LiuH, MotadaH, Yu L. A selective sampling approach to active feature selection. Artif Intell 2004, 159:49-74.
-
(2004)
Artif Intell
, vol.159
, pp. 49-74
-
-
Liu, H.1
Motada, H.2
Yu, L.3
-
4
-
-
0347763609
-
Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study
-
Cano JR, Herrera F, Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Trans Evolut Comput 2003, 7:561-575.
-
(2003)
IEEE Trans Evolut Comput
, vol.7
, pp. 561-575
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
5
-
-
0036104537
-
Advances in instance selection for instance-based learning algorithms
-
Brighton H, Mellish C. Advances in instance selection for instance-based learning algorithms. Data Min Knowl Discovery 2002, 6:153-172.
-
(2002)
Data Min Knowl Discovery
, vol.6
, pp. 153-172
-
-
Brighton, H.1
Mellish, C.2
-
7
-
-
77956918947
-
A review of instance selection methods
-
Olvera-Ĺopez JA, Carrasco-Ochoa JA, Mart́inez-Trinidad JF, Kittler J. A review of instance selection methods. Artif Intell Rev 2010, 34:133-143.
-
(2010)
Artif Intell Rev
, vol.34
, pp. 133-143
-
-
Olvera-Ĺopez, J.A.1
Carrasco-Ochoa, J.A.2
Mart́inez-Trinidad, J.F.3
Kittler, J.4
-
9
-
-
0002976263
-
Recursive automatic bias selection for classifier construction
-
Brodley CE. Recursive automatic bias selection for classifier construction. Mach Learn 1995, 20:63-94.
-
(1995)
Mach Learn
, vol.20
, pp. 63-94
-
-
Brodley, C.E.1
-
13
-
-
0000935031
-
Editing for the k-nearest neighbors rule by a genetic algorithm
-
Kuncheva L. Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognit Lett 1995, 16:809-814.
-
(1995)
Pattern Recognit Lett
, vol.16
, pp. 809-814
-
-
Kuncheva, L.1
-
15
-
-
0008181958
-
Impact of learning set quality and size on decision tree performances
-
Sebban M, Nock R, Chauchat JH, Rakotomalala R. Impact of learning set quality and size on decision tree performances. Int J Comput Syst Signals 2000, 1:85-105.
-
(2000)
Int J Comput Syst Signals
, vol.1
, pp. 85-105
-
-
Sebban, M.1
Nock, R.2
Chauchat, J.H.3
Rakotomalala, R.4
-
19
-
-
27644457396
-
Effective training data selection in tool condition monitoring system
-
Sun J, Hong GS, Wong YS, Rahman M, Wang ZG. Effective training data selection in tool condition monitoring system. Int J Mach ToolsManuf 2006, 46:218-224.
-
(2006)
Int J Mach ToolsManuf
, vol.46
, pp. 218-224
-
-
Sun, J.1
Hong, G.S.2
Wong, Y.S.3
Rahman, M.4
Wang, Z.G.5
-
20
-
-
76549101909
-
Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts
-
Garćia-Osorio C, de Haro-Garćia A, Garćia-Pedrajas N. Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts. Artif Intell 2010, 174:410-441.
-
(2010)
Artif Intell
, vol.174
, pp. 410-441
-
-
Garćia-Osorio, C.1
de Haro-Garćia, A.2
Garćia-Pedrajas, N.3
-
21
-
-
42749092345
-
A memetic algorithm for evolutionary prototype selection: a scaling up approach
-
Garćia S, Cano JR, Herrera F. A memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recognit 2008, 41:2693-2709.
-
(2008)
Pattern Recognit
, vol.41
, pp. 2693-2709
-
-
Garćia, S.1
Cano, J.R.2
Herrera, F.3
-
22
-
-
0013125561
-
Feature selection with neural networks
-
Leray P, Gallinari P. Feature selection with neural networks. Behaviormetrika 1998, 26:145-166.
-
(1998)
Behaviormetrika
, vol.26
, pp. 145-166
-
-
Leray, P.1
Gallinari, P.2
-
23
-
-
30944458580
-
-
In: Eiden A, B̈ack T, Schoenauer M, Schwefel H-P, eds. Parallel Problem Solving from Nature (PPSN V). Berlin: Springer
-
Reeves CR, Taylor SJ. Selection of training sets for neural networks by a genetic algorithm. In: Eiden A, B̈ack T, Schoenauer M, Schwefel H-P, eds. Parallel Problem Solving from Nature (PPSN V). Berlin: Springer; 1998.
-
(1998)
Selection of training sets for neural networks by a genetic algorithm
-
-
Reeves, C.R.1
Taylor, S.J.2
-
25
-
-
30944444787
-
Artificial neural networks with evolutionary instance selection for financial forecasting
-
Kim K-J. Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Syst Appl 2006, 30:519-526.
-
(2006)
Expert Syst Appl
, vol.30
, pp. 519-526
-
-
Kim, K.-J.1
-
26
-
-
23044528412
-
Prototype selection and feature subset selection by estimation of distribution algorithms. a case study in the survival of cirrhotic patients treated with TIPS
-
Sierra B, Lazkano E, Inza I, Merino M, Larrañaga P, Quiroga J. Prototype selection and feature subset selection by estimation of distribution algorithms. a case study in the survival of cirrhotic patients treated with TIPS. In: Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe. Springer-Verlag; 2001, 20-29.
-
(2001)
Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe. Springer-Verlag
, pp. 20-29
-
-
Sierra, B.1
Lazkano, E.2
Inza, I.3
Merino, M.4
Larrañaga, P.5
Quiroga, J.6
-
30
-
-
0003984832
-
-
Technical Report CMU-CS-94-163. Pittsburgh, PA: Carnegie Mellon University
-
Baluja S. Population-based incremental learning. Technical Report CMU-CS-94-163. Pittsburgh, PA: Carnegie Mellon University; 1994.
-
(1994)
Population-based incremental learning
-
-
Baluja, S.1
-
31
-
-
33845982223
-
Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
-
Cano JR, Herrera F, Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data Knowl Eng 2007, 60:90-108.
-
(2007)
Data Knowl Eng
, vol.60
, pp. 90-108
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
32
-
-
17444379003
-
Stratification for scaling up evolutionary prototype selection
-
Cano JR, Herrera F, Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognit Lett 2005, 26:953-963.
-
(2005)
Pattern Recognit Lett
, vol.26
, pp. 953-963
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
33
-
-
0036522693
-
Strategies for learning in class imbalance problems
-
Barandela R, Śanchez JL, Garćia V, Rangel E. Strategies for learning in class imbalance problems. Pattern Recognit 2003, 36:849-851.
-
(2003)
Pattern Recognit
, vol.36
, pp. 849-851
-
-
Barandela, R.1
Śanchez, J.L.2
Garćia, V.3
Rangel, E.4
-
34
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 2007, 40:3358-3378.
-
(2007)
Pattern Recognit
, vol.40
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
36
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
KubatM, Holte R, Matwin S. Machine learning for the detection of oil spills in satellite radar images. Mach Learn 1998, 30:195-215.
-
(1998)
Mach Learn
, vol.30
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
38
-
-
0034726260
-
Noisy replication in skewed binary classification
-
Lee S. Noisy replication in skewed binary classification. Comput Stat Data Anal 2000, 34:165-191.
-
(2000)
Comput Stat Data Anal
, vol.34
, pp. 165-191
-
-
Lee, S.1
-
39
-
-
68849109676
-
Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
-
Garćia S, Ferńandez A, Herrera F. Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Appl Soft Comput 2009, 9:1304-1314.
-
(2009)
Appl Soft Comput
, vol.9
, pp. 1304-1314
-
-
Garćia, S.1
Ferńandez, A.2
Herrera, F.3
-
40
-
-
70349617264
-
Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
-
Garćia S, Herrera F. Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evolut Comput, 2009, 17:275-306. 41. Hodge V, Austin J. A survey of outlier detection methodologies. Artif Intell Rev 2004, 22:85-126.
-
(2009)
Evolut Comput
, vol.17
, pp. 275-306
-
-
Garćia, S.1
Herrera, F.2
-
41
-
-
7544223741
-
A survey of outlier detection methodologies
-
Hodge V, Austin J. A survey of outlier detection methodologies. Artif Intell Rev 2004, 22:85-126.
-
(2004)
Artif Intell Rev
, vol.22
, pp. 85-126
-
-
Hodge, V.1
Austin, J.2
-
42
-
-
72849116079
-
Improved mining of software complexity data on evolutionary filtered training sets
-
Podgorelec V. Improved mining of software complexity data on evolutionary filtered training sets. WSEAS Trans Inf Sci Appl 2009, 6:1751-1760.
-
(2009)
WSEAS Trans Inf Sci Appl
, vol.6
, pp. 1751-1760
-
-
Podgorelec, V.1
-
43
-
-
62749127269
-
Enhancing the quality of noisy training data using a genetic algorithm and prototype selection
-
Proceedings of the 2008 International Conference on Artificial Intelligence, ICAI 2008. CSREA Press
-
Byeon B, Rasheed K, Doshi P. Enhancing the quality of noisy training data using a genetic algorithm and prototype selection. In: Arabnia HR, Mun Y, eds. Proceedings of the 2008 International Conference on Artificial Intelligence, ICAI 2008. CSREA Press; 2008, 821-827.
-
(2008)
In: Arabnia HR, Mun Y, eds
, pp. 821-827
-
-
Byeon, B.1
Rasheed, K.2
Doshi, P.3
-
44
-
-
77956666864
-
Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability
-
Derrac J, Garćia S, Herrera F. Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability. Memetic Comput 2010, 2:183-189.
-
(2010)
Memetic Comput
, vol.2
, pp. 183-189
-
-
Derrac, J.1
Garćia, S.2
Herrera, F.3
-
45
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
Wilson DR, Martinez TR. Reduction techniques for instance-based learning algorithms. Mach Learn 2000, 38:257-286.
-
(2000)
Mach Learn
, vol.38
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
-
46
-
-
35348902771
-
Fast nearest neighbor condensation for large data sets classification
-
Angiulli F. Fast nearest neighbor condensation for large data sets classification. IEEE Trans Knowl Data Eng 2007, 19:1450-1464.
-
(2007)
IEEE Trans Knowl Data Eng
, vol.19
, pp. 1450-1464
-
-
Angiulli, F.1
-
47
-
-
0000046054
-
Identifying mislabeled training data
-
Brodley CE, Friedl MA. Identifying mislabeled training data. J Artif Intell Res 1999, 11:131-167. 48. Czarnowski I. Prototype selection algorithms for distributed learning. Pattern Recognit 2010, 43:2292-2300.
-
(1999)
J Artif Intell Res
, vol.11
, pp. 131-167
-
-
Brodley, C.E.1
Friedl, M.A.2
-
48
-
-
76749097995
-
Prototype selection algorithms for distributed learning
-
Czarnowski I. Prototype selection algorithms for distributed learning. Pattern Recognit 2010, 43:2292-2300.
-
(2010)
Pattern Recognit
, vol.43
, pp. 2292-2300
-
-
Czarnowski, I.1
-
49
-
-
77149122401
-
An approach to data reduction and integrated machine classification
-
Czarnowski I, Jȩdrzejowicz P. An approach to data reduction and integrated machine classification. New Gener Comput 2010, 28:21-40.
-
(2010)
New Gener Comput
, vol.28
, pp. 21-40
-
-
Czarnowski, I.1
Jȩdrzejowicz, P.2
-
51
-
-
0002318273
-
Efficient reinforcement learning through symbiotic evolution
-
Moriarty DE, Miikkulainen R. Efficient reinforcement learning through symbiotic evolution. Mach Learn 1996, 22:11-32.
-
(1996)
Mach Learn
, vol.22
, pp. 11-32
-
-
Moriarty, D.E.1
Miikkulainen, R.2
-
52
-
-
0034153728
-
Cooperative coevolution: an architecture for evolving coadapted subcomponents
-
Potter MA, De Jong KA. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolut Comput 2000, 8:1-29.
-
(2000)
Evolut Comput
, vol.8
, pp. 1-29
-
-
Potter, M.A.1
De Jong, K.A.2
-
56
-
-
76549132784
-
A cooperative coevolutionary algorithm for instance selection for instance-based learning
-
Garćia-Pedrajas N, Romero del Castillo JA, Ortiz-Boyer D. A cooperative coevolutionary algorithm for instance selection for instance-based learning. Mach Learn 2010, 78:381-420.
-
(2010)
Mach Learn
, vol.78
, pp. 381-420
-
-
Garćia-Pedrajas, N.1
Romero del Castillo, J.A.2
Ortiz-Boyer, D.3
-
57
-
-
33845427506
-
Co-evolving multilayer perceptrons along with training sets
-
Arenas MG, Castillo PA, Romero G, Rateb F, Merelo JJ. Co-evolving multilayer perceptrons along with training sets. Appl Soft Comput 2005, 2:503-513.
-
(2005)
Appl Soft Comput
, vol.2
, pp. 503-513
-
-
Arenas, M.G.1
Castillo, P.A.2
Romero, G.3
Rateb, F.4
Merelo, J.J.5
-
58
-
-
31744440533
-
An organizational coevolutionary algorithm for classification
-
Jiao LC, Liu J, Zhong WC. An organizational coevolutionary algorithm for classification. IEEE Trans Evolut Comput 2006, 10:67-80.
-
(2006)
IEEE Trans Evolut Comput
, vol.10
, pp. 67-80
-
-
Jiao, L.C.1
Liu, J.2
Zhong, W.C.3
|