메뉴 건너뛰기




Volumn 1, Issue 6, 2011, Pages 512-523

Evolutionary computation for training set selection

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; EVOLUTIONARY ALGORITHMS; FORESTRY; LARGE DATASET; LEARNING SYSTEMS; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS;

EID: 84861092128     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.44     Document Type: Article
Times cited : (16)

References (60)
  • 2
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive learning algorithms
    • Provost FJ, Kolluri V. A survey of methods for scaling up inductive learning algorithms. Data Min Knowl Discovery 1999, 2:131-169.
    • (1999) Data Min Knowl Discovery , vol.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 3
    • 4644347255 scopus 로고    scopus 로고
    • A selective sampling approach to active feature selection
    • LiuH, MotadaH, Yu L. A selective sampling approach to active feature selection. Artif Intell 2004, 159:49-74.
    • (2004) Artif Intell , vol.159 , pp. 49-74
    • Liu, H.1    Motada, H.2    Yu, L.3
  • 4
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study
    • Cano JR, Herrera F, Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Trans Evolut Comput 2003, 7:561-575.
    • (2003) IEEE Trans Evolut Comput , vol.7 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 5
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • Brighton H, Mellish C. Advances in instance selection for instance-based learning algorithms. Data Min Knowl Discovery 2002, 6:153-172.
    • (2002) Data Min Knowl Discovery , vol.6 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 9
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • Brodley CE. Recursive automatic bias selection for classifier construction. Mach Learn 1995, 20:63-94.
    • (1995) Mach Learn , vol.20 , pp. 63-94
    • Brodley, C.E.1
  • 13
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • Kuncheva L. Editing for the k-nearest neighbors rule by a genetic algorithm. Pattern Recognit Lett 1995, 16:809-814.
    • (1995) Pattern Recognit Lett , vol.16 , pp. 809-814
    • Kuncheva, L.1
  • 19
  • 20
    • 76549101909 scopus 로고    scopus 로고
    • Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts
    • Garćia-Osorio C, de Haro-Garćia A, Garćia-Pedrajas N. Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts. Artif Intell 2010, 174:410-441.
    • (2010) Artif Intell , vol.174 , pp. 410-441
    • Garćia-Osorio, C.1    de Haro-Garćia, A.2    Garćia-Pedrajas, N.3
  • 21
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: a scaling up approach
    • Garćia S, Cano JR, Herrera F. A memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recognit 2008, 41:2693-2709.
    • (2008) Pattern Recognit , vol.41 , pp. 2693-2709
    • Garćia, S.1    Cano, J.R.2    Herrera, F.3
  • 22
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Leray P, Gallinari P. Feature selection with neural networks. Behaviormetrika 1998, 26:145-166.
    • (1998) Behaviormetrika , vol.26 , pp. 145-166
    • Leray, P.1    Gallinari, P.2
  • 25
    • 30944444787 scopus 로고    scopus 로고
    • Artificial neural networks with evolutionary instance selection for financial forecasting
    • Kim K-J. Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Syst Appl 2006, 30:519-526.
    • (2006) Expert Syst Appl , vol.30 , pp. 519-526
    • Kim, K.-J.1
  • 30
    • 0003984832 scopus 로고
    • Technical Report CMU-CS-94-163. Pittsburgh, PA: Carnegie Mellon University
    • Baluja S. Population-based incremental learning. Technical Report CMU-CS-94-163. Pittsburgh, PA: Carnegie Mellon University; 1994.
    • (1994) Population-based incremental learning
    • Baluja, S.1
  • 31
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • Cano JR, Herrera F, Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data Knowl Eng 2007, 60:90-108.
    • (2007) Data Knowl Eng , vol.60 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 32
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • Cano JR, Herrera F, Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognit Lett 2005, 26:953-963.
    • (2005) Pattern Recognit Lett , vol.26 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 34
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 2007, 40:3358-3378.
    • (2007) Pattern Recognit , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 36
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • KubatM, Holte R, Matwin S. Machine learning for the detection of oil spills in satellite radar images. Mach Learn 1998, 30:195-215.
    • (1998) Mach Learn , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 38
    • 0034726260 scopus 로고    scopus 로고
    • Noisy replication in skewed binary classification
    • Lee S. Noisy replication in skewed binary classification. Comput Stat Data Anal 2000, 34:165-191.
    • (2000) Comput Stat Data Anal , vol.34 , pp. 165-191
    • Lee, S.1
  • 39
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • Garćia S, Ferńandez A, Herrera F. Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Appl Soft Comput 2009, 9:1304-1314.
    • (2009) Appl Soft Comput , vol.9 , pp. 1304-1314
    • Garćia, S.1    Ferńandez, A.2    Herrera, F.3
  • 40
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy
    • Garćia S, Herrera F. Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy. Evolut Comput, 2009, 17:275-306. 41. Hodge V, Austin J. A survey of outlier detection methodologies. Artif Intell Rev 2004, 22:85-126.
    • (2009) Evolut Comput , vol.17 , pp. 275-306
    • Garćia, S.1    Herrera, F.2
  • 41
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge V, Austin J. A survey of outlier detection methodologies. Artif Intell Rev 2004, 22:85-126.
    • (2004) Artif Intell Rev , vol.22 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 42
    • 72849116079 scopus 로고    scopus 로고
    • Improved mining of software complexity data on evolutionary filtered training sets
    • Podgorelec V. Improved mining of software complexity data on evolutionary filtered training sets. WSEAS Trans Inf Sci Appl 2009, 6:1751-1760.
    • (2009) WSEAS Trans Inf Sci Appl , vol.6 , pp. 1751-1760
    • Podgorelec, V.1
  • 43
    • 62749127269 scopus 로고    scopus 로고
    • Enhancing the quality of noisy training data using a genetic algorithm and prototype selection
    • Proceedings of the 2008 International Conference on Artificial Intelligence, ICAI 2008. CSREA Press
    • Byeon B, Rasheed K, Doshi P. Enhancing the quality of noisy training data using a genetic algorithm and prototype selection. In: Arabnia HR, Mun Y, eds. Proceedings of the 2008 International Conference on Artificial Intelligence, ICAI 2008. CSREA Press; 2008, 821-827.
    • (2008) In: Arabnia HR, Mun Y, eds , pp. 821-827
    • Byeon, B.1    Rasheed, K.2    Doshi, P.3
  • 44
    • 77956666864 scopus 로고    scopus 로고
    • Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability
    • Derrac J, Garćia S, Herrera F. Stratified prototype selection based on a steady-state memetic algorithm: a study of scalability. Memetic Comput 2010, 2:183-189.
    • (2010) Memetic Comput , vol.2 , pp. 183-189
    • Derrac, J.1    Garćia, S.2    Herrera, F.3
  • 45
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson DR, Martinez TR. Reduction techniques for instance-based learning algorithms. Mach Learn 2000, 38:257-286.
    • (2000) Mach Learn , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 46
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • Angiulli F. Fast nearest neighbor condensation for large data sets classification. IEEE Trans Knowl Data Eng 2007, 19:1450-1464.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , pp. 1450-1464
    • Angiulli, F.1
  • 47
    • 0000046054 scopus 로고    scopus 로고
    • Identifying mislabeled training data
    • Brodley CE, Friedl MA. Identifying mislabeled training data. J Artif Intell Res 1999, 11:131-167. 48. Czarnowski I. Prototype selection algorithms for distributed learning. Pattern Recognit 2010, 43:2292-2300.
    • (1999) J Artif Intell Res , vol.11 , pp. 131-167
    • Brodley, C.E.1    Friedl, M.A.2
  • 48
    • 76749097995 scopus 로고    scopus 로고
    • Prototype selection algorithms for distributed learning
    • Czarnowski I. Prototype selection algorithms for distributed learning. Pattern Recognit 2010, 43:2292-2300.
    • (2010) Pattern Recognit , vol.43 , pp. 2292-2300
    • Czarnowski, I.1
  • 49
    • 77149122401 scopus 로고    scopus 로고
    • An approach to data reduction and integrated machine classification
    • Czarnowski I, Jȩdrzejowicz P. An approach to data reduction and integrated machine classification. New Gener Comput 2010, 28:21-40.
    • (2010) New Gener Comput , vol.28 , pp. 21-40
    • Czarnowski, I.1    Jȩdrzejowicz, P.2
  • 51
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • Moriarty DE, Miikkulainen R. Efficient reinforcement learning through symbiotic evolution. Mach Learn 1996, 22:11-32.
    • (1996) Mach Learn , vol.22 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 52
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: an architecture for evolving coadapted subcomponents
    • Potter MA, De Jong KA. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolut Comput 2000, 8:1-29.
    • (2000) Evolut Comput , vol.8 , pp. 1-29
    • Potter, M.A.1    De Jong, K.A.2
  • 56
    • 76549132784 scopus 로고    scopus 로고
    • A cooperative coevolutionary algorithm for instance selection for instance-based learning
    • Garćia-Pedrajas N, Romero del Castillo JA, Ortiz-Boyer D. A cooperative coevolutionary algorithm for instance selection for instance-based learning. Mach Learn 2010, 78:381-420.
    • (2010) Mach Learn , vol.78 , pp. 381-420
    • Garćia-Pedrajas, N.1    Romero del Castillo, J.A.2    Ortiz-Boyer, D.3
  • 58
    • 31744440533 scopus 로고    scopus 로고
    • An organizational coevolutionary algorithm for classification
    • Jiao LC, Liu J, Zhong WC. An organizational coevolutionary algorithm for classification. IEEE Trans Evolut Comput 2006, 10:67-80.
    • (2006) IEEE Trans Evolut Comput , vol.10 , pp. 67-80
    • Jiao, L.C.1    Liu, J.2    Zhong, W.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.