-
1
-
-
0001609777
-
A neurotropic virus isolated from the blood of a native of Uganda
-
Smithburn, K. C., Hughes, T. P., Burke, A. W. & Paul, J. H. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. Hyg. 20, 471-492 (1940).
-
(1940)
Am. J. Trop. Med. Hyg.
, vol.20
, pp. 471-492
-
-
Smithburn, K.C.1
Hughes, T.P.2
Burke, A.W.3
Paul, J.H.4
-
2
-
-
84865010471
-
-
CDC West Nile virus disease and other arboviral diseases \- United States, 2011
-
CDC West Nile virus disease and other arboviral diseases \- United States, 2011. Morb. Mortal. Wkly Rep. 61, 510-514 (2012).
-
(2012)
Morb. Mortal. Wkly Rep.
, vol.61
, pp. 510-514
-
-
-
3
-
-
77952527021
-
West Nile virus in Europe: Understanding the present to gauge the future
-
Reiter, P. West Nile virus in Europe: understanding the present to gauge the future. Euro Surveill. 15, 19508 (2010).
-
(2010)
Euro Surveill.
, vol.15
, pp. 19508
-
-
Reiter, P.1
-
4
-
-
0036407156
-
The molecular biology of West Nile virus: A new invader of the western hemisphere
-
Brinton, M. A. The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu. Rev. Microbiol. 56, 371-402 (2002).
-
(2002)
Annu. Rev. Microbiol.
, vol.56
, pp. 371-402
-
-
Brinton, M.A.1
-
5
-
-
40349116664
-
A global perspective on the epidemiology of West Nile virus
-
Kramer, L D., Styer, L M. & Ebel, G. D. A global perspective on the epidemiology of West Nile virus. Annu. Rev. Entomol. 53, 61-81 (2008).
-
(2008)
Annu. Rev. Entomol.
, vol.53
, pp. 61-81
-
-
Kramer, L.D.1
Styer, L.M.2
Ebel, G.D.3
-
6
-
-
21144444080
-
Nonviremic transmission of West Nile virus
-
Higgs, S., Schneider, B. S., Vanlandingham, D. L., Klingler, K. A. & Gould, E. A. Nonviremic transmission of West Nile virus. Proc Natl Acad. Sci. USA 102, 8871-8874 (2005).
-
(2005)
Proc Natl Acad. Sci. USA
, vol.102
, pp. 8871-8874
-
-
Higgs, S.1
Schneider, B.S.2
Vanlandingham, D.L.3
Klingler, K.A.4
Gould, E.A.5
-
7
-
-
33750631329
-
Experimental infection of fox squirrels (Sciurus niger) with West Nile virus
-
Root, J. J. et al. Experimental infection of fox squirrels (Sciurus niger) with West Nile virus. Am. J. Trop. Med. Hyg. 75, 697-701 (2006).
-
(2006)
Am. J. Trop. Med. Hyg.
, vol.75
, pp. 697-701
-
-
Root, J.J.1
-
8
-
-
9744249396
-
Alligators as West Nile virus amplifiers
-
Klenk, K. et al. Alligators as West Nile virus amplifiers. Emerging Infect. Dis. 10, 2150-2155 (2004).
-
(2004)
Emerging Infect. Dis.
, vol.10
, pp. 2150-2155
-
-
Klenk, K.1
-
9
-
-
33748933523
-
Pathogenesis of West Nile virus infection: A balance between virulence, innate and adaptive immunity, and viral evasion
-
Samuel, M. A. & Diamond, M. S. Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J. Virol. 80, 9349-9360 (2006).
-
(2006)
J. Virol.
, vol.80
, pp. 9349-9360
-
-
Samuel, M.A.1
Diamond, M.S.2
-
10
-
-
0034847892
-
West Nile virus infection in the golden hamster (Mesocricetus auratus) : A model for West Nile encephalitis
-
Xiao, S. Y., Guzman, H., Zhang, H., Travassos da Rosa, A P. & Tesh, R. B. West Nile virus infection in the golden hamster (Mesocricetus auratus) : a model for West Nile encephalitis. Emerging Infect. Dis. 7, 714-721 (2001).
-
(2001)
Emerging Infect. Dis.
, vol.7
, pp. 714-721
-
-
Xiao, S.Y.1
Guzman, H.2
Zhang, H.3
Travassos Da Rosa, A.P.4
Tesh, R.B.5
-
11
-
-
10744222347
-
Experimental infection of rhesus macaques with West Nile virus: Level and duration of viremia and kinetics of the antibody response after infection
-
Ratterree, M. S. et al. Experimental infection of rhesus macaques with West Nile virus: level and duration of viremia and kinetics of the antibody response after infection. J. Infect. Dis. 189, 669-676 (2004).
-
(2004)
J. Infect. Dis.
, vol.189
, pp. 669-676
-
-
Ratterree, M.S.1
-
12
-
-
3543079916
-
West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus
-
Girard, Y A., Klingler, K. A. & Higgs, S. West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus. Vector Borne Zoonotic Dis. 4, 109-122 (2004).
-
(2004)
Vector Borne Zoonotic Dis.
, vol.4
, pp. 109-122
-
-
Girard, Y.A.1
Klingler, K.A.2
Higgs, S.3
-
13
-
-
0030293932
-
Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti
-
Moskalyk, L. A., Oo, M. M. & Jacobs-Lorena, M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol. Biol. 5, 261-268 (1996).
-
(1996)
Insect Mol. Biol.
, vol.5
, pp. 261-268
-
-
Moskalyk, L.A.1
Oo, M.M.2
Jacobs-Lorena, M.3
-
14
-
-
77956184955
-
A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes
-
Cheng, G. et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 142, 714-725 (2010).
-
(2010)
Cell
, vol.142
, pp. 714-725
-
-
Cheng, G.1
-
15
-
-
80054114793
-
Innate immune control of West Nile virus infection
-
Arjona, A., Wang, P, Montgomery, R. R. & Fikrig, E. Innate immune control of West Nile virus infection. Cell. Microbiol. 13, 1648-1658 (2011).
-
(2011)
Cell. Microbiol.
, vol.13
, pp. 1648-1658
-
-
Arjona, A.1
Wang, P.2
Montgomery, R.R.3
Fikrig, E.4
-
16
-
-
77957802875
-
The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection
-
Glaser, R. L. & Meola, M. A. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5, e11977 (2010).
-
(2010)
PLoS ONE
, vol.5
-
-
Glaser, R.L.1
Meola, M.A.2
-
17
-
-
84862909051
-
Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti
-
Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad. Sci. USA 109, e23-e31 (2012).
-
(2012)
Proc Natl Acad. Sci. USA
, vol.109
-
-
Pan, X.1
-
18
-
-
34848875685
-
Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts
-
Styer, L M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 3, 1262-1270 (2007).
-
(2007)
PLoS Pathog.
, vol.3
, pp. 1262-1270
-
-
Styer, L.M.1
-
19
-
-
33645108429
-
The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission
-
Titus, R. G., Bishop, J. V. & Mejia, J. S. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 28, 131-141 (2006).
-
(2006)
Parasite Immunol.
, vol.28
, pp. 131-141
-
-
Titus, R.G.1
Bishop, J.V.2
Mejia, J.S.3
-
20
-
-
33645463183
-
Potentiation of West Nile encephalitis by mosquito feeding
-
Schneider, B. S. et al. Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol. 19, 74-82 (2006).
-
(2006)
Viral Immunol.
, vol.19
, pp. 74-82
-
-
Schneider, B.S.1
-
21
-
-
78951491635
-
Mosquito saliva causes enhancement of West Nile virus infection in mice
-
Styer, L M. et al. Mosquito saliva causes enhancement of West Nile virus infection in mice. J. Virol. 85, 1517-1527 (2011).
-
(2011)
J. Virol.
, vol.85
, pp. 1517-1527
-
-
Styer, L.M.1
-
22
-
-
77955400343
-
Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection
-
Schneider, B. S. et al. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection. PLoS ONE 5, e1 1704 (2010).
-
(2010)
PLoS ONE
, vol.5
-
-
Schneider, B.S.1
-
23
-
-
41749097836
-
The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response
-
Schneider, B. S. & Higgs, S. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans. R. Soc. Trop. Med. Hyg. 102, 400-408 (2008).
-
(2008)
Trans. R. Soc. Trop. Med. Hyg.
, vol.102
, pp. 400-408
-
-
Schneider, B.S.1
Higgs, S.2
-
24
-
-
79955395927
-
Keratinocytes are cell targets of West Nile virus in vivo
-
Lim, P. Y., Behr, M. J., Chadwick, C M., Shi, P. Y & Bernard, K. A. Keratinocytes are cell targets of West Nile virus in vivo. J. Virol. 85, 5197-5201 (2011).
-
(2011)
J. Virol.
, vol.85
, pp. 5197-5201
-
-
Lim, P.Y.1
Behr, M.J.2
Chadwick, C.M.3
Shi, P.Y.4
Bernard, K.A.5
-
25
-
-
0034097874
-
Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus
-
Johnston, L J., Halliday, G. M. & King, N. J. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J. Invest Dermatol. 114, 560-568 (2000).
-
(2000)
J. Invest Dermatol.
, vol.114
, pp. 560-568
-
-
Johnston, L.J.1
Halliday, G.M.2
King, N.J.3
-
26
-
-
78650395906
-
A paradoxical role for neutrophils in the pathogenesis of West Nile virus
-
Bai, F et al. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J. Infect. Dis. 202, 1804-1812 (2010).
-
(2010)
J. Infect. Dis.
, vol.202
, pp. 1804-1812
-
-
Bai, F.1
-
27
-
-
33745789833
-
PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons
-
Samuel, M. A. et al. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol. 80, 7009-7019 (2006).
-
(2006)
J. Virol.
, vol.80
, pp. 7009-7019
-
-
Samuel, M.A.1
-
28
-
-
0029690481
-
West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice
-
Ben-Nathan, D., Huitinga, I., Lustig, S., van Rooijen, N. & Kobiler, D. West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch. Virol. 141, 459-469 (1996).
-
(1996)
Arch. Virol.
, vol.141
, pp. 459-469
-
-
Ben-Nathan, D.1
Huitinga, I.2
Lustig, S.3
Van Rooijen, N.4
Kobiler, D.5
-
29
-
-
0036343422
-
Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype
-
Beasley, D. W., Li, L., Suderman, M. T. & Barrett, A. D. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296, 17-23 (2002).
-
(2002)
Virology
, vol.296
, pp. 17-23
-
-
Beasley, D.W.1
Li, L.2
Suderman, M.T.3
Barrett, A.D.4
-
30
-
-
20744441654
-
Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains
-
Beasley, D. W. et al. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J. Virol. 79, 8339-8347 (2005).
-
(2005)
J. Virol.
, vol.79
, pp. 8339-8347
-
-
Beasley, D.W.1
-
31
-
-
60949114530
-
West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier
-
Verma, S. et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood-brain barrier Virology 385, 425-433 (2009).
-
(2009)
Virology
, vol.385
, pp. 425-433
-
-
Verma, S.1
-
32
-
-
0141925650
-
Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus
-
Diamond, M. S., Shrestha, B., Mehlhop, E., Sitati, E. & Engle, M. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol. 16, 259-278 (2003).
-
(2003)
Viral Immunol.
, vol.16
, pp. 259-278
-
-
Diamond, M.S.1
Shrestha, B.2
Mehlhop, E.3
Sitati, E.4
Engle, M.5
-
33
-
-
11144273976
-
Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis
-
Wang, T et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med. 10, 1366-1373 (2004).
-
(2004)
Nature Med.
, vol.10
, pp. 1366-1373
-
-
Wang, T.1
-
34
-
-
50949084387
-
Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain
-
Wang, P. et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J. Virol. 82, 8978-8985 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 8978-8985
-
-
Wang, P.1
-
35
-
-
73949154760
-
Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor
-
Verma, S., Kumar, M., Gurjav, U., Lum, S. & Nerurkar, V. R. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397, 130-138 (2010).
-
(2010)
Virology
, vol.397
, pp. 130-138
-
-
Verma, S.1
Kumar, M.2
Gurjav, U.3
Lum, S.4
Nerurkar, V.R.5
-
36
-
-
53349153299
-
+ "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis
-
+ "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J. Exp. Med. 205, 2319-2337 (2008).
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2319-2337
-
-
Getts, D.R.1
-
37
-
-
36749000533
-
Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis
-
Samuel, M. A., Wang, H., Siddharthan, V., Morrey, J. D. & Diamond, M. S. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad. Sci. USA 104, 17140-17145 (2007).
-
(2007)
Proc Natl Acad. Sci. USA
, vol.104
, pp. 17140-17145
-
-
Samuel, M.A.1
Wang, H.2
Siddharthan, V.3
Morrey, J.D.4
Diamond, M.S.5
-
38
-
-
77649241997
-
IPS- 1 is essential for the control of West Nile virus infection and immunity
-
Suthar, M. S. et al. IPS- 1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog. 6, e1000757 (2010).
-
(2010)
PLoS Pathog.
, vol.6
-
-
Suthar, M.S.1
-
39
-
-
0000520727
-
Virus interference. I. The interferon
-
Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc R. Soc. Lond. B 147, 258-267 (1957).
-
(1957)
Proc R. Soc. Lond. B
, vol.147
, pp. 258-267
-
-
Isaacs, A.1
Lindenmann, J.2
-
40
-
-
0344446376
-
A simple plaque inhibition test for antiviral agents: Application to assay of interferon
-
Porterfield, J. A simple plaque inhibition test for antiviral agents: application to assay of interferon. Lancet 274, 326-327 (1959).
-
(1959)
Lancet
, vol.274
, pp. 326-327
-
-
Porterfield, J.1
-
41
-
-
0344334314
-
Duration of protective action of interferon against infection with West Nile virus
-
Isaacs, A. & Westwood, M. A. Duration of protective action of interferon against infection with West Nile virus. Nature 184 (Suppl. 16), 1232-1233 (1959).
-
(1959)
Nature
, vol.184
, Issue.SUPPL. 16
, pp. 1232-1233
-
-
Isaacs, A.1
Westwood, M.A.2
-
42
-
-
27144486896
-
Type i IFN protects against lethal West Nile Virus infection by restricting cellular tropism and enhancing neuronal survival
-
Samuel, M. A. & Diamond, M. S. Type I IFN protects against lethal West Nile Virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol. 79, 13350-13361 (2005).
-
(2005)
J. Virol.
, vol.79
, pp. 13350-13361
-
-
Samuel, M.A.1
Diamond, M.S.2
-
43
-
-
79956314622
-
Immune signaling by RIG-I-like receptors
-
Loo, Y. M. & Gale, M. Jr. Immune signaling by RIG-I-like receptors. Immunity 34, 680-692 (2011).
-
(2011)
Immunity
, vol.34
, pp. 680-692
-
-
Loo, Y.M.1
Gale Jr., M.2
-
44
-
-
37849045856
-
Establishment and maintenance of the innate antiviral response to west nile virus involves both RIG-I and MDA5 signaling through IPS- 1
-
Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G. & Gale, M. Jr. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS- 1. J. Virol. 82, 609-616 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 609-616
-
-
Fredericksen, B.L.1
Keller, B.C.2
Fornek, J.3
Katze, M.G.4
Gale Jr., M.5
-
45
-
-
84864012784
-
L Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome
-
Shipley, J. G., Vandergaast, R., Deng, L., Mariuzza, R. A. & Fredericksen, B. L Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome. Virology 432, 232-238 (2012).
-
(2012)
Virology
, vol.432
, pp. 232-238
-
-
Shipley, J.G.1
Vandergaast, R.2
Deng, L.3
Mariuzza, R.A.4
Fredericksen, B.5
-
46
-
-
84857393830
-
Activation of RIG-I-like receptor signal transduction
-
Bruns, A. M. & Horvath, C M. Activation of RIG-I-like receptor signal transduction. Crit Rev. Biochem. Mol. Biol. 47, 194-206 (2012).
-
(2012)
Crit Rev. Biochem. Mol. Biol.
, vol.47
, pp. 194-206
-
-
Bruns, A.M.1
Horvath, C.M.2
-
47
-
-
84865394316
-
+ T cell survival and fitness
-
+ T cell survival and fitness. Immunity 37, 235-248 (2012).
-
(2012)
Immunity
, vol.37
, pp. 235-248
-
-
Suthar, M.S.1
-
48
-
-
32944464648
-
Pathogen recognition and innate immunity
-
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801 (2006).
-
(2006)
Cell
, vol.124
, pp. 783-801
-
-
Akira, S.1
Uematsu, S.2
Takeuchi, O.3
-
49
-
-
0041331693
-
Subcellular localization of Toll-like receptor 3 in human dendritic cells
-
Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154-3162 (2003).
-
(2003)
J. Immunol.
, vol.171
, pp. 3154-3162
-
-
Matsumoto, M.1
-
50
-
-
0043176281
-
Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway
-
Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640-643 (2003).
-
(2003)
Science
, vol.301
, pp. 640-643
-
-
Yamamoto, M.1
-
51
-
-
1542317578
-
Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8
-
Heil, F et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526-1529 (2004).
-
(2004)
Science
, vol.303
, pp. 1526-1529
-
-
Heil, F.1
-
52
-
-
0032127279
-
Targeted disruption of the MyD88 gene results in loss of IL- 1- and IL- 18-mediated function
-
Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL- 1- and IL- 18-mediated function. Immunity 9, 143-150 (1998).
-
(1998)
Immunity
, vol.9
, pp. 143-150
-
-
Adachi, O.1
-
53
-
-
55249084240
-
Toll-like receptor 3 has a protective role against West Nile virus infection
-
Daffis, S., Samuel, M. A., Suthar, M. S., Gale, M. Jr & Diamond, M. S. Toll-like receptor 3 has a protective role against West Nile virus infection. J. Virol. 82, 10349-10358 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 10349-10358
-
-
Daffis, S.1
Samuel, M.A.2
Suthar, M.S.3
Gale Jr., M.4
Diamond, M.S.5
-
54
-
-
50149084681
-
West nile virus nonstructural protein 1 inhibits TLR3 signal transduction
-
Wilson, J. R., de Sessions, P. F, Leon, M. A. & Scholle, F West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J. Virol. 82, 8262-8271 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 8262-8271
-
-
Wilson, J.R.1
De Sessions, P.F.2
Leon, M.A.3
Scholle, F.4
-
55
-
-
78049494595
-
The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system J
-
Szretter, K. J. et al. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system J. Virol. 84, 12 125-12138 (2010).
-
(2010)
Virol.
, vol.84
, pp. 12125-12138
-
-
Szretter, K.J.1
-
56
-
-
60149109538
-
Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing
-
Town, T et al. Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30, 242-253 (2009).
-
(2009)
Immunity
, vol.30
, pp. 242-253
-
-
Town, T.1
-
57
-
-
17144404177
-
IRF-7 is the master regulator of type-I interferon-dependent immune responses
-
Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772-777 (2005).
-
(2005)
Nature
, vol.434
, pp. 772-777
-
-
Honda, K.1
-
58
-
-
0033680737
-
Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN?α/β gene induction
-
Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN?α/β gene induction. Immunity 13, 539-548 (2000).
-
(2000)
Immunity
, vol.13
, pp. 539-548
-
-
Sato, M.1
-
59
-
-
85091517268
-
The Jak-STAT Pathway Stimulated by Interferon α or Interferon β
-
Horvath, C M. The Jak-STAT pathway stimulated by interferon α or interferon β. Sci. STKE 2004, tr10 (2004).
-
(2004)
Sci. STKE
, vol.2004
-
-
Horvath, C.M.1
-
60
-
-
33847687659
-
Multiple functions of the IKK-related kinase IKKε in interferon-mediated antiviral immunity
-
Tenoever, B. R. et al. Multiple functions of the IKK-related kinase IKKε in interferon-mediated antiviral immunity. Science 315, 1274-1278 (2007).
-
(2007)
Science
, vol.315
, pp. 1274-1278
-
-
Tenoever, B.R.1
-
61
-
-
84455161741
-
Inhibitor of κb kinase ε (IKKε), STAT1, and IFIT2 proteins define novel innate immune effector pathway against West Nile virus infection
-
Perwitasari, O., Cho, H., Diamond, M. S. & Gale, M. Jr Inhibitor of κB kinase ε (IKKε), STAT1, and IFIT2 proteins define novel innate immune effector pathway against West Nile virus infection. J. Biol. Chem. 286, 44412-44423 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 44412-44423
-
-
Perwitasari, O.1
Cho, H.2
Diamond, M.S.3
Gale Jr., M.4
-
62
-
-
34547631658
-
Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and independent mechanisms
-
Daffis, S., Samuel, M. A., Keller, B. C., Gale, M. Jr & Diamond, M. S. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and independent mechanisms. PLoS Pathog. 3, e106 (2007).
-
(2007)
PLoS Pathog.
, vol.3
-
-
Daffis, S.1
Samuel, M.A.2
Keller, B.C.3
Gale Jr., M.4
Diamond, M.S.5
-
63
-
-
50149119230
-
Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection
-
Daffis, S. et al. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J. Virol. 82, 8465-8475 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 8465-8475
-
-
Daffis, S.1
-
64
-
-
73349108813
-
Induction of IFN-β and the innate antiviral response in myeloid cells occurs through an IPS- 1 -dependent signal that does not require IRF-3 and IRF-7
-
Daffis, S., Suthar, M. S., Szretter, K. J., Gale, M. Jr & Diamond, M. S. Induction of IFN-β and the innate antiviral response in myeloid cells occurs through an IPS- 1 -dependent signal that does not require IRF-3 and IRF-7. PLoS Pathog. 5, e1000607 (2009).
-
(2009)
PLoS Pathog.
, vol.5
-
-
Daffis, S.1
Suthar, M.S.2
Szretter, K.J.3
Gale Jr., M.4
Diamond, M.S.5
-
65
-
-
0037047144
-
Positional cloning of the murine flavivirus resistance gene
-
Perelygin, A. A. et al. Positional cloning of the murine flavivirus resistance gene. Proc Natl Acad. Sci. USA 99, 9322-9327 (2002).
-
(2002)
Proc Natl Acad. Sci. USA
, vol.99
, pp. 9322-9327
-
-
Perelygin, A.A.1
-
66
-
-
61449157813
-
Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man
-
Lim, J. K. et al. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog. 5, e1000321 (2009).
-
(2009)
PLoS Pathog.
, vol.5
-
-
Lim, J.K.1
-
67
-
-
80052851918
-
Host genetic risk factors for West Nile virus infection and disease progression
-
Bigham, A. W. et al. Host genetic risk factors for West Nile virus infection and disease progression. PLoS ONE 6, e24745 (2011).
-
(2011)
PLoS ONE
, vol.6
-
-
Bigham, A.W.1
-
68
-
-
0030817251
-
Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L
-
Zhou, A. et al. Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 16, 6355-6363 (1997).
-
(1997)
EMBO J.
, vol.16
, pp. 6355-6363
-
-
Zhou, A.1
-
69
-
-
78149324490
-
RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP
-
Malathi, K. et al. RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16, 2 108-2119 (2010).
-
(2010)
RNA
, vol.16
, pp. 2108-2119
-
-
Malathi, K.1
-
70
-
-
84861312740
-
West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type i interferon-mediated antiviral response
-
Schuessler, A. et al. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J. Virol. 86, 5708-5718 (2012).
-
(2012)
J. Virol.
, vol.86
, pp. 5708-5718
-
-
Schuessler, A.1
-
71
-
-
33644781716
-
RNase L plays a role in the antiviral response to West Nile virus
-
Scherbik, S. V., Paranjape, J. M., Stockman, B. M., Silverman, R. H. & Brinton, M. A. RNase L plays a role in the antiviral response to West Nile virus. J. Virol. 80, 2987-2999 (2006).
-
(2006)
J. Virol.
, vol.80
, pp. 2987-2999
-
-
Scherbik, S.V.1
Paranjape, J.M.2
Stockman, B.M.3
Silverman, R.H.4
Brinton, M.A.5
-
72
-
-
0037143755
-
A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice
-
Mashimo, T. et al. A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc Natl Acad. Sci. USA 99, 11311-11316 (2002).
-
(2002)
Proc Natl Acad. Sci. USA
, vol.99
, pp. 11311-11316
-
-
Mashimo, T.1
-
73
-
-
33646183540
-
The 2′,5′-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells
-
Kajaste-Rudnitski, A. et al. The 2′,5′-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. J. Biol. Chem. 281, 4624-4637 (2006).
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 4624-4637
-
-
Kajaste-Rudnitski, A.1
-
75
-
-
80053616925
-
Protein kinase PKR & RNA adenosine deaminase ADAR1: New roles for old players as modulators of the interferon response
-
Pfaller, C K., Li, Z., George, C X. & Samuel, C E. Protein kinase PKR & RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response. Curr Opin. Immunol. 23, 573-582 (2011).
-
(2011)
Curr Opin. Immunol.
, vol.23
, pp. 573-582
-
-
Pfaller, C.K.1
Li, Z.2
George, C.X.3
Samuel, C.E.4
-
76
-
-
35148820081
-
West nile virus-induced ifn production is mediated by the double-stranded RNA-dependent protein kinase PKR
-
Gilfoy, F D. & Mason, P. W. West Nile virus-induced IFN production is mediated by the double-stranded RNA-dependent protein kinase, PKR. J. Virol. 81, 11148-11158 (2007).
-
(2007)
J. Virol.
, vol.81
, pp. 11148-11158
-
-
Gilfoy, F.D.1
Mason, P.W.2
-
77
-
-
79955542915
-
A diverse range of gene products are effectors of the type i interferon antiviral response
-
Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481-485 (2011).
-
(2011)
Nature
, vol.472
, pp. 481-485
-
-
Schoggins, J.W.1
-
78
-
-
77954983994
-
Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections
-
Jiang, D. et al. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections. J. Virol. 84, 8332-8341 (2010).
-
(2010)
J. Virol.
, vol.84
, pp. 8332-8341
-
-
Jiang, D.1
-
79
-
-
84866765634
-
Cell-intrinsic innate immune control of West Nile virus infection
-
Diamond, M. S. & Gale, M. Jr. Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol. 33, 522-530 (2012).
-
(2012)
Trends Immunol.
, vol.33
, pp. 522-530
-
-
Diamond, M.S.1
Gale Jr., M.2
-
80
-
-
79960502623
-
Modulation of inflammasome pathways by bacterial and viral pathogens
-
Lamkanfi, M. & Dixit, V. M. Modulation of inflammasome pathways by bacterial and viral pathogens. J. Immunol. 187, 597-602 (2011).
-
(2011)
J. Immunol.
, vol.187
, pp. 597-602
-
-
Lamkanfi, M.1
Dixit, V.M.2
-
81
-
-
84870793191
-
IL- 1 β signaling promotes CNS-intrinsic immune control of West Nile virus infection
-
Ramos, H. J. et al. IL- 1 β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 8, e1003039 (2012).
-
(2012)
PLoS Pathog.
, vol.8
-
-
Ramos, H.J.1
-
82
-
-
0034740861
-
Interleukin- 1 β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice
-
Byrne, S. N., Halliday, G. M., Johnston, L J. & King, N. J. Interleukin- 1 β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J. Invest Dermatol. 117, 702-709 (2001).
-
(2001)
J. Invest Dermatol.
, vol.117
, pp. 702-709
-
-
Byrne, S.N.1
Halliday, G.M.2
Johnston, L.J.3
King, N.J.4
-
83
-
-
77958527908
-
Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death
-
Kumar, M., Verma, S. & Nerurkar, V R. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J. Neuroinflammation 7, 73 (2010).
-
(2010)
J. Neuroinflammation
, vol.7
, pp. 73
-
-
Kumar, M.1
Verma, S.2
Nerurkar, V.R.3
-
84
-
-
3142692686
-
The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway
-
Fredericksen, B. L., Smith, M., Katze, M. G., Shi, P. Y & Gale, M. Jr. The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J. Virol. 78, 7737-7747 (2004).
-
(2004)
J. Virol.
, vol.78
, pp. 7737-7747
-
-
Fredericksen, B.L.1
Smith, M.2
Katze, M.G.3
Shi, P.Y.4
Gale Jr., M.5
-
85
-
-
77957201605
-
The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex
-
Gillespie, L K., Hoenen, A., Morgan, G. & Mackenzie, J. M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84, 10438-10447 (2010).
-
(2010)
J. Virol.
, vol.84
, pp. 10438-10447
-
-
Gillespie, L.K.1
Hoenen, A.2
Morgan, G.3
MacKenzie, J.M.4
-
86
-
-
33748951978
-
Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence
-
Keller, B. C et al. Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J. Virol. 80, 9424-9434 (2006).
-
(2006)
J. Virol.
, vol.80
, pp. 9424-9434
-
-
Keller, B.C.1
-
87
-
-
80051732976
-
West Nile virus infection induces depletion of IFNAR1 protein levels
-
Evans, J. D., Crown, R. A., Sohn, J. A. & Seeger, C West Nile virus infection induces depletion of IFNAR1 protein levels. Viral Immunol. 24, 253-263 (2011).
-
Viral Immunol.
, vol.24
, Issue.253-263
, pp. 2011
-
-
Evans, J.D.1
Crown, R.A.2
Sohn, J.A.3
Seeger, C.4
-
88
-
-
34848900462
-
Cholesterol manipulation by West Nile virus perturbs the cellular immune response
-
Mackenzie, J. M., Khromykh, A. A. & Parton, R. G. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2, 229-239 (2007).
-
(2007)
Cell Host Microbe
, vol.2
, pp. 229-239
-
-
MacKenzie, J.M.1
Khromykh, A.A.2
Parton, R.G.3
-
89
-
-
84863762462
-
Infectious clones of novel lineage 1 and lineage 2 West Nile virus strains WNV-TX02 and WNV-Madagascar
-
Suthar, M. S., Brassil, M. M., Blahnik, G. & Gale, M. Jr Infectious clones of novel lineage 1 and lineage 2 West Nile virus strains WNV-TX02 and WNV-Madagascar J. Virol. 86, 7704-7709 (2012).
-
(2012)
J. Virol.
, vol.86
, pp. 7704-7709
-
-
Suthar, M.S.1
Brassil, M.M.2
Blahnik, G.3
Gale Jr., M.4
-
90
-
-
35448972183
-
Differential effects of mutations in NS4B on west nile virus replication and inhibition of interferon signaling
-
Evans, J. D. & Seeger, C Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J. Virol. 81, 11809-11816 (2007).
-
(2007)
J. Virol.
, vol.81
, pp. 11809-11816
-
-
Evans, J.D.1
Seeger, C.2
-
91
-
-
33144482922
-
A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice
-
Liu, W. J. et al. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J. Virol. 80, 2396-2404 (2006).
-
(2006)
J. Virol.
, vol.80
, pp. 2396-2404
-
-
Liu, W.J.1
-
92
-
-
13744254078
-
Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins
-
Liu, W. J. et al. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. J. Virol. 79, 1934-1942 (2005).
-
(2005)
J. Virol.
, vol.79
, pp. 1934-1942
-
-
Liu, W.J.1
-
93
-
-
20744453948
-
Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses
-
Munoz-Jordan, J. L. et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J. Virol. 79, 8004-8013 (2005).
-
(2005)
J. Virol.
, vol.79
, pp. 8004-8013
-
-
Munoz-Jordan, J.L.1
-
94
-
-
77949373371
-
The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type i interferon-mediated JAK-STAT signaling
-
Laurent-Rolle, M. et al. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J. Virol. 84, 3503-3515 (2010).
-
(2010)
J. Virol.
, vol.84
, pp. 3503-3515
-
-
Laurent-Rolle, M.1
-
96
-
-
84863711523
-
2′-O methylation of the viral mRNA cap by West Nile virus evades Ifit1 -dependent and -independent mechanisms of host restriction in vivo
-
Szretter, K. J. et al. 2′-O methylation of the viral mRNA cap by West Nile virus evades Ifit1 -dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 8, e1002698 (2012).
-
(2012)
PLoS Pathog.
, vol.8
-
-
Szretter, K.J.1
-
97
-
-
50949117801
-
Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system
-
Shrestha, B., Zhang, B., Purtha, W. E., Klein, R. S. & Diamond, M. S. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J. Virol. 82, 8956-8964 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 8956-8964
-
-
Shrestha, B.1
Zhang, B.2
Purtha, W.E.3
Klein, R.S.4
Diamond, M.S.5
-
98
-
-
44349124465
-
DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-α and TNF-α
-
Martina, B. E. et al. DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-α and TNF-α. Virus Res. 135, 64-71 (2008).
-
(2008)
Virus Res.
, vol.135
, pp. 64-71
-
-
Martina, B.E.1
-
99
-
-
37049005384
-
Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells
-
Silva, M. C., Guerrero-Plata, A., Gilfoy, F D., Garofalo, R. P. & Mason, P. W. Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J. Virol. 81, 13640-13648 (2007).
-
(2007)
J. Virol.
, vol.81
, pp. 13640-13648
-
-
Silva, M.C.1
Guerrero-Plata, A.2
Gilfoy, F.D.3
Garofalo, R.P.4
Mason, P.W.5
-
100
-
-
79952073504
-
Complement and viral pathogenesis
-
Stoermer, K. A. & Morrison, T E. Complement and viral pathogenesis. Virology 411, 362-373 (2011).
-
(2011)
Virology
, vol.411
, pp. 362-373
-
-
Stoermer, K.A.1
Morrison, T.E.2
-
101
-
-
78650970845
-
Innate or adaptive immunity? the example of natural killer cells
-
Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44-49 (2011).
-
(2011)
Science
, vol.331
, pp. 44-49
-
-
Vivier, E.1
-
102
-
-
77955466768
-
Modulation of natural killer cell activity by viruses
-
Lisnic, V. J., Krmpotic, A. & Jonjic, S. Modulation of natural killer cell activity by viruses. Curr Opin. Microbiol. 13, 530-539 (2010).
-
(2010)
Curr Opin. Microbiol.
, vol.13
, pp. 530-539
-
-
Lisnic, V.J.1
Krmpotic, A.2
Jonjic, S.3
-
103
-
-
76949089891
-
Anti-West Nile virus activity of in vitro expanded human primary natural killer cells
-
Zhang, M. et al. Anti-West Nile virus activity of in vitro expanded human primary natural killer cells. BMC Immunol. 11, 3 (2010).
-
(2010)
BMC Immunol.
, vol.11
, pp. 3
-
-
Zhang, M.1
-
104
-
-
70149108129
-
NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells
-
Hershkovitz, O. et al. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J. Immunol. 183, 2610-262 1 (2009).
-
(2009)
J. Immunol.
, vol.183
, pp. 2610-2621
-
-
Hershkovitz, O.1
-
105
-
-
33645992767
-
+ T cells require perforin to clear West Nile virus from infected neurons
-
+ T cells require perforin to clear West Nile virus from infected neurons. J. Virol. 80, 119-129 (2006).
-
(2006)
J. Virol.
, vol.80
, pp. 119-129
-
-
Shrestha, B.1
Samuel, M.A.2
Diamond, M.S.3
-
106
-
-
80655146256
-
Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in viv o via Fcγ receptor and complement-dependent effector mechanisms
-
Vogt, M. R. et al. Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in viv o via Fcγ receptor and complement-dependent effector mechanisms. J. Virol. 85, 11567-11580 (2011).
-
(2011)
J. Virol.
, vol.85
, pp. 11567-11580
-
-
Vogt, M.R.1
-
107
-
-
77953633983
-
Type i IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites
-
Xin, L et al. Type I IFN receptor regulates neutrophil functions and innate immunity to Leishmania parasites. J. Immunol. 184, 7047-7056 (2010).
-
(2010)
J. Immunol.
, vol.184
, pp. 7047-7056
-
-
Xin, L.1
-
108
-
-
16644372316
-
Cerebrospinal Fluid Neutrophilic Pleocytosis in Hospitalized West Nile Virus Patients
-
Crichlow, R., Bailey, J. & Gardner, C Cerebrospinal fluid neutrophilic pleocytosis in hospitalized West Nile virus patients. J. Am. Board Fam. Pract 17, 470-472 (2004).
-
(2004)
J. Am. Board Fam. Pract
, vol.17
, pp. 470-472
-
-
Crichlow, R.1
Bailey, J.2
Gardner, C.3
-
109
-
-
0035406186
-
Pathologic and immunohistochemical findings in naturally occuring West Nile virus infection in horses
-
Cantile, C., Del Piero, F, Di Guardo, G. & Arispici, M. Pathologic and immunohistochemical findings in naturally occuring West Nile virus infection in horses. Vet Pathol. 38, 414-421 (2001).
-
(2001)
Vet Pathol.
, vol.38
, pp. 414-421
-
-
Cantile, C.1
Del Piero, F.2
Di Guardo, G.3
Arispici, M.4
-
110
-
-
0042430331
-
IFN-γ-producing γδ T cells help control murine west nile virus infection
-
Wang, T et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J. Immunol. 171, 2524-2531 (2003).
-
(2003)
J. Immunol.
, vol.171
, pp. 2524-2531
-
-
Wang, T.1
-
111
-
-
45149110222
-
Role of two distinct γδ T cell subsets during West Nile virus infection
-
Welte, T et al. Role of two distinct γδ T cell subsets during West Nile virus infection. FEMS Immunol. Med. Microbiol. 53, 275-283 (2008).
-
(2008)
FEMS Immunol. Med. Microbiol.
, vol.53
, pp. 275-283
-
-
Welte, T.1
-
112
-
-
19944405462
-
Complement activation is required for induction of a protective antibody response against West Nile virus infection
-
Mehlhop, E. et al. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J. Virol. 79, 7466-7477 (2005).
-
(2005)
J. Virol.
, vol.79
, pp. 7466-7477
-
-
Mehlhop, E.1
-
113
-
-
33646707490
-
Protective immune responses against West Nile virus are primed by distinct complement activation pathways
-
Mehlhop, E. & Diamond, M. S. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J. Exp. Med. 203, 1371-1381 (2006).
-
(2006)
J. Exp. Med.
, vol.203
, pp. 1371-1381
-
-
Mehlhop, E.1
Diamond, M.S.2
-
114
-
-
70349247668
-
Complement modulates pathogenesis and antibody-dependent neutralization of West Nile virus infection through a C5-independent mechanism
-
Mehlhop, E., Fuchs, A., Engle, M. & Diamond, M. S. Complement modulates pathogenesis and antibody-dependent neutralization of West Nile virus infection through a C5-independent mechanism. Virology 393, 11-15 (2009).
-
(2009)
Virology
, vol.393
, pp. 11-15
-
-
Mehlhop, E.1
Fuchs, A.2
Engle, M.3
Diamond, M.S.4
-
115
-
-
79952535868
-
The lectin pathway of complement activation contributes to protection from West Nile virus infection
-
Fuchs, A., Pinto, A. K., Schwaeble, W. J. & Diamond, M. S. The lectin pathway of complement activation contributes to protection from West Nile virus infection. Virology 412, 101-109 (2011).
-
(2011)
Virology
, vol.412
, pp. 101-109
-
-
Fuchs, A.1
Pinto, A.K.2
Schwaeble, W.J.3
Diamond, M.S.4
-
116
-
-
35548995065
-
West Nile virus non-structural protein NS1 inhibits complement activation by binding the regulatory protein factor H
-
Chung, K. M. et al. West Nile virus non-structural protein NS1 inhibits complement activation by binding the regulatory protein factor H. Proc Natl Acad. Sci. USA 103, 19111-19116 (2006).
-
(2006)
Proc Natl Acad. Sci. USA
, vol.103
, pp. 19111-19116
-
-
Chung, K.M.1
-
117
-
-
65349159136
-
Virus-specific cytolytic antibodies to nonstructural protein 1 of Japanese encephalitis virus effect reduction of virus output from infected cells
-
Krishna, V. D., Rangappa, M. & Satchidanandam, V Virus-specific cytolytic antibodies to nonstructural protein 1 of Japanese encephalitis virus effect reduction of virus output from infected cells. J. Virol. 83, 4766-4777 (2009).
-
(2009)
J. Virol.
, vol.83
, pp. 4766-4777
-
-
Krishna, V.D.1
Rangappa, M.2
Satchidanandam, V.3
-
118
-
-
77951063838
-
Antagonism of the complement component C4 by flavivirus nonstructural protein NS1
-
Avirutnan, P. et al. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J. Exp. Med. 207, 793-806 (2010).
-
(2010)
J. Exp. Med.
, vol.207
, pp. 793-806
-
-
Avirutnan, P.1
-
119
-
-
79960404180
-
Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation
-
Avirutnan, P. et al. Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J. Immunol. 187, 424-433 (2011).
-
(2011)
J. Immunol.
, vol.187
, pp. 424-433
-
-
Avirutnan, P.1
-
120
-
-
55549136745
-
Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling
-
Purtha, W. E., Chachu, K. A., Virgin, H. W. & Diamond, M. S. Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling. J. Virol. 82, 10964-10974 (2008).
-
(2008)
J. Virol.
, vol.82
, pp. 10964-10974
-
-
Purtha, W.E.1
Chachu, K.A.2
Virgin, H.W.3
Diamond, M.S.4
-
121
-
-
84855284258
-
+ T cell maturation during acute West Nile virus infection
-
+ T cell maturation during acute West Nile virus infection. PLoS Pathog. 7, e1002407 (2011).
-
(2011)
PLoS Pathog.
, vol.7
-
-
Pinto, A.K.1
-
122
-
-
0037319970
-
B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus
-
Diamond, M. S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578-2586 (2003).
-
(2003)
J. Virol.
, vol.77
, pp. 2578-2586
-
-
Diamond, M.S.1
Shrestha, B.2
Marri, A.3
Mahan, D.4
Engle, M.5
-
123
-
-
0344304693
-
Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice
-
Engle, M. J. & Diamond, M. S. Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J. Virol. 77, 12941-12949 (2003).
-
(2003)
J. Virol.
, vol.77
, pp. 12941-12949
-
-
Engle, M.J.1
Diamond, M.S.2
-
124
-
-
0038448987
-
Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice
-
Ben-Nathan, D. et al. Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. J. Infect. Dis. 188, 5-12 (2003).
-
(2003)
J. Infect. Dis.
, vol.188
, pp. 5-12
-
-
Ben-Nathan, D.1
-
125
-
-
21044448356
-
Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus
-
Oliphant, T. et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nature Med. 11, 522-530 (2005).
-
(2005)
Nature Med.
, vol.11
, pp. 522-530
-
-
Oliphant, T.1
-
126
-
-
0347593991
-
A critical role for induced IgM in the protection against West Nile virus infection
-
Diamond, M. S. et al. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 198, 1853-1862 (2003).
-
(2003)
J. Exp. Med.
, vol.198
, pp. 1853-1862
-
-
Diamond, M.S.1
-
127
-
-
42449102299
-
West Nile 25A virus infection of B-cell-deficient (μMT) mice: Characterization of neuroinvasiveness and pseudoreversion of the viral envelope protein
-
Chambers, T. J. et al. West Nile 25A virus infection of B-cell-deficient (μMT) mice: characterization of neuroinvasiveness and pseudoreversion of the viral envelope protein. J. Gen. Virol. 89, 627-635 (2008).
-
(2008)
J. Gen. Virol.
, vol.89
, pp. 627-635
-
-
Chambers, T.J.1
-
128
-
-
3242677841
-
+ T cells in control of West Nile virus infection
-
+ T cells in control of West Nile virus infection. J. Virol. 78, 8312-8321 (2004).
-
(2004)
J. Virol.
, vol.78
, pp. 8312-8321
-
-
Shrestha, B.1
Diamond, M.S.2
-
130
-
-
35448965261
-
+ T cell-mediated control of West Nile virus infection in the central nervous system
-
+ T cell-mediated control of West Nile virus infection in the central nervous system J. Virol. 81, 11749-11757 (2007).
-
(2007)
J. Virol.
, vol.81
, pp. 11749-11757
-
-
Shrestha, B.1
Diamond, M.S.2
-
131
-
-
84866144157
-
+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons
-
+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J. Virol. 86, 8937-8948 (2012).
-
(2012)
J. Virol.
, vol.86
, pp. 8937-8948
-
-
Shrestha, B.1
Pinto, A.K.2
Green, S.3
Bosch, I.4
Diamond, M.S.5
-
132
-
-
0344736813
-
+ T cells mediate recovery and immunopathology in West Nile virus encephalitis
-
+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J. Virol. 77, 13323-13334 (2003).
-
(2003)
J. Virol.
, vol.77
, pp. 13323-13334
-
-
Wang, Y.1
Lobigs, M.2
Lee, E.3
Mullbacher, A.4
-
133
-
-
33845462484
-
+ T-cell responses are required for clearance of West Nile virus from the central nervous system
-
+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J. Virol. 80, 12060-12069 (2006).
-
(2006)
J. Virol.
, vol.80
, pp. 12060-12069
-
-
Sitati, E.M.1
Diamond, M.S.2
-
134
-
-
58849165766
-
West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection
-
Brien, J. D., Uhrlaub, J. L & Nikolich-Zugich, J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol. 181, 8568-8575 (2008).
-
(2008)
J. Immunol.
, vol.181
, pp. 8568-8575
-
-
Brien, J.D.1
Uhrlaub, J.L.2
Nikolich-Zugich, J.3
-
135
-
-
70449377991
-
Tregs control the development of symptomatic West Nile virus infection in humans and mice
-
Lanteri, M. C et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J. Clin. Invest 119, 3266-3277 (2009).
-
(2009)
J. Clin. Invest
, vol.119
, pp. 3266-3277
-
-
Lanteri, M.C.1
-
136
-
-
75649111972
-
CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission
-
Lim, J. K. et al. CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J. Infect. Dis. 201, 178-185 (2010).
-
(2010)
J. Infect. Dis.
, vol.201
, pp. 178-185
-
-
Lim, J.K.1
-
137
-
-
26844529383
-
Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection
-
Glass, W. G. et al. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J. Exp. Med. 202, 1087-1098 (2005).
-
(2005)
J. Exp. Med.
, vol.202
, pp. 1087-1098
-
-
Glass, W.G.1
-
138
-
-
79851504695
-
Phase II randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults
-
Biedenbender, R., Bevilacqua, J., Gregg, A. M., Watson, M. & Dayan, G. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J. Infect. Dis. 203, 75-84 (2011).
-
(2011)
J. Infect. Dis.
, vol.203
, pp. 75-84
-
-
Biedenbender, R.1
Bevilacqua, J.2
Gregg, A.M.3
Watson, M.4
Dayan, G.5
-
139
-
-
33646253695
-
A live, attenuated recombinant West Nile virus vaccine
-
Monath, T. P. et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl Acad. Sci. USA 103, 6694-6699 (2006).
-
(2006)
Proc. Natl Acad. Sci. USA
, vol.103
, pp. 6694-6699
-
-
Monath, T.P.1
-
140
-
-
77953785380
-
Evaluation of RepliVAX WN, a single-cycle flavivirus vaccine, in a non-human primate model of West Nile virus infection
-
Widman, D. G. et al. Evaluation of RepliVAX WN, a single-cycle flavivirus vaccine, in a non-human primate model of West Nile virus infection. Am. J. Trop. Med. Hyg. 82, 1160-1167 (2010).
-
(2010)
Am. J. Trop. Med. Hyg.
, vol.82
, pp. 1160-1167
-
-
Widman, D.G.1
-
141
-
-
78649697513
-
Immunogenicity of RepliVAX WN, a novel single-cycle West Nile virus vaccine
-
Nelson, M. H. et al. Immunogenicity of RepliVAX WN, a novel single-cycle West Nile virus vaccine. Vaccine 29, 174-182 (2010).
-
(2010)
Vaccine
, vol.29
, pp. 174-182
-
-
Nelson, M.H.1
-
142
-
-
79955003350
-
A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase i clinical trial
-
Ledgerwood, J. E. et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J. Infect. Dis. 203, 1396-1404 (2011).
-
(2011)
J. Infect. Dis.
, vol.203
, pp. 1396-1404
-
-
Ledgerwood, J.E.1
-
143
-
-
39149128276
-
A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial
-
Martin, J. E. et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J. Infect. Dis. 196, 1732-1740 (2007).
-
(2007)
J. Infect. Dis.
, vol.196
, pp. 1732-1740
-
-
Martin, J.E.1
-
144
-
-
79951766069
-
Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus
-
Beasley, D. W. Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus. Immunotherapy 3, 269-285 (2011).
-
(2011)
Immunotherapy
, vol.3
, pp. 269-285
-
-
Beasley, D.W.1
-
145
-
-
15044352317
-
Use of interferon-α in patients with West Nile encephalitis: Report of 2 cases
-
Kalil, A. C et al. Use of interferon-α in patients with West Nile encephalitis: report of 2 cases. Clin. Infect Dis. 40, 764-766 (2005).
-
(2005)
Clin. Infect Dis.
, vol.40
, pp. 764-766
-
-
Kalil, A.C.1
-
146
-
-
34447263267
-
In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus
-
Deas, T. S. et al. In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus. Antimicrob. Agents Chemother. 51, 2470-2482 (2007).
-
(2007)
Antimicrob. Agents Chemother.
, vol.51
, pp. 2470-2482
-
-
Deas, T.S.1
-
147
-
-
28844486636
-
High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile virus drug discovery
-
Puig-Basagoiti, F et al. High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile virus drug discovery. Antimicrob. Agents Chemother. 49, 4980-4988 (2005).
-
(2005)
Antimicrob. Agents Chemother.
, vol.49
, pp. 4980-4988
-
-
Puig-Basagoiti, F.1
-
148
-
-
63049115215
-
Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection
-
Ben-Nathan, D. et al. Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection. BMC Infect. Dis. 9, 18 (2009).
-
(2009)
BMC Infect. Dis.
, vol.9
, pp. 18
-
-
Ben-Nathan, D.1
-
149
-
-
84864120309
-
Isoflavone agonists of IRF-3 dependent signaling have antiviral activity against RNA viruses
-
Bedard, K. M. et al. Isoflavone agonists of IRF-3 dependent signaling have antiviral activity against RNA viruses. J. Virol. 86, 7334-7344 (2012).
-
(2012)
J. Virol.
, vol.86
, pp. 7334-7344
-
-
Bedard, K.M.1
-
150
-
-
78650576197
-
Use of defined TLR ligands as adjuvants within human vaccines
-
Duthie, M. S., Windish, H. P, Fox, C B. & Reed, S. G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239, 178-196 (2011).
-
(2011)
Immunol. Rev.
, vol.239
, pp. 178-196
-
-
Duthie, M.S.1
Windish, H.P.2
Fox, C.B.3
Reed, S.G.4
-
151
-
-
33847689057
-
West Nile virus isolates from India: Evidence for a distinct genetic lineage
-
Bondre, V. P, Jadi, R. S., Mishra, A. C., Yergolkar, P. N. & Arankalle, V A. West Nile virus isolates from India: evidence for a distinct genetic lineage. J. Gen. Virol. 88, 875-884 (2007).
-
(2007)
J. Gen. Virol.
, vol.88
, pp. 875-884
-
-
Bondre, V.P.1
Jadi, R.S.2
Mishra, A.C.3
Yergolkar, P.N.4
Arankalle, V.A.5
-
152
-
-
0030886380
-
Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses
-
Berthet, F X. et al. Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J. Gen. Virol. 78, 2293-2297 (1997).
-
(1997)
J. Gen. Virol.
, vol.78
, pp. 2293-2297
-
-
Berthet, F.X.1
-
153
-
-
84858648066
-
West nile virus lineage 2 from blood donor greece
-
Papa, A. et al. West Nile virus lineage 2 from blood donor, Greece. Emerging Infect Dis. 18, 688-689 (2012).
-
(2012)
Emerging Infect Dis.
, vol.18
, pp. 688-689
-
-
Papa, A.1
-
154
-
-
13744263729
-
Novel flavivirus or new lineage of West Nile virus, central Europe
-
Bakonyi, T., Hubalek, Z., Rudolf, I. & Nowotny, N. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerging Infect. Dis. 11, 225-231 (2005).
-
(2005)
Emerging Infect. Dis.
, vol.11
, pp. 225-231
-
-
Bakonyi, T.1
Hubalek, Z.2
Rudolf, I.3
Nowotny, N.4
-
155
-
-
3042586038
-
West Nile virus and other zoonotic viruses in Russia: Examples of emerging-reemerging situations
-
Lvov, D. K. et al. West Nile virus and other zoonotic viruses in Russia: examples of emerging-reemerging situations. Arch. Virol. Suppl. 2004, 85-96 (2004).
-
(2004)
Arch. Virol. Suppl.
, vol.2004
, pp. 85-96
-
-
Lvov, D.K.1
-
156
-
-
0038455694
-
Neurologic manifestations and outcome of West Nile virus infection
-
Sejvar, J. J. et al. Neurologic manifestations and outcome of West Nile virus infection. JAMA 290, 511-515 (2003).
-
(2003)
JAMA
, vol.290
, pp. 511-515
-
-
Sejvar, J.J.1
-
157
-
-
58149354278
-
Emerging viruses in transplantation: There is more to infection after transplant than CMV and EBV
-
Fischer, S. A. Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. Transplantation 86, 1327-1339 (2008).
-
(2008)
Transplantation
, vol.86
, pp. 1327-1339
-
-
Fischer, S.A.1
-
158
-
-
23844438864
-
Shared and unique functions of the DExDH-box helicases RIG-I MDA5 and LGP2 in antiviral innate immunity
-
Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851-2858 (2005).
-
(2005)
J. Immunol.
, vol.175
, pp. 2851-2858
-
-
Yoneyama, M.1
-
159
-
-
33846307026
-
Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2
-
Saito, T. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad. Sci. USA 104, 582-587 (2007).
-
(2007)
Proc Natl Acad. Sci. USA
, vol.104
, pp. 582-587
-
-
Saito, T.1
-
160
-
-
34248168157
-
Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses
-
Venkataraman, T. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178, 6444-6455 (2007).
-
(2007)
J. Immunol.
, vol.178
, pp. 6444-6455
-
-
Venkataraman, T.1
-
161
-
-
84866148178
-
Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I
-
Schnell, G., Loo, Y-M., Marcotrigiano, J. & Gale, M. Jr Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. PLoS Pathog. 8, e1002839 (2012).
-
(2012)
PLoS Pathog.
, vol.8
-
-
Schnell, G.1
Loo, Y.-M.2
Marcotrigiano, J.3
Gale Jr., M.4
-
162
-
-
47949092573
-
Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA
-
Saito, T., Owen, D. M., Jiang, F, Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523-527 (2008).
-
(2008)
Nature
, vol.454
, pp. 523-527
-
-
Saito, T.1
Owen, D.M.2
Jiang, F.3
Marcotrigiano, J.4
Gale Jr., M.5
-
163
-
-
70349728538
-
Activation of MDA5 requires higher-order RNA structures generated during virus infection
-
Pichlmair, A. et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 83, 10761-10769 (2009).
-
(2009)
J. Virol.
, vol.83
, pp. 10761-10769
-
-
Pichlmair, A.1
-
164
-
-
46949097299
-
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5
-
Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601-1610 (2008).
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1601-1610
-
-
Kato, H.1
-
165
-
-
84883491208
-
Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses
-
Triantafilou, K. et al. Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses. J. Cell Sci. 125, 4761-4769 (2012).
-
(2012)
J. Cell Sci.
, vol.125
, pp. 4761-4769
-
-
Triantafilou, K.1
-
166
-
-
46949092022
-
Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity
-
Saito, T. & Gale, M. Jr. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med. 205, 1523-1527 (2008).
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1523-1527
-
-
Saito, T.1
Gale Jr., M.2
-
167
-
-
84859427527
-
MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA
-
Berke, I. C & Modis, Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 31, 1714-1726 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 1714-1726
-
-
Berke, I.C.1
Modis, Y.2
-
168
-
-
80052281413
-
Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus
-
Horner, S. M., Liu, H. M., Park, H. S., Briley, J. & Gale, M. Jr. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad. Sci. USA 108, 14590-14595 (2011).
-
(2011)
Proc Natl Acad. Sci. USA
, vol.108
, pp. 14590-14595
-
-
Horner, S.M.1
Liu, H.M.2
Park, H.S.3
Briley, J.4
Gale Jr., M.5
-
169
-
-
84861181618
-
The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity
-
Liu, H. M. et al. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11, 528-537 (2012).
-
(2012)
Cell Host Microbe
, vol.11
, pp. 528-537
-
-
Liu, H.M.1
-
170
-
-
0036018263
-
Involvement of IL- 1 β and IL-10 in IFN-α-mediated antiviral gene induction in human hepatoma cells
-
Ichikawa, T et al. Involvement of IL- 1 β and IL-10 in IFN-α-mediated antiviral gene induction in human hepatoma cells. Biochem. Biophys. Res. Commun. 294, 414-422 (2002).
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.294
, pp. 414-422
-
-
Ichikawa, T.1
|