-
1
-
-
77953631698
-
The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways
-
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31:194-223.
-
(2010)
Endocr Rev
, vol.31
, pp. 194-223
-
-
Houtkooper, R.H.1
Cantó, C.2
Wanders, R.J.3
Auwerx, J.4
-
4
-
-
34250365395
-
Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
-
Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007; 282:6823-6832.
-
(2007)
J Biol Chem
, vol.282
, pp. 6823-6832
-
-
Tanno, M.1
Sakamoto, J.2
Miura, T.3
-
5
-
-
65549113750
-
CBP/p300-mediated acetylation of histone H3 on lysine 56
-
Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459:113-117.
-
(2009)
Nature
, vol.459
, pp. 113-117
-
-
Das, C.1
Lucia, M.S.2
Hansen, K.C.3
Tyler, J.K.4
-
6
-
-
4944245398
-
Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
-
Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16:93-105.
-
(2004)
Mol Cell
, vol.16
, pp. 93-105
-
-
Vaquero, A.1
Scher, M.2
Lee, D.3
-
7
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008; 14:661-673.
-
(2008)
Dev Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
-
8
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303:2011-2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
-
9
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a
-
Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a. J Biol Chem 2005; 280:16456-16460.
-
(2005)
J Biol Chem
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
10
-
-
34447626095
-
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
-
Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007; 6:505-514.
-
(2007)
Aging Cell
, vol.6
, pp. 505-514
-
-
Wang, F.1
Nguyen, M.2
Qin, F.X.3
Tong, Q.4
-
11
-
-
64049089450
-
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
-
Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 2009; 20:801-808.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 801-808
-
-
Wang, F.1
Tong, Q.2
-
12
-
-
0037291214
-
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
-
North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11:437-444.
-
(2003)
Mol Cell
, vol.11
, pp. 437-444
-
-
North, B.J.1
Marshall, B.L.2
Borra, M.T.3
-
13
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 2008; 382:790-801.
-
(2008)
J Mol Biol
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
Gertz, M.2
Papatheodorou, P.3
-
14
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B, Bunkenborg J, Verdin RO, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 2006; 103:10224-10229.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
Bunkenborg, J.2
Verdin, R.O.3
-
15
-
-
51449083112
-
SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression
-
Jacobs KM, Pennington JD, Bisht KS, et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 2008; 4:291-299.
-
(2008)
Int J Biol Sci
, vol.4
, pp. 291-299
-
-
Jacobs, K.M.1
Pennington, J.D.2
Bisht, K.S.3
-
16
-
-
53549105529
-
SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
-
Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008; 28:6384-6401.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 6384-6401
-
-
Sundaresan, N.R.1
Samant, S.A.2
Pillai, V.B.3
-
17
-
-
84859951790
-
SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
-
Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 2012; 287:14078-14086.
-
(2012)
J Biol Chem
, vol.287
, pp. 14078-14086
-
-
Yu, W.1
Dittenhafer-Reed, K.E.2
Denu, J.M.3
-
18
-
-
84861589885
-
Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
-
Fernandez-Marcos PJ, Jeninga EH, Canto C, et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci Rep 2012; 2:425.
-
(2012)
Sci Rep
, vol.2
, pp. 425
-
-
Fernandez-Marcos, P.J.1
Jeninga, E.H.2
Canto, C.3
-
19
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126:941-954.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
-
20
-
-
58149090925
-
SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
-
Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136:62-74.
-
(2009)
Cell
, vol.136
, pp. 62-74
-
-
Kawahara, T.L.1
Michishita, E.2
Adler, A.S.3
-
21
-
-
78449248442
-
SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
-
Xiao C, Kim HS, Lahusen T, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 2010; 285:36776-36784.
-
(2010)
J Biol Chem
, vol.285
, pp. 36776-36784
-
-
Xiao, C.1
Kim, H.S.2
Lahusen, T.3
-
22
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483:218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
Naiman, S.2
Amir, G.3
-
23
-
-
33744466971
-
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase i transcription
-
Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006; 20:1075-1080.
-
(2006)
Genes Dev
, vol.20
, pp. 1075-1080
-
-
Ford, E.1
Voit, R.2
Liszt, G.3
-
24
-
-
28844469898
-
Increase in activity during calorie restriction requires Sirt1
-
Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science 2005; 310:1641.
-
(2005)
Science
, vol.310
, pp. 1641
-
-
Chen, D.1
Steele, A.D.2
Lindquist, S.3
Guarente, L.4
-
25
-
-
34548627517
-
Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
-
Yang H, Yang T, Baur JA, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007; 130:1095-1107.
-
(2007)
Cell
, vol.130
, pp. 1095-1107
-
-
Yang, H.1
Yang, T.2
Baur, J.A.3
-
26
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
-
Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010; 327:1004-1007.
-
(2010)
Science
, vol.327
, pp. 1004-1007
-
-
Wang, Q.1
Zhang, Y.2
Yang, C.3
-
27
-
-
0043244921
-
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
-
Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12:51-62.
-
(2003)
Mol Cell
, vol.12
, pp. 51-62
-
-
Fulco, M.1
Schiltz, R.L.2
Iezzi, S.3
-
28
-
-
79953752384
-
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
-
Bai P, Cantó C, Oudart H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 2011; 13:461-468.
-
(2011)
Cell Metab
, vol.13
, pp. 461-468
-
-
Bai, P.1
Cantó, C.2
Oudart, H.3
-
29
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434:113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
-
30
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8:347-358.
-
(2008)
Cell Metab
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
-
31
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007; 26:1913-1923.
-
(2007)
EMBO J
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
-
32
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450:712-716.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
-
33
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15:675-690.
-
(2012)
Cell Metab
, vol.15
, pp. 675-690
-
-
Price, N.L.1
Gomes, A.P.2
Ling, A.J.3
-
34
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMPactivated protein kinase activation
-
Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMPactivated protein kinase activation. J Biol Chem 2008; 283:27628-27635.
-
(2008)
J Biol Chem
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
Ido, Y.4
-
35
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008; 283:20015-20026.
-
(2008)
J Biol Chem
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
-
36
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
37
-
-
57249095835
-
Sirt1 increases skeletal muscle precursor cell proliferation
-
Rathbone CR, Booth FW, Lees SJ. Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 2009; 88:35-44.
-
(2009)
Eur J Cell Biol
, vol.88
, pp. 35-44
-
-
Rathbone, C.R.1
Booth, F.W.2
Lees, S.J.3
-
38
-
-
84860614281
-
Short-term calorie restriction enhances skeletal muscle stem cell function
-
Cerletti M, Jang YC, Finley LW, et al. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 2012; 10:515-519.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 515-519
-
-
Cerletti, M.1
Jang, Y.C.2
Finley, L.W.3
-
39
-
-
83455215759
-
Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models
-
Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011; 1:4.
-
(2011)
Skelet Muscle
, vol.1
, pp. 4
-
-
Schiaffino, S.1
Mammucari, C.2
-
40
-
-
79960620082
-
The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy
-
Sundaresan NR, Pillai VB, Wolfgeher D, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal 2011; 4:ra46.
-
(2011)
Sci Signal
, vol.4
-
-
Sundaresan, N.R.1
Pillai, V.B.2
Wolfgeher, D.3
-
41
-
-
77950127881
-
SIRT1 negatively regulates the mammalian target of rapamycin
-
Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010; 5:e9199.
-
(2010)
PLoS One
, vol.5
-
-
Ghosh, H.S.1
McBurney, M.2
Robbins, P.D.3
-
42
-
-
1342264308
-
Mammalian SIRT1 represses forkhead transcription factors
-
Motta MC, Divecha N, Lemieux M, et al.Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116:551-563.
-
(2004)
Cell
, vol.116
, pp. 551-563
-
-
Motta, M.C.1
Divecha, N.2
Lemieux, M.3
-
43
-
-
78650691023
-
Deacetylation of FoxO by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes
-
Hariharan N, Maejima Y, Nakae J, et al. Deacetylation of FoxO by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 2010; 107:1470-1482.
-
(2010)
Circ Res
, vol.107
, pp. 1470-1482
-
-
Hariharan, N.1
Maejima, Y.2
Nakae, J.3
-
44
-
-
84855812532
-
Resveratrol prevents dexamethasoneinduced expression of the muscle atrophy-related ubiquitin ligases atrogin-1 and MuRF1 in cultured myotubes through a SIRT1-dependent mechanism
-
Alamdari N, Aversa Z, Castillero E, et al. Resveratrol prevents dexamethasoneinduced expression of the muscle atrophy-related ubiquitin ligases atrogin-1 and MuRF1 in cultured myotubes through a SIRT1-dependent mechanism. Biochem Biophys Res Commun 2012; 417:528-533.
-
(2012)
Biochem Biophys Res Commun
, vol.417
, pp. 528-533
-
-
Alamdari, N.1
Aversa, Z.2
Castillero, E.3
-
45
-
-
42049097879
-
Role of beta-adrenoceptor signaling in skeletal muscle: Implications for muscle wasting and disease
-
Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 2008; 88:729-767.
-
(2008)
Physiol Rev
, vol.88
, pp. 729-767
-
-
Lynch, G.S.1
Ryall, J.G.2
-
46
-
-
84862750154
-
CAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism and regeneration
-
Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism and regeneration. Am J Physiol Endocrinol Metab 2012; 303:E1-E17.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
-
-
Berdeaux, R.1
Stewart, R.2
-
47
-
-
84255198350
-
The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+
-
Gerhart-Hines Z, Dominy JE Jr, Blä ttler SM, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol Cell 2011; 44:851-863.
-
(2011)
Mol Cell
, vol.44
, pp. 851-863
-
-
Gerhart-Hines, Z.1
Dominy Jr., J.E.2
Blättler, S.M.3
|