메뉴 건너뛰기




Volumn 15, Issue 6, 2012, Pages 561-566

The role of sirtuins in the regulation of metabolic homeostasis in skeletal muscle

Author keywords

hypertrophy; NAD; nicotinamide adenine dinucleotide; satellite cells; SirT1

Indexed keywords

CLENBUTEROL; FORKHEAD BOX O 1 PROTEIN; FORKHEAD BOX O 3A PROTEIN; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MAMMALIAN TARGET OF RAPAMYCIN; MUSCLE RING FINGER 1 PROTEIN; MYOD1 PROTEIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PROTEIN KINASE B; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; RESVERATROL; SIRTUIN 1; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG;

EID: 84868250231     PISSN: 13631950     EISSN: 14736519     Source Type: Journal    
DOI: 10.1097/MCO.0b013e3283590914     Document Type: Review
Times cited : (21)

References (47)
  • 1
    • 77953631698 scopus 로고    scopus 로고
    • The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways
    • Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31:194-223.
    • (2010) Endocr Rev , vol.31 , pp. 194-223
    • Houtkooper, R.H.1    Cantó, C.2    Wanders, R.J.3    Auwerx, J.4
  • 4
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • Tanno M, Sakamoto J, Miura T, et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 2007; 282:6823-6832.
    • (2007) J Biol Chem , vol.282 , pp. 6823-6832
    • Tanno, M.1    Sakamoto, J.2    Miura, T.3
  • 5
    • 65549113750 scopus 로고    scopus 로고
    • CBP/p300-mediated acetylation of histone H3 on lysine 56
    • Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459:113-117.
    • (2009) Nature , vol.459 , pp. 113-117
    • Das, C.1    Lucia, M.S.2    Hansen, K.C.3    Tyler, J.K.4
  • 6
    • 4944245398 scopus 로고    scopus 로고
    • Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
    • Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16:93-105.
    • (2004) Mol Cell , vol.16 , pp. 93-105
    • Vaquero, A.1    Scher, M.2    Lee, D.3
  • 7
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008; 14:661-673.
    • (2008) Dev Cell , vol.14 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3
  • 8
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303:2011-2015.
    • (2004) Science , vol.303 , pp. 2011-2015
    • Brunet, A.1    Sweeney, L.B.2    Sturgill, J.F.3
  • 9
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a
    • Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1a. J Biol Chem 2005; 280:16456-16460.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 10
    • 34447626095 scopus 로고    scopus 로고
    • SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
    • Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007; 6:505-514.
    • (2007) Aging Cell , vol.6 , pp. 505-514
    • Wang, F.1    Nguyen, M.2    Qin, F.X.3    Tong, Q.4
  • 11
    • 64049089450 scopus 로고    scopus 로고
    • SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
    • Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell 2009; 20:801-808.
    • (2009) Mol Biol Cell , vol.20 , pp. 801-808
    • Wang, F.1    Tong, Q.2
  • 12
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, et al. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11:437-444.
    • (2003) Mol Cell , vol.11 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3
  • 13
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • Schlicker C, Gertz M, Papatheodorou P, et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 2008; 382:790-801.
    • (2008) J Mol Biol , vol.382 , pp. 790-801
    • Schlicker, C.1    Gertz, M.2    Papatheodorou, P.3
  • 14
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 2006; 103:10224-10229.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3
  • 15
    • 51449083112 scopus 로고    scopus 로고
    • SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression
    • Jacobs KM, Pennington JD, Bisht KS, et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int J Biol Sci 2008; 4:291-299.
    • (2008) Int J Biol Sci , vol.4 , pp. 291-299
    • Jacobs, K.M.1    Pennington, J.D.2    Bisht, K.S.3
  • 16
    • 53549105529 scopus 로고    scopus 로고
    • SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
    • Sundaresan NR, Samant SA, Pillai VB, et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 2008; 28:6384-6401.
    • (2008) Mol Cell Biol , vol.28 , pp. 6384-6401
    • Sundaresan, N.R.1    Samant, S.A.2    Pillai, V.B.3
  • 17
    • 84859951790 scopus 로고    scopus 로고
    • SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
    • Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem 2012; 287:14078-14086.
    • (2012) J Biol Chem , vol.287 , pp. 14078-14086
    • Yu, W.1    Dittenhafer-Reed, K.E.2    Denu, J.M.3
  • 18
    • 84861589885 scopus 로고    scopus 로고
    • Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
    • Fernandez-Marcos PJ, Jeninga EH, Canto C, et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci Rep 2012; 2:425.
    • (2012) Sci Rep , vol.2 , pp. 425
    • Fernandez-Marcos, P.J.1    Jeninga, E.H.2    Canto, C.3
  • 19
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126:941-954.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 20
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136:62-74.
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 21
    • 78449248442 scopus 로고    scopus 로고
    • SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
    • Xiao C, Kim HS, Lahusen T, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 2010; 285:36776-36784.
    • (2010) J Biol Chem , vol.285 , pp. 36776-36784
    • Xiao, C.1    Kim, H.S.2    Lahusen, T.3
  • 22
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483:218-221.
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1    Naiman, S.2    Amir, G.3
  • 23
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase i transcription
    • Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006; 20:1075-1080.
    • (2006) Genes Dev , vol.20 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3
  • 24
    • 28844469898 scopus 로고    scopus 로고
    • Increase in activity during calorie restriction requires Sirt1
    • Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science 2005; 310:1641.
    • (2005) Science , vol.310 , pp. 1641
    • Chen, D.1    Steele, A.D.2    Lindquist, S.3    Guarente, L.4
  • 25
    • 34548627517 scopus 로고    scopus 로고
    • Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
    • Yang H, Yang T, Baur JA, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007; 130:1095-1107.
    • (2007) Cell , vol.130 , pp. 1095-1107
    • Yang, H.1    Yang, T.2    Baur, J.A.3
  • 26
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
    • Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010; 327:1004-1007.
    • (2010) Science , vol.327 , pp. 1004-1007
    • Wang, Q.1    Zhang, Y.2    Yang, C.3
  • 27
    • 0043244921 scopus 로고    scopus 로고
    • Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
    • Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12:51-62.
    • (2003) Mol Cell , vol.12 , pp. 51-62
    • Fulco, M.1    Schiltz, R.L.2    Iezzi, S.3
  • 28
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • Bai P, Cantó C, Oudart H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 2011; 13:461-468.
    • (2011) Cell Metab , vol.13 , pp. 461-468
    • Bai, P.1    Cantó, C.2    Oudart, H.3
  • 29
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005; 434:113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3
  • 30
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008; 8:347-358.
    • (2008) Cell Metab , vol.8 , pp. 347-358
    • Feige, J.N.1    Lagouge, M.2    Canto, C.3
  • 31
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007; 26:1913-1923.
    • (2007) EMBO J , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3
  • 32
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
    • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450:712-716.
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1    Lambert, P.D.2    Schenk, S.3
  • 33
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
    • Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15:675-690.
    • (2012) Cell Metab , vol.15 , pp. 675-690
    • Price, N.L.1    Gomes, A.P.2    Ling, A.J.3
  • 34
    • 55549096745 scopus 로고    scopus 로고
    • SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMPactivated protein kinase activation
    • Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMPactivated protein kinase activation. J Biol Chem 2008; 283:27628-27635.
    • (2008) J Biol Chem , vol.283 , pp. 27628-27635
    • Lan, F.1    Cacicedo, J.M.2    Ruderman, N.3    Ido, Y.4
  • 35
    • 50649112638 scopus 로고    scopus 로고
    • SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
    • Hou X, Xu S, Maitland-Toolan KA, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008; 283:20015-20026.
    • (2008) J Biol Chem , vol.283 , pp. 20015-20026
    • Hou, X.1    Xu, S.2    Maitland-Toolan, K.A.3
  • 36
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009; 458:1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Cantó, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 37
    • 57249095835 scopus 로고    scopus 로고
    • Sirt1 increases skeletal muscle precursor cell proliferation
    • Rathbone CR, Booth FW, Lees SJ. Sirt1 increases skeletal muscle precursor cell proliferation. Eur J Cell Biol 2009; 88:35-44.
    • (2009) Eur J Cell Biol , vol.88 , pp. 35-44
    • Rathbone, C.R.1    Booth, F.W.2    Lees, S.J.3
  • 38
    • 84860614281 scopus 로고    scopus 로고
    • Short-term calorie restriction enhances skeletal muscle stem cell function
    • Cerletti M, Jang YC, Finley LW, et al. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 2012; 10:515-519.
    • (2012) Cell Stem Cell , vol.10 , pp. 515-519
    • Cerletti, M.1    Jang, Y.C.2    Finley, L.W.3
  • 39
    • 83455215759 scopus 로고    scopus 로고
    • Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models
    • Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 2011; 1:4.
    • (2011) Skelet Muscle , vol.1 , pp. 4
    • Schiaffino, S.1    Mammucari, C.2
  • 40
    • 79960620082 scopus 로고    scopus 로고
    • The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy
    • Sundaresan NR, Pillai VB, Wolfgeher D, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal 2011; 4:ra46.
    • (2011) Sci Signal , vol.4
    • Sundaresan, N.R.1    Pillai, V.B.2    Wolfgeher, D.3
  • 41
    • 77950127881 scopus 로고    scopus 로고
    • SIRT1 negatively regulates the mammalian target of rapamycin
    • Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 2010; 5:e9199.
    • (2010) PLoS One , vol.5
    • Ghosh, H.S.1    McBurney, M.2    Robbins, P.D.3
  • 42
    • 1342264308 scopus 로고    scopus 로고
    • Mammalian SIRT1 represses forkhead transcription factors
    • Motta MC, Divecha N, Lemieux M, et al.Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116:551-563.
    • (2004) Cell , vol.116 , pp. 551-563
    • Motta, M.C.1    Divecha, N.2    Lemieux, M.3
  • 43
    • 78650691023 scopus 로고    scopus 로고
    • Deacetylation of FoxO by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes
    • Hariharan N, Maejima Y, Nakae J, et al. Deacetylation of FoxO by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 2010; 107:1470-1482.
    • (2010) Circ Res , vol.107 , pp. 1470-1482
    • Hariharan, N.1    Maejima, Y.2    Nakae, J.3
  • 44
    • 84855812532 scopus 로고    scopus 로고
    • Resveratrol prevents dexamethasoneinduced expression of the muscle atrophy-related ubiquitin ligases atrogin-1 and MuRF1 in cultured myotubes through a SIRT1-dependent mechanism
    • Alamdari N, Aversa Z, Castillero E, et al. Resveratrol prevents dexamethasoneinduced expression of the muscle atrophy-related ubiquitin ligases atrogin-1 and MuRF1 in cultured myotubes through a SIRT1-dependent mechanism. Biochem Biophys Res Commun 2012; 417:528-533.
    • (2012) Biochem Biophys Res Commun , vol.417 , pp. 528-533
    • Alamdari, N.1    Aversa, Z.2    Castillero, E.3
  • 45
    • 42049097879 scopus 로고    scopus 로고
    • Role of beta-adrenoceptor signaling in skeletal muscle: Implications for muscle wasting and disease
    • Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 2008; 88:729-767.
    • (2008) Physiol Rev , vol.88 , pp. 729-767
    • Lynch, G.S.1    Ryall, J.G.2
  • 46
    • 84862750154 scopus 로고    scopus 로고
    • CAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism and regeneration
    • Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism and regeneration. Am J Physiol Endocrinol Metab 2012; 303:E1-E17.
    • (2012) Am J Physiol Endocrinol Metab , vol.303
    • Berdeaux, R.1    Stewart, R.2
  • 47
    • 84255198350 scopus 로고    scopus 로고
    • The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+
    • Gerhart-Hines Z, Dominy JE Jr, Blä ttler SM, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol Cell 2011; 44:851-863.
    • (2011) Mol Cell , vol.44 , pp. 851-863
    • Gerhart-Hines, Z.1    Dominy Jr., J.E.2    Blättler, S.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.