메뉴 건너뛰기




Volumn 8, Issue 10, 2012, Pages

Recovery of Arrested Replication Forks by Homologous Recombination Is Error-Prone

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CHROMOSOME REARRANGEMENT; CONTROLLED STUDY; COPY NUMBER VARIATION; DNA DAMAGE CHECKPOINT; DNA REPLICATION; GENE DELETION; GENE MUTATION; GENE TRANSLOCATION; GENOMIC INSTABILITY; HOMOLOGOUS RECOMBINATION; INDEL MUTATION; INVERTED REPEAT; MISMATCH REPAIR; MUTATIONAL ANALYSIS; NONHUMAN; REPLICATION FORK; SHORT TANDEM REPEAT; UBIQUITINATION; YEAST;

EID: 84868160005     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1002976     Document Type: Article
Times cited : (76)

References (74)
  • 1
    • 39449096135 scopus 로고    scopus 로고
    • Genome instability: a mechanistic view of its causes and consequences
    • Aguilera A, Gomez-Gonzalez B, (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9: 204-217.
    • (2008) Nat Rev Genet , vol.9 , pp. 204-217
    • Aguilera, A.1    Gomez-Gonzalez, B.2
  • 2
    • 77649165394 scopus 로고    scopus 로고
    • Maintaining genome stability at the replication fork
    • Branzei D, Foiani M, (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11: 208-219.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 208-219
    • Branzei, D.1    Foiani, M.2
  • 3
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis TD, Gorgoulis VG, Bartek J, (2008) An oncogene-induced DNA damage model for cancer development. Science 319: 1352-1355.
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 4
    • 67650001851 scopus 로고    scopus 로고
    • Complex human chromosomal and genomic rearrangements
    • Zhang F, Carvalho CM, Lupski JR, (2009) Complex human chromosomal and genomic rearrangements. Trends Genet 25: 298-307.
    • (2009) Trends Genet , vol.25 , pp. 298-307
    • Zhang, F.1    Carvalho, C.M.2    Lupski, J.R.3
  • 5
    • 79551661935 scopus 로고    scopus 로고
    • Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site
    • Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, et al.(2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470: 120-123.
    • (2011) Nature , vol.470 , pp. 120-123
    • Letessier, A.1    Millot, G.A.2    Koundrioukoff, S.3    Lachages, A.M.4    Vogt, N.5
  • 7
    • 77957123627 scopus 로고    scopus 로고
    • Pathways of mammalian replication fork restart
    • Petermann E, Helleday T, (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11: 683-687.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 683-687
    • Petermann, E.1    Helleday, T.2
  • 8
    • 59249105978 scopus 로고    scopus 로고
    • A microhomology-mediated break-induced replication model for the origin of human copy number variation
    • doi:10.1371/journal.pgen.1000327
    • Hastings PJ, Ira G, Lupski JR, (2009) A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 5: e1000327 doi:10.1371/journal.pgen.1000327.
    • (2009) PLoS Genet , vol.5
    • Hastings, P.J.1    Ira, G.2    Lupski, J.R.3
  • 9
    • 70549097977 scopus 로고    scopus 로고
    • The replication fork's five degrees of freedom, their failure and genome rearrangements
    • Weinert T, Kaochar S, Jones H, Paek A, Clark AJ, (2009) The replication fork's five degrees of freedom, their failure and genome rearrangements. Curr Opin Cell Biol 21: 778-784.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 778-784
    • Weinert, T.1    Kaochar, S.2    Jones, H.3    Paek, A.4    Clark, A.J.5
  • 10
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites
    • Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD, (2005) Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120: 587-598.
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.J.1    Degtyareva, N.P.2    Lobachev, K.3    Petes, T.D.4
  • 11
    • 72849150228 scopus 로고    scopus 로고
    • Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism
    • Mizuno K, Lambert S, Baldacci G, Murray JM, Carr AM, (2009) Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev 23: 2876-2886.
    • (2009) Genes Dev , vol.23 , pp. 2876-2886
    • Mizuno, K.1    Lambert, S.2    Baldacci, G.3    Murray, J.M.4    Carr, A.M.5
  • 12
    • 79955525482 scopus 로고    scopus 로고
    • Nucleotide deficiency promotes genomic instability in early stages of cancer development
    • Bester AC, Roniger M, Oren YS, Im MM, Sarni D, et al.(2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145: 435-446.
    • (2011) Cell , vol.145 , pp. 435-446
    • Bester, A.C.1    Roniger, M.2    Oren, Y.S.3    Im, M.M.4    Sarni, D.5
  • 13
    • 79959885574 scopus 로고    scopus 로고
    • Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites
    • Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, et al.(2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43: 122-131.
    • (2011) Mol Cell , vol.43 , pp. 122-131
    • Ozeri-Galai, E.1    Lebofsky, R.2    Rahat, A.3    Bester, A.C.4    Bensimon, A.5
  • 14
    • 72849116104 scopus 로고    scopus 로고
    • Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast
    • Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, et al.(2009) Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes Dev 23: 2861-2875.
    • (2009) Genes Dev , vol.23 , pp. 2861-2875
    • Paek, A.L.1    Kaochar, S.2    Jones, H.3    Elezaby, A.4    Shanks, L.5
  • 15
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow JJ, Ge XQ, Jackson DA, (2011) How dormant origins promote complete genome replication. Trends Biochem Sci 36: 405-414.
    • (2011) Trends Biochem Sci , vol.36 , pp. 405-414
    • Blow, J.J.1    Ge, X.Q.2    Jackson, D.A.3
  • 16
    • 33947432388 scopus 로고    scopus 로고
    • Replication fork stalling at natural impediments
    • Mirkin EV, Mirkin SM, (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71: 13-35.
    • (2007) Microbiol Mol Biol Rev , vol.71 , pp. 13-35
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 17
    • 34249944668 scopus 로고    scopus 로고
    • Arrested replication fork processing: interplay between checkpoints and recombination
    • Lambert S, Froget B, Carr AM, (2007) Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair (Amst) 6: 1042-1061.
    • (2007) DNA Repair (Amst) , vol.6 , pp. 1042-1061
    • Lambert, S.1    Froget, B.2    Carr, A.M.3
  • 18
    • 79951970806 scopus 로고    scopus 로고
    • Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression
    • Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, et al.(2011) Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41: 543-553.
    • (2011) Mol Cell , vol.41 , pp. 543-553
    • Kawabata, T.1    Luebben, S.W.2    Yamaguchi, S.3    Ilves, I.4    Matise, I.5
  • 19
    • 38549138271 scopus 로고    scopus 로고
    • Smc5/6: a link between DNA repair and unidirectional replication?
    • Murray JM, Carr AM, (2008) Smc5/6: a link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol 9: 177-182.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 177-182
    • Murray, J.M.1    Carr, A.M.2
  • 20
    • 77955479780 scopus 로고    scopus 로고
    • Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange
    • Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, et al.(2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol cell 39: 346-359.
    • (2010) Mol Cell , vol.39 , pp. 346-359
    • Lambert, S.1    Mizuno, K.2    Blaisonneau, J.3    Martineau, S.4    Chanet, R.5
  • 21
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, et al.(2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424: 1078-1083.
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1    Kanoh, Y.2    Bando, M.3    Noguchi, H.4    Tanaka, H.5
  • 22
    • 84858053395 scopus 로고    scopus 로고
    • Replisome stability at defective DNA replication forks is independent of s phase checkpoint kinases
    • De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, et al.(2012) Replisome stability at defective DNA replication forks is independent of s phase checkpoint kinases. Mol Cell 45: 696-704.
    • (2012) Mol Cell , vol.45 , pp. 696-704
    • De Piccoli, G.1    Katou, Y.2    Itoh, T.3    Nakato, R.4    Shirahige, K.5
  • 23
    • 39449123590 scopus 로고    scopus 로고
    • Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint
    • Froget B, Blaisonneau J, Lambert S, Baldacci G, (2008) Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint. Mol Biol Cell 19: 445-456.
    • (2008) Mol Biol Cell , vol.19 , pp. 445-456
    • Froget, B.1    Blaisonneau, J.2    Lambert, S.3    Baldacci, G.4
  • 24
    • 11344268431 scopus 로고    scopus 로고
    • Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells
    • Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, et al.(2005) Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol Cell 17: 153-159.
    • (2005) Mol Cell , vol.17 , pp. 153-159
    • Cotta-Ramusino, C.1    Fachinetti, D.2    Lucca, C.3    Doksani, Y.4    Lopes, M.5
  • 25
    • 33845330910 scopus 로고    scopus 로고
    • Replisome assembly and the direct restart of stalled replication forks
    • Heller RC, Marians KJ, (2006) Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7: 932-943.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 932-943
    • Heller, R.C.1    Marians, K.J.2
  • 27
    • 84855427966 scopus 로고    scopus 로고
    • RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks
    • Hashimoto Y, Puddu F, Costanzo V, (2011) RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol 19: 17-24.
    • (2011) Nat Struct Mol Biol , vol.19 , pp. 17-24
    • Hashimoto, Y.1    Puddu, F.2    Costanzo, V.3
  • 28
    • 43249128930 scopus 로고    scopus 로고
    • Mus81 is essential for sister chromatid recombination at broken replication forks
    • Roseaulin L, Yamada Y, Tsutsui Y, Russell P, Iwasaki H, et al.(2008) Mus81 is essential for sister chromatid recombination at broken replication forks. Embo J 27: 1378-1387.
    • (2008) Embo J , vol.27 , pp. 1378-1387
    • Roseaulin, L.1    Yamada, Y.2    Tsutsui, Y.3    Russell, P.4    Iwasaki, H.5
  • 29
    • 77649264634 scopus 로고    scopus 로고
    • A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms
    • Moriel-Carretero M, Aguilera A, (2010) A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms. Mol Cell 37: 690-701.
    • (2010) Mol Cell , vol.37 , pp. 690-701
    • Moriel-Carretero, M.1    Aguilera, A.2
  • 30
    • 77953076932 scopus 로고    scopus 로고
    • Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly
    • Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, et al.(2010) Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24: 1133-1144.
    • (2010) Genes Dev , vol.24 , pp. 1133-1144
    • Lydeard, J.R.1    Lipkin-Moore, Z.2    Sheu, Y.J.3    Stillman, B.4    Burgers, P.M.5
  • 31
    • 42449130956 scopus 로고    scopus 로고
    • Break-induced replication: what is it and what is it for?
    • Llorente B, Smith CE, Symington LS, (2008) Break-induced replication: what is it and what is it for? Cell Cycle 7: 859-864.
    • (2008) Cell Cycle , vol.7 , pp. 859-864
    • Llorente, B.1    Smith, C.E.2    Symington, L.S.3
  • 32
    • 33745474120 scopus 로고    scopus 로고
    • Break-induced replication and recombinational telomere elongation in yeast
    • McEachern MJ, Haber JE, (2006) Break-induced replication and recombinational telomere elongation in yeast. Annu Rev Biochem 75: 111-135.
    • (2006) Annu Rev Biochem , vol.75 , pp. 111-135
    • McEachern, M.J.1    Haber, J.E.2
  • 33
    • 34247611513 scopus 로고    scopus 로고
    • Template switching during break-induced replication
    • Smith CE, Llorente B, Symington LS, (2007) Template switching during break-induced replication. Nature 447: 102-105.
    • (2007) Nature , vol.447 , pp. 102-105
    • Smith, C.E.1    Llorente, B.2    Symington, L.S.3
  • 34
    • 79952273242 scopus 로고    scopus 로고
    • Break-induced replication is highly inaccurate
    • doi:10.1371/journal.pbio.1000594
    • Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, et al.(2011) Break-induced replication is highly inaccurate. PLoS Biol 9: e1000594 doi:10.1371/journal.pbio.1000594.
    • (2011) PLoS Biol , vol.9
    • Deem, A.1    Keszthelyi, A.2    Blackgrove, T.3    Vayl, A.4    Coffey, B.5
  • 35
    • 20444424939 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
    • Lambert S, Watson A, Sheedy DM, Martin B, Carr AM, (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121: 689-702.
    • (2005) Cell , vol.121 , pp. 689-702
    • Lambert, S.1    Watson, A.2    Sheedy, D.M.3    Martin, B.4    Carr, A.M.5
  • 36
    • 56049104484 scopus 로고    scopus 로고
    • Rtf1-mediated eukaryotic site-specific replication termination
    • Eydmann T, Sommariva E, Inagawa T, Mian S, Klar AJ, et al.(2008) Rtf1-mediated eukaryotic site-specific replication termination. Genetics 180: 27-39.
    • (2008) Genetics , vol.180 , pp. 27-39
    • Eydmann, T.1    Sommariva, E.2    Inagawa, T.3    Mian, S.4    Klar, A.J.5
  • 37
    • 64149106045 scopus 로고    scopus 로고
    • Mechanisms of polar arrest of a replication fork
    • Kaplan DL, Bastia D, (2009) Mechanisms of polar arrest of a replication fork. Mol Microbiol 72: 279-285.
    • (2009) Mol Microbiol , vol.72 , pp. 279-285
    • Kaplan, D.L.1    Bastia, D.2
  • 38
    • 34548507222 scopus 로고    scopus 로고
    • Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins
    • McInerney P, O'Donnell M, (2007) Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J Biol Chem 282: 25903-25916.
    • (2007) J Biol Chem , vol.282 , pp. 25903-25916
    • McInerney, P.1    O'Donnell, M.2
  • 39
    • 84858315982 scopus 로고    scopus 로고
    • DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase
    • Sabouri N, McDonald KR, Webb CJ, Cristea IM, Zakian VA, (2012) DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev 26: 581-593.
    • (2012) Genes Dev , vol.26 , pp. 581-593
    • Sabouri, N.1    McDonald, K.R.2    Webb, C.J.3    Cristea, I.M.4    Zakian, V.A.5
  • 40
    • 84858330322 scopus 로고    scopus 로고
    • The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability
    • Steinacher R, Osman F, Dalgaard JZ, Lorenz A, Whitby MC, (2012) The DNA helicase Pfh1 promotes fork merging at replication termination sites to ensure genome stability. Genes Dev 26: 594-602.
    • (2012) Genes Dev , vol.26 , pp. 594-602
    • Steinacher, R.1    Osman, F.2    Dalgaard, J.Z.3    Lorenz, A.4    Whitby, M.C.5
  • 41
    • 57749169348 scopus 로고    scopus 로고
    • SUMOylation regulates Rad18-mediated template switch
    • Branzei D, Vanoli F, Foiani M, (2008) SUMOylation regulates Rad18-mediated template switch. Nature 456: 915-920.
    • (2008) Nature , vol.456 , pp. 915-920
    • Branzei, D.1    Vanoli, F.2    Foiani, M.3
  • 42
    • 84855267435 scopus 로고    scopus 로고
    • The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
    • doi:10.1371/journal.pgen.1002407
    • Miyabe I, Kunkel TA, Carr AM, (2011) The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet 7: e1002407 doi:10.1371/journal.pgen.1002407.
    • (2011) PLoS Genet , vol.7
    • Miyabe, I.1    Kunkel, T.A.2    Carr, A.M.3
  • 43
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung K, Chen C, Kolodner RD, (2001) Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411: 1073-1076.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 44
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen C, Kolodner RD, (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23: 81-85.
    • (1999) Nat Genet , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 45
    • 69249231999 scopus 로고    scopus 로고
    • Specific pathways prevent duplication-mediated genome rearrangements
    • Putnam CD, Hayes TK, Kolodner RD, (2009) Specific pathways prevent duplication-mediated genome rearrangements. Nature 460: 984-989.
    • (2009) Nature , vol.460 , pp. 984-989
    • Putnam, C.D.1    Hayes, T.K.2    Kolodner, R.D.3
  • 46
    • 48249141027 scopus 로고    scopus 로고
    • Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins
    • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM, (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci U S A 105: 9936-9941.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 9936-9941
    • Voineagu, I.1    Narayanan, V.2    Lobachev, K.S.3    Mirkin, S.M.4
  • 47
    • 80055003130 scopus 로고    scopus 로고
    • Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome
    • Carvalho CM, Ramocki MB, Pehlivan D, Franco LM, Gonzaga-Jauregui C, et al.(2011) Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet 43: 1074-1081.
    • (2011) Nat Genet , vol.43 , pp. 1074-1081
    • Carvalho, C.M.1    Ramocki, M.B.2    Pehlivan, D.3    Franco, L.M.4    Gonzaga-Jauregui, C.5
  • 48
    • 0024419449 scopus 로고
    • Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae
    • Lichten M, Haber JE, (1989) Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics 123: 261-268.
    • (1989) Genetics , vol.123 , pp. 261-268
    • Lichten, M.1    Haber, J.E.2
  • 49
    • 0029087573 scopus 로고
    • Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes
    • Tran HT, Degtyareva NP, Koloteva NN, Sugino A, Masumoto H, et al.(1995) Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol 15: 5607-5617.
    • (1995) Mol Cell Biol , vol.15 , pp. 5607-5617
    • Tran, H.T.1    Degtyareva, N.P.2    Koloteva, N.N.3    Sugino, A.4    Masumoto, H.5
  • 50
    • 68849127270 scopus 로고    scopus 로고
    • Fbh1 limits Rad51-dependent recombination at blocked replication forks
    • Lorenz A, Osman F, Folkyte V, Sofueva S, Whitby MC, (2009) Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol Cell Biol 29: 4742-4756.
    • (2009) Mol Cell Biol , vol.29 , pp. 4742-4756
    • Lorenz, A.1    Osman, F.2    Folkyte, V.3    Sofueva, S.4    Whitby, M.C.5
  • 51
    • 24344440628 scopus 로고    scopus 로고
    • The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins
    • Osman F, Dixon J, Barr AR, Whitby MC, (2005) The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins. Mol Cell Biol 25: 8084-8096.
    • (2005) Mol Cell Biol , vol.25 , pp. 8084-8096
    • Osman, F.1    Dixon, J.2    Barr, A.R.3    Whitby, M.C.4
  • 52
    • 67349097341 scopus 로고    scopus 로고
    • Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint
    • Alabert C, Bianco JN, Pasero P, (2009) Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint. Embo J 28: 1131-1141.
    • (2009) Embo J , vol.28 , pp. 1131-1141
    • Alabert, C.1    Bianco, J.N.2    Pasero, P.3
  • 53
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
    • Lisby M, Barlow JH, Burgess RC, Rothstein R, (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699-713.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 54
    • 13944261496 scopus 로고    scopus 로고
    • Temporal separation of replication and recombination requires the intra-S checkpoint
    • Meister P, Taddei A, Vernis L, Poidevin M, Gasser SM, et al.(2005) Temporal separation of replication and recombination requires the intra-S checkpoint. J Cell Biol 168: 537-544.
    • (2005) J Cell Biol , vol.168 , pp. 537-544
    • Meister, P.1    Taddei, A.2    Vernis, L.3    Poidevin, M.4    Gasser, S.M.5
  • 55
    • 77953617613 scopus 로고    scopus 로고
    • Rad8Rad5/Mms2-Ubc13 ubiquitin ligase complex controls translesion synthesis in fission yeast
    • Coulon S, Ramasubramanyan S, Alies C, Philippin G, Lehmann A, et al.(2010) Rad8Rad5/Mms2-Ubc13 ubiquitin ligase complex controls translesion synthesis in fission yeast. Embo J 29: 2048-2058.
    • (2010) Embo J , vol.29 , pp. 2048-2058
    • Coulon, S.1    Ramasubramanyan, S.2    Alies, C.3    Philippin, G.4    Lehmann, A.5
  • 56
    • 81855189485 scopus 로고    scopus 로고
    • Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates
    • Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD, (2011) Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147: 1040-1053.
    • (2011) Cell , vol.147 , pp. 1040-1053
    • Hombauer, H.1    Campbell, C.S.2    Smith, C.E.3    Desai, A.4    Kolodner, R.D.5
  • 57
    • 0029825072 scopus 로고    scopus 로고
    • The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions
    • Tran HT, Gordenin DA, Resnick MA, (1996) The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics 143: 1579-1587.
    • (1996) Genetics , vol.143 , pp. 1579-1587
    • Tran, H.T.1    Gordenin, D.A.2    Resnick, M.A.3
  • 58
    • 0031048652 scopus 로고    scopus 로고
    • Genetic control of microsatellite stability
    • Sia EA, Jinks-Robertson S, Petes TD, (1997) Genetic control of microsatellite stability. Mutat Res 383: 61-70.
    • (1997) Mutat Res , vol.383 , pp. 61-70
    • Sia, E.A.1    Jinks-Robertson, S.2    Petes, T.D.3
  • 60
    • 78651478345 scopus 로고    scopus 로고
    • Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes
    • Ou Z, Stankiewicz P, Xia Z, Breman AM, Dawson B, et al.(2010) Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res 21: 33-46.
    • (2010) Genome Res , vol.21 , pp. 33-46
    • Ou, Z.1    Stankiewicz, P.2    Xia, Z.3    Breman, A.M.4    Dawson, B.5
  • 61
    • 0031737723 scopus 로고    scopus 로고
    • Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture
    • Bosco G, Haber JE, (1998) Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150: 1037-1047.
    • (1998) Genetics , vol.150 , pp. 1037-1047
    • Bosco, G.1    Haber, J.E.2
  • 62
    • 0035882059 scopus 로고    scopus 로고
    • A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe
    • Dalgaard JZ, Klar AJ, (2001) A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev 15: 2060-2068.
    • (2001) Genes Dev , vol.15 , pp. 2060-2068
    • Dalgaard, J.Z.1    Klar, A.J.2
  • 63
    • 70350457512 scopus 로고    scopus 로고
    • Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication
    • Ruiz JF, Gomez-Gonzalez B, Aguilera A, (2009) Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication. Mol Cell Biol 29: 5441-5454.
    • (2009) Mol Cell Biol , vol.29 , pp. 5441-5454
    • Ruiz, J.F.1    Gomez-Gonzalez, B.2    Aguilera, A.3
  • 64
    • 33745872612 scopus 로고    scopus 로고
    • Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein
    • Schmidt KH, Wu J, Kolodner RD, (2006) Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 26: 5406-5420.
    • (2006) Mol Cell Biol , vol.26 , pp. 5406-5420
    • Schmidt, K.H.1    Wu, J.2    Kolodner, R.D.3
  • 65
    • 57149094856 scopus 로고    scopus 로고
    • Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae
    • doi:10.1371/journal.pgen.1000264
    • Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA, (2008) Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4: e1000264 doi:10.1371/journal.pgen.1000264.
    • (2008) PLoS Genet , vol.4
    • Yang, Y.1    Sterling, J.2    Storici, F.3    Resnick, M.A.4    Gordenin, D.A.5
  • 66
    • 77954328102 scopus 로고    scopus 로고
    • Increased mutagenesis and unique mutation signature associated with mitotic gene conversion
    • Hicks WM, Kim M, Haber JE, (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329: 82-85.
    • (2010) Science , vol.329 , pp. 82-85
    • Hicks, W.M.1    Kim, M.2    Haber, J.E.3
  • 67
    • 17444416489 scopus 로고    scopus 로고
    • Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress
    • Kai M, Boddy MN, Russell P, Wang TS, (2005) Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes Dev 19: 919-932.
    • (2005) Genes Dev , vol.19 , pp. 919-932
    • Kai, M.1    Boddy, M.N.2    Russell, P.3    Wang, T.S.4
  • 68
    • 0037224965 scopus 로고    scopus 로고
    • Checkpoint activation regulates mutagenic translesion synthesis
    • Kai M, Wang TS, (2003) Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17: 64-76.
    • (2003) Genes Dev , vol.17 , pp. 64-76
    • Kai, M.1    Wang, T.S.2
  • 69
    • 0033729983 scopus 로고    scopus 로고
    • POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway
    • Huang ME, de Calignon A, Nicolas A, Galibert F, (2000) POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr Genet 38: 178-187.
    • (2000) Curr Genet , vol.38 , pp. 178-187
    • Huang, M.E.1    de Calignon, A.2    Nicolas, A.3    Galibert, F.4
  • 70
    • 52949143512 scopus 로고    scopus 로고
    • Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms
    • doi:10.1371/journal.pgen.1000175
    • Payen C, Koszul R, Dujon B, Fischer G, (2008) Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175 doi:10.1371/journal.pgen.1000175.
    • (2008) PLoS Genet , vol.4
    • Payen, C.1    Koszul, R.2    Dujon, B.3    Fischer, G.4
  • 71
    • 34547927220 scopus 로고    scopus 로고
    • Break-induced replication and telomerase-independent telomere maintenance require Pol32
    • Lydeard JR, Jain S, Yamaguchi M, Haber JE, (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448: 820-823.
    • (2007) Nature , vol.448 , pp. 820-823
    • Lydeard, J.R.1    Jain, S.2    Yamaguchi, M.3    Haber, J.E.4
  • 72
    • 81955168032 scopus 로고    scopus 로고
    • The consequences of structural genomic alterations in humans: Genomic Disorders, genomic instability and cancer
    • Colnaghi R, Carpenter G, Volker M, O'Driscoll M, (2011) The consequences of structural genomic alterations in humans: Genomic Disorders, genomic instability and cancer. Semin Cell Dev Biol 22: 875-885.
    • (2011) Semin Cell Dev Biol , vol.22 , pp. 875-885
    • Colnaghi, R.1    Carpenter, G.2    Volker, M.3    O'Driscoll, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.