-
1
-
-
38649112309
-
CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure
-
Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008; 209: 294-301.
-
(2008)
Exp Neurol
, vol.209
, pp. 294-301
-
-
Fitch, M.T.1
Silver, J.2
-
2
-
-
75349094565
-
Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?
-
Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells. 2010; 28: 93-9.
-
(2010)
Stem Cells
, vol.28
, pp. 93-99
-
-
Ronaghi, M.1
Erceg, S.2
Moreno-Manzano, V.3
-
3
-
-
33748358811
-
Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?
-
Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006; 44: 523-9.
-
(2006)
Spinal Cord
, vol.44
, pp. 523-529
-
-
Wyndaele, M.1
Wyndaele, J.J.2
-
5
-
-
0036904245
-
Recent advances in pathophysiology and treatment of spinal cord injury
-
Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ. 2002; 26: 238-55.
-
(2002)
Adv Physiol Educ
, vol.26
, pp. 238-255
-
-
Hulsebosch, C.E.1
-
6
-
-
33646672406
-
Overcoming inhibition in the damaged spinal cord
-
Fawcett JW. Overcoming inhibition in the damaged spinal cord. J Neurotrauma. 2006; 23: 371-83.
-
(2006)
J Neurotrauma
, vol.23
, pp. 371-383
-
-
Fawcett, J.W.1
-
7
-
-
41149164275
-
Therapeutic time window for the application of chondroitinase ABC after spinal cord injury
-
Garcia-Alias G, Lin R, Akrimi SF, et al. Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol. 2008; 210: 331-8.
-
(2008)
Exp Neurol
, vol.210
, pp. 331-338
-
-
Garcia-Alias, G.1
Lin, R.2
Akrimi, S.F.3
-
8
-
-
72949093996
-
Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells
-
Muir EM, Fyfe I, Gardiner S, et al. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J Biotechnol. 2010; 145: 103-10.
-
(2010)
J Biotechnol
, vol.145
, pp. 103-110
-
-
Muir, E.M.1
Fyfe, I.2
Gardiner, S.3
-
10
-
-
33746282112
-
Spinal cord repair strategies: why do they work?
-
Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci. 2006; 7: 644-53.
-
(2006)
Nat Rev Neurosci
, vol.7
, pp. 644-653
-
-
Bradbury, E.J.1
McMahon, S.B.2
-
11
-
-
72049100119
-
Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury
-
Xu XM, Onifer SM. Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir Physiol Neurobiol. 2009; 169: 171-82.
-
(2009)
Respir Physiol Neurobiol
, vol.169
, pp. 171-182
-
-
Xu, X.M.1
Onifer, S.M.2
-
12
-
-
33846240478
-
Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury
-
Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006; 15: 675-87.
-
(2006)
Cell Transplant
, vol.15
, pp. 675-687
-
-
Sykova, E.1
Homola, A.2
Mazanec, R.3
-
13
-
-
79952155004
-
Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications
-
Wright KT, Masri WE, Osman A, et al. Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells. 2011; 29: 169-78.
-
(2011)
Stem Cells
, vol.29
, pp. 169-178
-
-
Wright, K.T.1
Masri, W.E.2
Osman, A.3
-
14
-
-
34250370522
-
Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells
-
Cizkova D, Kakinohana O, Kucharova K, et al. Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience. 2007; 147: 546-60.
-
(2007)
Neuroscience
, vol.147
, pp. 546-560
-
-
Cizkova, D.1
Kakinohana, O.2
Kucharova, K.3
-
15
-
-
0037133174
-
Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery
-
Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002; 99: 2199-204.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 2199-2204
-
-
Hofstetter, C.P.1
Schwarz, E.J.2
Hess, D.3
-
16
-
-
68149168615
-
Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat
-
Cizkova D, Nagyova M, Slovinska L, et al. Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat. Cell Mol Neurobiol. 2009; 29: 999-1013.
-
(2009)
Cell Mol Neurobiol
, vol.29
, pp. 999-1013
-
-
Cizkova, D.1
Nagyova, M.2
Slovinska, L.3
-
17
-
-
77957331909
-
Origin of new glial cells in intact and injured adult spinal cord
-
Barnabe-Heider F, Goritz C, Sabelstrom H, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010; 7: 470-82.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 470-482
-
-
Barnabe-Heider, F.1
Goritz, C.2
Sabelstrom, H.3
-
18
-
-
22044452715
-
Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord
-
Sykova E, Jendelova P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci. 2005; 1049: 146-60.
-
(2005)
Ann N Y Acad Sci
, pp. 146-160
-
-
Sykova, E.1
Jendelova, P.2
-
19
-
-
75949125984
-
Nanotechnology for treatment of stroke and spinal cord injury
-
Kubinova S, Sykova E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine-UK. 2010; 5: 99-108.
-
(2010)
Nanomedicine-UK
, vol.5
, pp. 99-108
-
-
Kubinova, S.1
Sykova, E.2
-
20
-
-
72049112040
-
Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds
-
Madigan NN, McMahon S, O'Brien T, et al. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir Physiol Neurobiol. 2009; 169: 183-99.
-
(2009)
Respir Physiol Neurobiol
, vol.169
, pp. 183-199
-
-
Madigan, N.N.1
McMahon, S.2
O'Brien, T.3
-
21
-
-
0036414676
-
Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration
-
Blits B, Boer GJ, Verhaagen J. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant. 2002; 11: 593-613.
-
(2002)
Cell Transplant
, vol.11
, pp. 593-613
-
-
Blits, B.1
Boer, G.J.2
Verhaagen, J.3
-
22
-
-
79960832807
-
A systematic review of cellular transplantation therapies for spinal cord injury
-
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011; 28: 1611-82.
-
(2011)
J Neurotrauma
, vol.28
, pp. 1611-1682
-
-
Tetzlaff, W.1
Okon, E.B.2
Karimi-Abdolrezaee, S.3
-
23
-
-
33845549165
-
Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair
-
Sykova E, Jendelova P, Urdzikova L, et al. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006; 26: 1113-29.
-
(2006)
Cell Mol Neurobiol
, vol.26
, pp. 1113-1129
-
-
Sykova, E.1
Jendelova, P.2
Urdzikova, L.3
-
24
-
-
34547752447
-
Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury
-
Papastefanaki F, Chen J, Lavdas AA, et al. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain. 2007; 130: 2159-74.
-
(2007)
Brain
, vol.130
, pp. 2159-2174
-
-
Papastefanaki, F.1
Chen, J.2
Lavdas, A.A.3
-
25
-
-
34447263766
-
Repair of spinal cord injury by transplantation of olfactory ensheathing cells
-
Raisman G. Repair of spinal cord injury by transplantation of olfactory ensheathing cells. C R Biol. 2007; 330: 557-60.
-
(2007)
C R Biol
, vol.330
, pp. 557-560
-
-
Raisman, G.1
-
26
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
27
-
-
34249880066
-
Generation of germline-competent induced pluripotent stem cells
-
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448: 313-7.
-
(2007)
Nature
, vol.448
, pp. 313-317
-
-
Okita, K.1
Ichisaka, T.2
Yamanaka, S.3
-
28
-
-
79957807595
-
Immunogenicity of induced pluripotent stem cells
-
Zhao T, Zhang ZN, Rong Z, et al. Immunogenicity of induced pluripotent stem cells. Nature. 2011; 474: 212-5.
-
(2011)
Nature
, vol.474
, pp. 212-215
-
-
Zhao, T.1
Zhang, Z.N.2
Rong, Z.3
-
29
-
-
0033961920
-
Human embryonic stem cell and embryonic germ cell lines
-
Thomson JA, Odorico JS. Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol. 2000; 18: 53-7.
-
(2000)
Trends Biotechnol
, vol.18
, pp. 53-57
-
-
Thomson, J.A.1
Odorico, J.S.2
-
30
-
-
34247177103
-
Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement
-
Zeng X, Rao MS. Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience. 2007; 145: 1348-58.
-
(2007)
Neuroscience
, vol.145
, pp. 1348-1358
-
-
Zeng, X.1
Rao, M.S.2
-
31
-
-
79951816916
-
Human embryonic stem cells suffer from centrosomal amplification
-
Holubcova Z, Matula P, Sedlackova M, et al. Human embryonic stem cells suffer from centrosomal amplification. Stem Cells. 2011; 29: 46-56.
-
(2011)
Stem Cells
, vol.29
, pp. 46-56
-
-
Holubcova, Z.1
Matula, P.2
Sedlackova, M.3
-
32
-
-
0034705056
-
Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation
-
Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA. 2000; 97: 6126-31.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 6126-6131
-
-
Liu, S.1
Qu, Y.2
Stewart, T.J.3
-
33
-
-
5044239207
-
Region-specific cell grafting into cervical and lumbar spinal cord in rat: a qualitative and quantitative stereological study
-
Kakinohana O, Cizkova D, Tomori Z, et al. Region-specific cell grafting into cervical and lumbar spinal cord in rat: a qualitative and quantitative stereological study. Exp Neurol. 2004; 190: 122-32.
-
(2004)
Exp Neurol
, vol.190
, pp. 122-132
-
-
Kakinohana, O.1
Cizkova, D.2
Tomori, Z.3
-
34
-
-
1842531073
-
Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system?
-
Lang KJ, Rathjen J, Vassilieva S, et al. Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system? J Neurosci Res. 2004; 76: 184-92.
-
(2004)
J Neurosci Res
, vol.76
, pp. 184-192
-
-
Lang, K.J.1
Rathjen, J.2
Vassilieva, S.3
-
35
-
-
0035690493
-
Enrichment of neurons and neural precursors from human embryonic stem cells
-
Carpenter MK, Inokuma MS, Denham J, et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol. 2001; 172: 383-97.
-
(2001)
Exp Neurol
, vol.172
, pp. 383-397
-
-
Carpenter, M.K.1
Inokuma, M.S.2
Denham, J.3
-
36
-
-
13844271605
-
Specification of motoneurons from human embryonic stem cells
-
Li XJ, Du ZW, Zarnowska ED, et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005; 23: 215-21.
-
(2005)
Nat Biotechnol
, vol.23
, pp. 215-221
-
-
Li, X.J.1
Du, Z.W.2
Zarnowska, E.D.3
-
37
-
-
18644384444
-
Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury
-
Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005; 25: 4694-705.
-
(2005)
J Neurosci
, vol.25
, pp. 4694-4705
-
-
Keirstead, H.S.1
Nistor, G.2
Bernal, G.3
-
38
-
-
74049146111
-
The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors
-
Seminatore C, Polentes J, Ellman D, et al. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke. 2010; 41: 153-9.
-
(2010)
Stroke
, vol.41
, pp. 153-159
-
-
Seminatore, C.1
Polentes, J.2
Ellman, D.3
-
39
-
-
30444459785
-
Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury
-
Faulkner J, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol. 2005; 15: 131-42.
-
(2005)
Transpl Immunol
, vol.15
, pp. 131-142
-
-
Faulkner, J.1
Keirstead, H.S.2
-
40
-
-
13544264789
-
Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation
-
Nistor GI, Totoiu MO, Haque N, et al. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005; 49: 385-96.
-
(2005)
Glia
, vol.49
, pp. 385-396
-
-
Nistor, G.I.1
Totoiu, M.O.2
Haque, N.3
-
41
-
-
34249694635
-
Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm
-
Cloutier F, Siegenthaler MM, Nistor G, et al. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med. 2006; 1: 469-79.
-
(2006)
Regen Med
, vol.1
, pp. 469-479
-
-
Cloutier, F.1
Siegenthaler, M.M.2
Nistor, G.3
-
42
-
-
0001159822
-
Are new neurons formed in the brains of adult mammals?
-
Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962; 135: 1127-8.
-
(1962)
Science
, vol.135
, pp. 1127-1128
-
-
Altman, J.1
-
43
-
-
0034712047
-
Mammalian neural stem cells
-
Gage FH. Mammalian neural stem cells. Science. 2000; 287: 1433-8.
-
(2000)
Science
, vol.287
, pp. 1433-1438
-
-
Gage, F.H.1
-
44
-
-
24944508086
-
Stem and progenitor cell-based therapy of the human central nervous system
-
Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol. 2005; 23: 862-71.
-
(2005)
Nat Biotechnol
, vol.23
, pp. 862-871
-
-
Goldman, S.1
-
45
-
-
33747157935
-
Fate of endogenous stem/progenitor cells following spinal cord injury
-
Horky LL, Galimi F, Gage FH, et al. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006; 498: 525-38.
-
(2006)
J Comp Neurol
, vol.498
, pp. 525-538
-
-
Horky, L.L.1
Galimi, F.2
Gage, F.H.3
-
46
-
-
3543148393
-
Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor
-
Setoguchi T, Nakashima K, Takizawa T, et al. Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Exp Neurol. 2004; 189: 33-44.
-
(2004)
Exp Neurol
, vol.189
, pp. 33-44
-
-
Setoguchi, T.1
Nakashima, K.2
Takizawa, T.3
-
47
-
-
70349408988
-
Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting
-
Cizkova D, Cizek M, Nagyova M, et al. Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting. J Neurosci Meth. 2009; 184: 88-94.
-
(2009)
J Neurosci Meth
, vol.184
, pp. 88-94
-
-
Cizkova, D.1
Cizek, M.2
Nagyova, M.3
-
48
-
-
0038054469
-
Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury
-
Lu P, Jones LL, Snyder EY, et al. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003; 181: 115-29.
-
(2003)
Exp Neurol
, vol.181
, pp. 115-129
-
-
Lu, P.1
Jones, L.L.2
Snyder, E.Y.3
-
49
-
-
33845443819
-
Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury
-
Ishii K, Nakamura M, Dai H, et al. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J Neurosci Res. 2006; 84: 1669-81.
-
(2006)
J Neurosci Res
, vol.84
, pp. 1669-1681
-
-
Ishii, K.1
Nakamura, M.2
Dai, H.3
-
50
-
-
33846157139
-
Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior
-
Tarasenko YI, Gao J, Nie L, et al. Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res. 2007; 85: 47-57.
-
(2007)
J Neurosci Res
, vol.85
, pp. 47-57
-
-
Tarasenko, Y.I.1
Gao, J.2
Nie, L.3
-
51
-
-
25444455637
-
Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice
-
Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA. 2005; 102: 14069-74.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 14069-14074
-
-
Cummings, B.J.1
Uchida, N.2
Tamaki, S.J.3
-
52
-
-
8144224012
-
Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia
-
Marsala M, Kakinohana O, Yaksh TL, et al. Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia. Eur J Neurosci. 2004; 20: 2401-14.
-
(2004)
Eur J Neurosci
, vol.20
, pp. 2401-2414
-
-
Marsala, M.1
Kakinohana, O.2
Yaksh, T.L.3
-
53
-
-
66749095400
-
Nerve injection of viral vectors efficiently transfers transgenes into motor neurons and delivers RNAi therapy against ALS
-
Wu R, Wang H, Xia X, et al. Nerve injection of viral vectors efficiently transfers transgenes into motor neurons and delivers RNAi therapy against ALS. Antioxid Redox Signal. 2009; 11: 1523-34.
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 1523-1534
-
-
Wu, R.1
Wang, H.2
Xia, X.3
-
54
-
-
84878817996
-
-
Using human fetal neural stem cells or human induced pluripotent stem cell-derived neural precursors for the treatment of experimental spinal cord injury. 8th IBRO World Congress of Neuroscience. Florence, Italy
-
Romanyuk N, Amemori T, Turnovcova K, et al. Using human fetal neural stem cells or human induced pluripotent stem cell-derived neural precursors for the treatment of experimental spinal cord injury. 8th IBRO World Congress of Neuroscience. Florence, Italy, 2011.
-
(2011)
-
-
Romanyuk, N.1
Amemori, T.2
Turnovcova, K.3
-
55
-
-
67650046974
-
Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery
-
Hooshmand MJ, Sontag CJ, Uchida N, et al. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS ONE. 2009; 4: e5871.
-
(2009)
PLoS ONE
, vol.4
-
-
Hooshmand, M.J.1
Sontag, C.J.2
Uchida, N.3
-
56
-
-
20044370811
-
Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome
-
Hofstetter CP, Holmstrom NA, Lilja JA, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nature Neurosci. 2005; 8: 346-53.
-
(2005)
Nature Neurosci
, vol.8
, pp. 346-353
-
-
Hofstetter, C.P.1
Holmstrom, N.A.2
Lilja, J.A.3
-
57
-
-
36248957085
-
Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain
-
Mukhida K, Mendez I, McLeod M, et al. Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain. Stem Cells. 2007; 25: 2874-85.
-
(2007)
Stem Cells
, vol.25
, pp. 2874-2885
-
-
Mukhida, K.1
Mendez, I.2
McLeod, M.3
-
58
-
-
0036703612
-
Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord
-
Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci. 2002; 22: 6670-81.
-
(2002)
J Neurosci
, vol.22
, pp. 6670-6681
-
-
Takami, T.1
Oudega, M.2
Bates, M.L.3
-
59
-
-
0035370177
-
Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord
-
Pinzon A, Calancie B, Oudega M, et al. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res. 2001; 64: 533-41.
-
(2001)
J Neurosci Res
, vol.64
, pp. 533-541
-
-
Pinzon, A.1
Calancie, B.2
Oudega, M.3
-
60
-
-
14844313297
-
Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury
-
Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005; 192: 384-93.
-
(2005)
Exp Neurol
, vol.192
, pp. 384-393
-
-
Guest, J.D.1
Hiester, E.D.2
Bunge, R.P.3
-
61
-
-
34250192272
-
Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery
-
Pearse DD, Sanchez AR, Pereira FC, et al. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery. Glia. 2007; 55: 976-1000.
-
(2007)
Glia
, vol.55
, pp. 976-1000
-
-
Pearse, D.D.1
Sanchez, A.R.2
Pereira, F.C.3
-
62
-
-
50849089965
-
Novel combination strategies to repair the injured mammalian spinal cord
-
Bunge MB. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med. 2008; 31: 262-9.
-
(2008)
J Spinal Cord Med
, vol.31
, pp. 262-269
-
-
Bunge, M.B.1
-
63
-
-
38649126573
-
Growth factors and combinatorial therapies for CNS regeneration
-
Lu P, Tuszynski MH. Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol. 2008; 209: 313-20.
-
(2008)
Exp Neurol
, vol.209
, pp. 313-320
-
-
Lu, P.1
Tuszynski, M.H.2
-
64
-
-
77949806552
-
Astrocyte-produced ephrins inhibit schwann cell migration via VAV2 signaling
-
Afshari FT, Kwok JC, Fawcett JW. Astrocyte-produced ephrins inhibit schwann cell migration via VAV2 signaling. J Neurosci. 2010; 30: 4246-55.
-
(2010)
J Neurosci
, vol.30
, pp. 4246-4255
-
-
Afshari, F.T.1
Kwok, J.C.2
Fawcett, J.W.3
-
65
-
-
17044440480
-
Olfactory ensheathing cells and spinal cord repair
-
Mackay-Sim A. Olfactory ensheathing cells and spinal cord repair. Keio J Med. 2005; 54: 8-14.
-
(2005)
Keio J Med
, vol.54
, pp. 8-14
-
-
Mackay-Sim, A.1
-
66
-
-
28544446960
-
Autologous olfactory ensheathing cell transplantation in human spinal cord injury
-
Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005; 128: 2951-60.
-
(2005)
Brain
, vol.128
, pp. 2951-2960
-
-
Feron, F.1
Perry, C.2
Cochrane, J.3
-
67
-
-
33747619823
-
Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study
-
Lima C, Pratas-Vital J, Escada P, et al. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006; 29: 191-203.
-
(2006)
J Spinal Cord Med
, vol.29
, pp. 191-203
-
-
Lima, C.1
Pratas-Vital, J.2
Escada, P.3
-
68
-
-
50849127500
-
Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial
-
Mackay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008; 131: 2376-86.
-
(2008)
Brain
, vol.131
, pp. 2376-2386
-
-
Mackay-Sim, A.1
Feron, F.2
Cochrane, J.3
-
69
-
-
13944266687
-
Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord
-
Fouad K, Schnell L, Bunge MB, et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci. 2005; 25: 1169-78.
-
(2005)
J Neurosci
, vol.25
, pp. 1169-1178
-
-
Fouad, K.1
Schnell, L.2
Bunge, M.B.3
-
70
-
-
77749298373
-
Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat
-
Amemori T, Jendelova P, Ruzickova K, et al. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010; 12: 212-25.
-
(2010)
Cytotherapy
, vol.12
, pp. 212-225
-
-
Amemori, T.1
Jendelova, P.2
Ruzickova, K.3
-
71
-
-
77950551326
-
Mesenchymal stromal cells: current understanding and clinical status
-
Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010; 28: 585-96.
-
(2010)
Stem Cells
, vol.28
, pp. 585-596
-
-
Salem, H.K.1
Thiemermann, C.2
-
72
-
-
33845534557
-
Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat
-
Cizkova D, Rosocha J, Vanicky I, et al. Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol. 2006; 26: 1167-80.
-
(2006)
Cell Mol Neurobiol
, vol.26
, pp. 1167-1180
-
-
Cizkova, D.1
Rosocha, J.2
Vanicky, I.3
-
73
-
-
34250747913
-
Migration, fate and in vivo imaging of adult stem cells in the CNS
-
Sykova E, Jendelova P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ. 2007; 14: 1336-42.
-
(2007)
Cell Death Differ
, vol.14
, pp. 1336-1342
-
-
Sykova, E.1
Jendelova, P.2
-
74
-
-
33846187092
-
Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats
-
Urdzikova L, Jendelova P, Glogarova K, et al. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 2006; 23: 1379-91.
-
(2006)
J Neurotrauma
, vol.23
, pp. 1379-1391
-
-
Urdzikova, L.1
Jendelova, P.2
Glogarova, K.3
-
76
-
-
61449114827
-
Differentiation of human adipose-derived adult stem cells into neuronal tissue: Does it work?
-
Lambert APF, Zandonai AF, Bonatto D, et al. Differentiation of human adipose-derived adult stem cells into neuronal tissue: Does it work? Differentiation. 2009; 77: 221-8.
-
(2009)
Differentiation
, vol.77
, pp. 221-228
-
-
Lambert, A.P.F.1
Zandonai, A.F.2
Bonatto, D.3
-
78
-
-
62549145360
-
Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies
-
Geffner LF, Santacruz P, Izurieta M, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008; 17: 1277-93.
-
(2008)
Cell Transplant
, vol.17
, pp. 1277-1293
-
-
Geffner, L.F.1
Santacruz, P.2
Izurieta, M.3
-
79
-
-
21844442589
-
Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor
-
Park HC, Shim YS, Ha Y, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005; 11: 913-22.
-
(2005)
Tissue Eng
, vol.11
, pp. 913-922
-
-
Park, H.C.1
Shim, Y.S.2
Ha, Y.3
-
80
-
-
34547915244
-
Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial
-
Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells. 2007; 25: 2066-73.
-
(2007)
Stem Cells
, vol.25
, pp. 2066-2073
-
-
Yoon, S.H.1
Shim, Y.S.2
Park, Y.H.3
-
81
-
-
31844433193
-
Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study
-
Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol. 2006; 34: 130-1.
-
(2006)
Exp Hematol
, vol.34
, pp. 130-131
-
-
Callera, F.1
do Nascimento, R.X.2
-
82
-
-
53749099516
-
Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up
-
Deda H, Inci MC, Kurekci AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy. 2008; 10: 565-74.
-
(2008)
Cytotherapy
, vol.10
, pp. 565-574
-
-
Deda, H.1
Inci, M.C.2
Kurekci, A.E.3
-
83
-
-
38149140867
-
Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report
-
Saito F, Nakatani T, Iwase M, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008; 64: 53-9.
-
(2008)
J Trauma
, vol.64
, pp. 53-59
-
-
Saito, F.1
Nakatani, T.2
Iwase, M.3
-
84
-
-
70450158749
-
Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study
-
Pal R, Venkataramana NK, Bansal A, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy. 2009; 11: 897-911.
-
(2009)
Cytotherapy
, vol.11
, pp. 897-911
-
-
Pal, R.1
Venkataramana, N.K.2
Bansal, A.3
-
85
-
-
77950466299
-
Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons
-
Mason MR, Ehlert EM, Eggers R, et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther. 2010; 18: 715-24.
-
(2010)
Mol Ther
, vol.18
, pp. 715-724
-
-
Mason, M.R.1
Ehlert, E.M.2
Eggers, R.3
-
86
-
-
77956825686
-
Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats
-
Petruska JC, Kitay B, Boyce VS, et al. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats. Eur J Neurosci. 2010; 32: 997-1005.
-
(2010)
Eur J Neurosci
, vol.32
, pp. 997-1005
-
-
Petruska, J.C.1
Kitay, B.2
Boyce, V.S.3
-
87
-
-
34547735385
-
Nerve growth factor gene delivery: animal models to clinical trials
-
Tuszynski MH. Nerve growth factor gene delivery: animal models to clinical trials. Dev Neurobiol. 2007; 67: 1204-15.
-
(2007)
Dev Neurobiol
, vol.67
, pp. 1204-1215
-
-
Tuszynski, M.H.1
-
88
-
-
72249104303
-
Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors
-
Blits B, Derks S, Twisk J, et al. Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors. J Neurosci Meth. 2010; 185: 257-63.
-
(2010)
J Neurosci Meth
, vol.185
, pp. 257-263
-
-
Blits, B.1
Derks, S.2
Twisk, J.3
-
89
-
-
80053492356
-
Advancements in adeno-associated viral gene therapy approaches: exploring a new horizon
-
Aalbers CJ, Tak PP, Vervoordeldonk MJ. Advancements in adeno-associated viral gene therapy approaches: exploring a new horizon. F1000 Med Reports. 2011; 3: 17.
-
(2011)
F1000 Med Reports
, vol.3
, pp. 17
-
-
Aalbers, C.J.1
Tak, P.P.2
Vervoordeldonk, M.J.3
-
90
-
-
76349097362
-
Biomaterial design strategies for the treatment of spinal cord injuries
-
Straley KS, Foo CWP, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma. 2010; 27: 1-19.
-
(2010)
J Neurotrauma
, vol.27
, pp. 1-19
-
-
Straley, K.S.1
Foo, C.W.P.2
Heilshorn, S.C.3
-
91
-
-
45849144712
-
Biocompatible hydrogels in spinal cord injury repair
-
Hejcl A, Lesny P, Pradny M, et al. Biocompatible hydrogels in spinal cord injury repair. Physiol Res. 2008; 57: S121-32.
-
(2008)
Physiol Res
, vol.57
-
-
Hejcl, A.1
Lesny, P.2
Pradny, M.3
-
92
-
-
0036765526
-
Biodegradable polymer grafts for surgical repair of the injured spinal cord
-
Friedman JA, Windebank AJ, Moore MJ, et al. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery. 2002; 51: 742-52.
-
(2002)
Neurosurgery
, vol.51
, pp. 742-752
-
-
Friedman, J.A.1
Windebank, A.J.2
Moore, M.J.3
-
93
-
-
60549089022
-
Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury
-
De Laporte L, Lei Yan A, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials. 2009; 30: 2361-8.
-
(2009)
Biomaterials
, vol.30
, pp. 2361-2368
-
-
De Laporte, L.1
Lei Yan, A.2
Shea, L.D.3
-
94
-
-
50149084351
-
Macro-architectures in spinal cord scaffold implants influence regeneration
-
Wong DY, Leveque JC, Brumblay H, et al. Macro-architectures in spinal cord scaffold implants influence regeneration. J Neurotrauma. 2008; 25: 1027-37.
-
(2008)
J Neurotrauma
, vol.25
, pp. 1027-1037
-
-
Wong, D.Y.1
Leveque, J.C.2
Brumblay, H.3
-
95
-
-
0035053940
-
Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: Synthesis and properties
-
Pêgo AP, Poot AA, Grijpma DW, et al. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: Synthesis and properties. J Biomat Sci-Polym E. 2001; 12: 35-53.
-
(2001)
J Biomat Sci-Polym E
, vol.12
, pp. 35-53
-
-
Pêgo, A.P.1
Poot, A.A.2
Grijpma, D.W.3
-
96
-
-
3042736707
-
Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection
-
Tsai EC, Dalton PD, Shoichet MS, et al. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma. 2004; 21: 789-804.
-
(2004)
J Neurotrauma
, vol.21
, pp. 789-804
-
-
Tsai, E.C.1
Dalton, P.D.2
Shoichet, M.S.3
-
97
-
-
52649095471
-
Development of a sialic acid-containing hydrogel of poly[N-(2-hydroxypropyl) methacrylamide]: characterization and implantation study
-
Woerly S, Fort S, Pignot-Paintrand I, et al. Development of a sialic acid-containing hydrogel of poly[N-(2-hydroxypropyl) methacrylamide]: characterization and implantation study. Biomacromolecules. 2008; 9: 2329-37.
-
(2008)
Biomacromolecules
, vol.9
, pp. 2329-2337
-
-
Woerly, S.1
Fort, S.2
Pignot-Paintrand, I.3
-
98
-
-
77957949199
-
Bioelectrochemical control of neural cell development on conducting polymers
-
Collazos-Castro JE, Polo JL, Hernandez-Labrado GR, et al. Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials. 2010; 31: 9244-55.
-
(2010)
Biomaterials
, vol.31
, pp. 9244-9255
-
-
Collazos-Castro, J.E.1
Polo, J.L.2
Hernandez-Labrado, G.R.3
-
99
-
-
30544433665
-
Materials for peripheral nerve regeneration
-
Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2006; 6: 13-26.
-
(2006)
Macromol Biosci
, vol.6
, pp. 13-26
-
-
Ciardelli, G.1
Chiono, V.2
-
100
-
-
64349084930
-
Functional restoration of rabbit spinal cord using collagen-filament scaffold
-
Yoshii S, Ito S, Shima M, et al. Functional restoration of rabbit spinal cord using collagen-filament scaffold. J Tissue Eng Regen M. 2009; 3: 19-25.
-
(2009)
J Tissue Eng Regen M
, vol.3
, pp. 19-25
-
-
Yoshii, S.1
Ito, S.2
Shima, M.3
-
101
-
-
3242728530
-
Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury
-
Taylor SJ, McDonald III JW, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release. 2004; 98: 281-94.
-
(2004)
J Control Release
, vol.98
, pp. 281-294
-
-
Taylor, S.J.1
McDonald III, J.W.2
Sakiyama-Elbert, S.E.3
-
102
-
-
84891735368
-
Scaffold-driven regenerative therapy for the spinal cord injury - biomimeting neurogenesis in the CNS
-
Pêgo AP, Mar FM, Rocha DN, et al. Scaffold-driven regenerative therapy for the spinal cord injury - biomimeting neurogenesis in the CNS. Histol Histopathol. 2011; 26: 289.
-
(2011)
Histol Histopathol
, vol.26
, pp. 289
-
-
Pêgo, A.P.1
Mar, F.M.2
Rocha, D.N.3
-
103
-
-
78449283683
-
Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury
-
Wei YT, He Y, Xu CL, et al. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. J Biomed Mater Res B. 2010; 95: 110-7.
-
(2010)
J Biomed Mater Res B
, vol.95
, pp. 110-117
-
-
Wei, Y.T.1
He, Y.2
Xu, C.L.3
-
104
-
-
77950641715
-
Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor
-
Park J, Lim E, Back S, et al. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J Biomed Mater Res A. 2010; 93: 1091-9.
-
(2010)
J Biomed Mater Res A
, vol.93
, pp. 1091-1099
-
-
Park, J.1
Lim, E.2
Back, S.3
-
105
-
-
77954385643
-
Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds
-
Gros T, Sakamoto JS, Blesch A, et al. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials. 2010; 31: 6719-29.
-
(2010)
Biomaterials
, vol.31
, pp. 6719-6729
-
-
Gros, T.1
Sakamoto, J.S.2
Blesch, A.3
-
106
-
-
33645899944
-
The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels
-
Prang P, Muller R, Eljaouhari A, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials. 2006; 27: 3560-9.
-
(2006)
Biomaterials
, vol.27
, pp. 3560-3569
-
-
Prang, P.1
Muller, R.2
Eljaouhari, A.3
-
107
-
-
78650436738
-
Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat
-
Bozkurt G, Mothe AJ, Zahir T, et al. Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat. Neurosurgery. 2010; 67: 1733-44.
-
(2010)
Neurosurgery
, vol.67
, pp. 1733-1744
-
-
Bozkurt, G.1
Mothe, A.J.2
Zahir, T.3
-
108
-
-
77951476003
-
Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds
-
Shen Y, Qian Y, Zhang H, et al. Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplant. 2010; 19: 147-57.
-
(2010)
Cell Transplant
, vol.19
, pp. 147-157
-
-
Shen, Y.1
Qian, Y.2
Zhang, H.3
-
109
-
-
38349075209
-
Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair
-
Novikova LN, Pettersson J, Brohlin M, et al. Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials. 2008; 29: 1198-206.
-
(2008)
Biomaterials
, vol.29
, pp. 1198-1206
-
-
Novikova, L.N.1
Pettersson, J.2
Brohlin, M.3
-
110
-
-
67651102573
-
Natural-synthetic polyblend nanofibers for biomedical applications
-
Bhattarai N, Li Z, Gunn J, et al. Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater. 2009; 21: 2792-7.
-
(2009)
Adv Mater
, vol.21
, pp. 2792-2797
-
-
Bhattarai, N.1
Li, Z.2
Gunn, J.3
-
111
-
-
67649130162
-
Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair
-
Hejcl A, Lesny P, Pradny M, et al. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. J Mater Sci Mater Med. 2009; 20: 1571-7.
-
(2009)
J Mater Sci Mater Med
, vol.20
, pp. 1571-1577
-
-
Hejcl, A.1
Lesny, P.2
Pradny, M.3
-
112
-
-
67651146360
-
Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering
-
Kubinova S, Horak D, Sykova E. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials. 2009; 30: 4601-9.
-
(2009)
Biomaterials
, vol.30
, pp. 4601-4609
-
-
Kubinova, S.1
Horak, D.2
Sykova, E.3
-
113
-
-
80255132113
-
Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair
-
Kubinova S, Horak D, Hejcl A, et al. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. J Biomed Mater Res A. 2011; 99: 618-29.
-
(2011)
J Biomed Mater Res A
, vol.99
, pp. 618-629
-
-
Kubinova, S.1
Horak, D.2
Hejcl, A.3
-
114
-
-
10344227705
-
Adhesive and mechanical properties of hydrogels influence neurite extension
-
Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res A. 2005; 72: 91-7.
-
(2005)
J Biomed Mater Res A
, vol.72
, pp. 91-97
-
-
Gunn, J.W.1
Turner, S.D.2
Mann, B.K.3
-
115
-
-
77953809305
-
The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors
-
Kubinova S, Horak D, Kozubenko N, et al. The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials. 2010; 31: 5966-75.
-
(2010)
Biomaterials
, vol.31
, pp. 5966-5975
-
-
Kubinova, S.1
Horak, D.2
Kozubenko, N.3
-
116
-
-
77950342360
-
Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials
-
Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010; 94: 1-18.
-
(2010)
Biopolymers
, vol.94
, pp. 1-18
-
-
Cui, H.1
Webber, M.J.2
Stupp, S.I.3
-
117
-
-
43649108455
-
Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury
-
Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 2008; 28: 3814-23.
-
(2008)
J Neurosci
, vol.28
, pp. 3814-3823
-
-
Tysseling-Mattiace, V.M.1
Sahni, V.2
Niece, K.L.3
-
118
-
-
0028999337
-
Hydrogel-based three-dimensional matrix for neural cells
-
Bellamkonda R, Ranieri JP, Bouche N, et al. Hydrogel-based three-dimensional matrix for neural cells. J Biomed Mater Res. 1995; 29: 663-71.
-
(1995)
J Biomed Mater Res
, vol.29
, pp. 663-671
-
-
Bellamkonda, R.1
Ranieri, J.P.2
Bouche, N.3
-
119
-
-
79958252032
-
Bioengineered scaffolds for spinal cord repair
-
Wang M, Zhai P, Chen X, et al. Bioengineered scaffolds for spinal cord repair. Tissue Eng Pt B-Rev. 2011; 17: 177-94.
-
(2011)
Tissue Eng Pt B-Rev
, vol.17
, pp. 177-194
-
-
Wang, M.1
Zhai, P.2
Chen, X.3
-
120
-
-
33846459468
-
Templated agarose scaffolds support linear axonal regeneration
-
Stokols S, Sakamoto J, Breckon C, et al. Templated agarose scaffolds support linear axonal regeneration. Tissue Eng. 2006; 12: 2777-87.
-
(2006)
Tissue Eng
, vol.12
, pp. 2777-2787
-
-
Stokols, S.1
Sakamoto, J.2
Breckon, C.3
-
121
-
-
26844557081
-
Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury
-
Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials. 2006; 27: 443-51.
-
(2006)
Biomaterials
, vol.27
, pp. 443-451
-
-
Stokols, S.1
Tuszynski, M.H.2
-
122
-
-
26844534722
-
Multiple-channel scaffolds to promote spinal cord axon regeneration
-
Moore MJ, Friedman JA, Lewellyn EB, et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 2006; 27: 419-29.
-
(2006)
Biomaterials
, vol.27
, pp. 419-429
-
-
Moore, M.J.1
Friedman, J.A.2
Lewellyn, E.B.3
-
123
-
-
62349136726
-
Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications
-
Wang HB, Mullins ME, Cregg JM, et al. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng. 2009; 6: 016001.
-
(2009)
J Neural Eng
, vol.6
, pp. 016001
-
-
Wang, H.B.1
Mullins, M.E.2
Cregg, J.M.3
-
124
-
-
77956630963
-
Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration
-
Wang HB, Mullins ME, Cregg JM, et al. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 2010; 6: 2970-8.
-
(2010)
Acta Biomater
, vol.6
, pp. 2970-2978
-
-
Wang, H.B.1
Mullins, M.E.2
Cregg, J.M.3
-
125
-
-
66949178254
-
Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties
-
Xie J, MacEwan MR, Li X, et al. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano. 2009; 3: 1151-9.
-
(2009)
ACS Nano
, vol.3
, pp. 1151-1159
-
-
Xie, J.1
MacEwan, M.R.2
Li, X.3
-
126
-
-
79959907534
-
Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers
-
Hurtado A, Cregg JM, Wang HB, et al. Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers. Biomaterials. 2011; 32: 6068-79.
-
(2011)
Biomaterials
, vol.32
, pp. 6068-6079
-
-
Hurtado, A.1
Cregg, J.M.2
Wang, H.B.3
-
127
-
-
36749028224
-
Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold
-
Guo J, Su H, Zeng Y, et al. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine. 2007; 3: 311-21.
-
(2007)
Nanomedicine
, vol.3
, pp. 311-321
-
-
Guo, J.1
Su, H.2
Zeng, Y.3
-
128
-
-
77957702745
-
Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI
-
Johnson PJ, Tatara A, McCreedy DA, et al. Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter. 2010; 6: 5127-37.
-
(2010)
Soft Matter
, vol.6
, pp. 5127-5137
-
-
Johnson, P.J.1
Tatara, A.2
McCreedy, D.A.3
-
129
-
-
67650682083
-
Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord
-
Olson HE, Rooney GE, Gross L, et al. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng Pt A. 2009; 15: 1797-805.
-
(2009)
Tissue Eng Pt A
, vol.15
, pp. 1797-1805
-
-
Olson, H.E.1
Rooney, G.E.2
Gross, L.3
-
130
-
-
26844448005
-
Poly (D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord
-
Hurtado A, Moon LD, Maquet V, et al. Poly (D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials. 2006; 27: 430-42.
-
(2006)
Biomaterials
, vol.27
, pp. 430-442
-
-
Hurtado, A.1
Moon, L.D.2
Maquet, V.3
-
131
-
-
0035098617
-
Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel)
-
Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001; 22: 1095-111.
-
(2001)
Biomaterials
, vol.22
, pp. 1095-1111
-
-
Woerly, S.1
Pinet, E.2
de Robertis, L.3
-
132
-
-
0034948287
-
The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts
-
Loh NK, Woerly S, Bunt SM, et al. The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts. Exp Neurol. 2001; 170: 72-84.
-
(2001)
Exp Neurol
, vol.170
, pp. 72-84
-
-
Loh, N.K.1
Woerly, S.2
Bunt, S.M.3
-
133
-
-
77949655518
-
HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury
-
Hejcl A, Sedy J, Kapcalova M, et al. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 2010; 19: 1535-46.
-
(2010)
Stem Cells Dev
, vol.19
, pp. 1535-1546
-
-
Hejcl, A.1
Sedy, J.2
Kapcalova, M.3
-
134
-
-
34249951852
-
Approaches to neural tissue engineering using scaffolds for drug delivery
-
Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev. 2007; 59: 325-38.
-
(2007)
Adv Drug Deliv Rev
, vol.59
, pp. 325-338
-
-
Willerth, S.M.1
Sakiyama-Elbert, S.E.2
-
135
-
-
19344368945
-
Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord
-
Jimenez Hamann MC, Tator CH, Shoichet MS. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol. 2005; 194: 106-19.
-
(2005)
Exp Neurol
, vol.194
, pp. 106-119
-
-
Jimenez Hamann, M.C.1
Tator, C.H.2
Shoichet, M.S.3
-
136
-
-
26844574071
-
In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury
-
Jain A, Kim YT, McKeon RJ, et al. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials. 2006; 27: 497-504.
-
(2006)
Biomaterials
, vol.27
, pp. 497-504
-
-
Jain, A.1
Kim, Y.T.2
McKeon, R.J.3
-
137
-
-
33748430801
-
An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury
-
Piantino J, Burdick JA, Goldberg D, et al. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp Neurol. 2006; 201: 359-67.
-
(2006)
Exp Neurol
, vol.201
, pp. 359-367
-
-
Piantino, J.1
Burdick, J.A.2
Goldberg, D.3
-
138
-
-
0346219196
-
Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord
-
Hendriks WT, Ruitenberg MJ, Blits B, et al. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res. 2004; 146: 451-76.
-
(2004)
Prog Brain Res
, vol.146
, pp. 451-476
-
-
Hendriks, W.T.1
Ruitenberg, M.J.2
Blits, B.3
-
139
-
-
33746932893
-
Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems
-
Abdellatif AA, Pelt JL, Benton RL, et al. Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems. J Neurosci Res. 2006; 84: 553-67.
-
(2006)
J Neurosci Res
, vol.84
, pp. 553-567
-
-
Abdellatif, A.A.1
Pelt, J.L.2
Benton, R.L.3
-
140
-
-
33646576504
-
Direct gene therapy for repair of the spinal cord
-
Blits B, Bunge MB. Direct gene therapy for repair of the spinal cord. J Neurotrauma. 2006; 23: 508-20.
-
(2006)
J Neurotrauma
, vol.23
, pp. 508-520
-
-
Blits, B.1
Bunge, M.B.2
-
141
-
-
77952239026
-
Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c
-
Oliveira H, Fernandez R, Pires LR, et al. Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. J Control Release. 2010; 143: 350-8.
-
(2010)
J Control Release
, vol.143
, pp. 350-358
-
-
Oliveira, H.1
Fernandez, R.2
Pires, L.R.3
-
142
-
-
78249240032
-
Chitosan-based gene delivery vectors targeted to the peripheral nervous system
-
Oliveira H, Pires LR, Fernandez R, et al. Chitosan-based gene delivery vectors targeted to the peripheral nervous system. J Biomed Mater Res A. 2010; 95: 801-10.
-
(2010)
J Biomed Mater Res A
, vol.95
, pp. 801-810
-
-
Oliveira, H.1
Pires, L.R.2
Fernandez, R.3
-
144
-
-
77958033530
-
Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth
-
Mittnacht U, Hartmann H, Hein S, et al. Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth. Nano Lett. 2010; 10: 3933-9.
-
(2010)
Nano Lett
, vol.10
, pp. 3933-3939
-
-
Mittnacht, U.1
Hartmann, H.2
Hein, S.3
-
145
-
-
0018908523
-
Axons from CNS neurons regenerate into PNS grafts
-
Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980; 284: 264-5.
-
(1980)
Nature
, vol.284
, pp. 264-265
-
-
Richardson, P.M.1
McGuinness, U.M.2
Aguayo, A.J.3
-
146
-
-
0019856865
-
Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats
-
David S, Aguayo AJ. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981; 214: 931-3.
-
(1981)
Science
, vol.214
, pp. 931-933
-
-
David, S.1
Aguayo, A.J.2
-
147
-
-
70350453794
-
The natural history of the myelin-derived nerve growth inhibitor Nogo-A
-
Schweigreiter R. The natural history of the myelin-derived nerve growth inhibitor Nogo-A. Neuron Glia Biol. 2008; 4: 83-9.
-
(2008)
Neuron Glia Biol
, vol.4
, pp. 83-89
-
-
Schweigreiter, R.1
-
148
-
-
34547652325
-
Why is Wallerian degeneration in the CNS so slow?
-
Vargas ME, Barres BA. Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci. 2007; 30: 153-79.
-
(2007)
Annu Rev Neurosci
, vol.30
, pp. 153-179
-
-
Vargas, M.E.1
Barres, B.A.2
-
149
-
-
0033137077
-
Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury
-
Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron. 1999; 23: 83-91.
-
(1999)
Neuron
, vol.23
, pp. 83-91
-
-
Neumann, S.1
Woolf, C.J.2
-
150
-
-
66249141133
-
Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon
-
Ylera B, Erturk A, Hellal F, et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol. 2009; 19: 930-6.
-
(2009)
Curr Biol
, vol.19
, pp. 930-936
-
-
Ylera, B.1
Erturk, A.2
Hellal, F.3
-
151
-
-
0037071880
-
Spinal axon regeneration induced by elevation of cyclic AMP
-
Qiu J, Cai D, Dai H, et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron. 2002; 34: 895-903.
-
(2002)
Neuron
, vol.34
, pp. 895-903
-
-
Qiu, J.1
Cai, D.2
Dai, H.3
-
152
-
-
0032142884
-
Acceleration of axonal outgrowth in motor axons from mature and old F344 rats after a conditioning lesion
-
Jacob JM, Croes SA. Acceleration of axonal outgrowth in motor axons from mature and old F344 rats after a conditioning lesion. Exp Neurol. 1998; 152: 231-7.
-
(1998)
Exp Neurol
, vol.152
, pp. 231-237
-
-
Jacob, J.M.1
Croes, S.A.2
-
153
-
-
0019447903
-
Effect of a conditioning lesion on optic nerve regeneration in goldfish
-
McQuarrie IG, Grafstein B. Effect of a conditioning lesion on optic nerve regeneration in goldfish. Brain Res. 1981; 216: 253-64.
-
(1981)
Brain Res
, vol.216
, pp. 253-264
-
-
McQuarrie, I.G.1
Grafstein, B.2
-
154
-
-
0037071890
-
Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation
-
Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron. 2002; 34: 885-93.
-
(2002)
Neuron
, vol.34
, pp. 885-893
-
-
Neumann, S.1
Bradke, F.2
Tessier-Lavigne, M.3
-
155
-
-
66749182241
-
Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons
-
Zou H, Ho C, Wong K, et al. Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci. 2009; 29: 7116-23.
-
(2009)
J Neurosci
, vol.29
, pp. 7116-7123
-
-
Zou, H.1
Ho, C.2
Wong, K.3
-
156
-
-
34547484768
-
ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration
-
Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci. 2007; 27: 7911-20.
-
(2007)
J Neurosci
, vol.27
, pp. 7911-7920
-
-
Seijffers, R.1
Mills, C.D.2
Woolf, C.J.3
-
157
-
-
0035884814
-
Leukemia inhibitory factor determines the growth status of injured adult sensory neurons
-
Cafferty WB, Gardiner NJ, Gavazzi I, et al. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci. 2001; 21: 7161-70.
-
(2001)
J Neurosci
, vol.21
, pp. 7161-7170
-
-
Cafferty, W.B.1
Gardiner, N.J.2
Gavazzi, I.3
-
158
-
-
2342493315
-
Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice
-
Cafferty WB, Gardiner NJ, Das P, et al. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci. 2004; 24: 4432-43.
-
(2004)
J Neurosci
, vol.24
, pp. 4432-4443
-
-
Cafferty, W.B.1
Gardiner, N.J.2
Das, P.3
-
159
-
-
33744997909
-
The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth
-
Cao Z, Gao Y, Bryson JB, et al. The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci. 2006; 26: 5565-73.
-
(2006)
J Neurosci
, vol.26
, pp. 5565-5573
-
-
Cao, Z.1
Gao, Y.2
Bryson, J.B.3
-
160
-
-
64149130724
-
Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury
-
Minor K, Phillips J, Seeds NW. Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury. J Neurochem. 2009; 109: 706-15.
-
(2009)
J Neurochem
, vol.109
, pp. 706-715
-
-
Minor, K.1
Phillips, J.2
Seeds, N.W.3
-
161
-
-
2942720519
-
cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury
-
Pearse DD, Pereira FC, Marcillo AE, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med. 2004; 10: 610-6.
-
(2004)
Nat Med
, vol.10
, pp. 610-616
-
-
Pearse, D.D.1
Pereira, F.C.2
Marcillo, A.E.3
-
162
-
-
2942558484
-
The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery
-
Nikulina E, Tidwell JL, Dai HN, et al. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci USA. 2004; 101: 8786-90.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 8786-8790
-
-
Nikulina, E.1
Tidwell, J.L.2
Dai, H.N.3
-
163
-
-
0037104645
-
Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro
-
Cai D, Deng K, Mellado W, et al. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron. 2002; 35: 711-9.
-
(2002)
Neuron
, vol.35
, pp. 711-719
-
-
Cai, D.1
Deng, K.2
Mellado, W.3
-
164
-
-
74949137326
-
A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway
-
Ma TC, Campana A, Lange PS, et al. A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J Neurosci. 2010; 30: 739-48.
-
(2010)
J Neurosci
, vol.30
, pp. 739-748
-
-
Ma, T.C.1
Campana, A.2
Lange, P.S.3
-
165
-
-
0028867947
-
Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors
-
Bregman BS, Kunkel-Bagden E, Schnell L, et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995; 378: 498-501.
-
(1995)
Nature
, vol.378
, pp. 498-501
-
-
Bregman, B.S.1
Kunkel-Bagden, E.2
Schnell, L.3
-
166
-
-
0037061426
-
Chondroitinase ABC promotes functional recovery after spinal cord injury
-
Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002; 416: 636-40.
-
(2002)
Nature
, vol.416
, pp. 636-640
-
-
Bradbury, E.J.1
Moon, L.D.2
Popat, R.J.3
-
167
-
-
1442348904
-
The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats
-
Bareyre FM, Kerschensteiner M, Raineteau O, et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nature Neurosci. 2004; 7: 269-77.
-
(2004)
Nature Neurosci
, vol.7
, pp. 269-277
-
-
Bareyre, F.M.1
Kerschensteiner, M.2
Raineteau, O.3
-
168
-
-
80655147964
-
Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases
-
Saberi H, Firouzi M, Habibi Z, et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine. 2011; 15: 515-25.
-
(2011)
J Neurosurg Spine
, vol.15
, pp. 515-525
-
-
Saberi, H.1
Firouzi, M.2
Habibi, Z.3
-
169
-
-
52449122647
-
The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord
-
Fukushima K, Enomoto M, Tomizawa S, et al. The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord. J Med Dent Sci. 2008; 55: 71-9.
-
(2008)
J Med Dent Sci
, vol.55
, pp. 71-79
-
-
Fukushima, K.1
Enomoto, M.2
Tomizawa, S.3
-
171
-
-
77957303457
-
The promotion of neurological recovery in the rat spinal cord crushed injury model by collagen-binding BDNF
-
Liang W, Han Q, Jin W, et al. The promotion of neurological recovery in the rat spinal cord crushed injury model by collagen-binding BDNF. Biomaterials. 2010; 31: 8634-41.
-
(2010)
Biomaterials
, vol.31
, pp. 8634-8641
-
-
Liang, W.1
Han, Q.2
Jin, W.3
-
172
-
-
84860517621
-
Nanofibrous Collagen Nerve Conduits for Spinal Cord Repair
-
Liu T, Houle JD, Xu J, et al. Nanofibrous Collagen Nerve Conduits for Spinal Cord Repair. Tissue Eng Pt A. 2012; 18: 1057-66.
-
(2012)
Tissue Eng Pt A
, vol.18
, pp. 1057-1066
-
-
Liu, T.1
Houle, J.D.2
Xu, J.3
-
173
-
-
79960781696
-
High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury
-
Khaing ZZ, Milman BD, Vanscoy JE, et al. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng. 2011; 8: 046033.
-
(2011)
J Neural Eng
, vol.8
, pp. 046033
-
-
Khaing, Z.Z.1
Milman, B.D.2
Vanscoy, J.E.3
-
174
-
-
74349083656
-
Time Controlled Protein Release from Layer-by-Layer Assembled Multilayer Functionalized Agarose Hydrogels
-
Mehrotra S, Lynam D, Maloney R, et al. Time Controlled Protein Release from Layer-by-Layer Assembled Multilayer Functionalized Agarose Hydrogels. Adv Funct Mater. 2010; 20: 247-58.
-
(2010)
Adv Funct Mater
, vol.20
, pp. 247-258
-
-
Mehrotra, S.1
Lynam, D.2
Maloney, R.3
-
175
-
-
2342527151
-
Alginate enhances elongation of early regenerating axons in spinal cord of young rats
-
Kataoka K, Suzuki Y, Kitada M, et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng. 2004; 10: 493-504.
-
(2004)
Tissue Eng
, vol.10
, pp. 493-504
-
-
Kataoka, K.1
Suzuki, Y.2
Kitada, M.3
-
176
-
-
84855195935
-
Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord
-
Chen X, Yang Y, Yao J, et al. Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord. J Mater Sci Mater Med. 2011; 22: 2347-56.
-
(2011)
J Mater Sci Mater Med
, vol.22
, pp. 2347-2356
-
-
Chen, X.1
Yang, Y.2
Yao, J.3
-
177
-
-
79955646924
-
Chitosan implants in the rat spinal cord: biocompatibility and biodegradation
-
Kim H, Tator CH, Shoichet MS. Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. J Biomed Mater Res A. 2011; 97: 395-404.
-
(2011)
J Biomed Mater Res A
, vol.97
, pp. 395-404
-
-
Kim, H.1
Tator, C.H.2
Shoichet, M.S.3
-
178
-
-
80053101586
-
Fabrication and radial compressive properties of the biodegradable woven regeneration conduits for peripheral nerve repair
-
Ding C, Guo X, Cheng B, et al. Fabrication and radial compressive properties of the biodegradable woven regeneration conduits for peripheral nerve repair. Adv Mat Res. 2011; 332-334: 1481-4.
-
(2011)
Adv Mat Res
, vol.332-334
, pp. 1481-1484
-
-
Ding, C.1
Guo, X.2
Cheng, B.3
-
179
-
-
33846862626
-
In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats
-
Suwantong O, Waleetorncheepsawat S, Sanchavanakit N, et al. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. Int J Biol Macromol. 2007; 40: 217-23.
-
(2007)
Int J Biol Macromol
, vol.40
, pp. 217-223
-
-
Suwantong, O.1
Waleetorncheepsawat, S.2
Sanchavanakit, N.3
-
180
-
-
77951175537
-
Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells
-
Pritchard CD, Slotkin JR, Yu D, et al. Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J Neurosci Meth. 2010; 188: 258-69.
-
(2010)
J Neurosci Meth
, vol.188
, pp. 258-269
-
-
Pritchard, C.D.1
Slotkin, J.R.2
Yu, D.3
-
181
-
-
84891738818
-
Tunning poly(trymethylene carbonate-co-epsilon-caprolactone) fibers for nerve regeneration
-
Pires LR, Guarino V, Barrias CC, et al. Tunning poly(trymethylene carbonate-co-epsilon-caprolactone) fibers for nerve regeneration. Histol Histopathol. 2011; 26: 251-2.
-
(2011)
Histol Histopathol
, vol.26
, pp. 251-252
-
-
Pires, L.R.1
Guarino, V.2
Barrias, C.C.3
-
182
-
-
78149312776
-
Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury
-
Tysseling VM, Sahni V, Pashuck ET, et al. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res. 2010; 88: 3161-70.
-
(2010)
J Neurosci Res
, vol.88
, pp. 3161-3170
-
-
Tysseling, V.M.1
Sahni, V.2
Pashuck, E.T.3
|