메뉴 건너뛰기




Volumn 16, Issue 11, 2012, Pages 2564-2582

Regenerative medicine for the treatment of spinal cord injury: More than just promises?

Author keywords

Biomaterials; Cell therapies; Clinical trials; Conditioning lesion; Gene therapy; Growth factors; Spinal cord injury; Stem cells

Indexed keywords

BIOMATERIAL;

EID: 84868098934     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1582-4934.2012.01603.x     Document Type: Article
Times cited : (63)

References (182)
  • 1
    • 38649112309 scopus 로고    scopus 로고
    • CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure
    • Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008; 209: 294-301.
    • (2008) Exp Neurol , vol.209 , pp. 294-301
    • Fitch, M.T.1    Silver, J.2
  • 2
    • 75349094565 scopus 로고    scopus 로고
    • Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?
    • Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells. 2010; 28: 93-9.
    • (2010) Stem Cells , vol.28 , pp. 93-99
    • Ronaghi, M.1    Erceg, S.2    Moreno-Manzano, V.3
  • 3
    • 33748358811 scopus 로고    scopus 로고
    • Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?
    • Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006; 44: 523-9.
    • (2006) Spinal Cord , vol.44 , pp. 523-529
    • Wyndaele, M.1    Wyndaele, J.J.2
  • 5
    • 0036904245 scopus 로고    scopus 로고
    • Recent advances in pathophysiology and treatment of spinal cord injury
    • Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ. 2002; 26: 238-55.
    • (2002) Adv Physiol Educ , vol.26 , pp. 238-255
    • Hulsebosch, C.E.1
  • 6
    • 33646672406 scopus 로고    scopus 로고
    • Overcoming inhibition in the damaged spinal cord
    • Fawcett JW. Overcoming inhibition in the damaged spinal cord. J Neurotrauma. 2006; 23: 371-83.
    • (2006) J Neurotrauma , vol.23 , pp. 371-383
    • Fawcett, J.W.1
  • 7
    • 41149164275 scopus 로고    scopus 로고
    • Therapeutic time window for the application of chondroitinase ABC after spinal cord injury
    • Garcia-Alias G, Lin R, Akrimi SF, et al. Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol. 2008; 210: 331-8.
    • (2008) Exp Neurol , vol.210 , pp. 331-338
    • Garcia-Alias, G.1    Lin, R.2    Akrimi, S.F.3
  • 8
    • 72949093996 scopus 로고    scopus 로고
    • Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells
    • Muir EM, Fyfe I, Gardiner S, et al. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J Biotechnol. 2010; 145: 103-10.
    • (2010) J Biotechnol , vol.145 , pp. 103-110
    • Muir, E.M.1    Fyfe, I.2    Gardiner, S.3
  • 10
    • 33746282112 scopus 로고    scopus 로고
    • Spinal cord repair strategies: why do they work?
    • Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci. 2006; 7: 644-53.
    • (2006) Nat Rev Neurosci , vol.7 , pp. 644-653
    • Bradbury, E.J.1    McMahon, S.B.2
  • 11
    • 72049100119 scopus 로고    scopus 로고
    • Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury
    • Xu XM, Onifer SM. Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir Physiol Neurobiol. 2009; 169: 171-82.
    • (2009) Respir Physiol Neurobiol , vol.169 , pp. 171-182
    • Xu, X.M.1    Onifer, S.M.2
  • 12
    • 33846240478 scopus 로고    scopus 로고
    • Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury
    • Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006; 15: 675-87.
    • (2006) Cell Transplant , vol.15 , pp. 675-687
    • Sykova, E.1    Homola, A.2    Mazanec, R.3
  • 13
    • 79952155004 scopus 로고    scopus 로고
    • Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications
    • Wright KT, Masri WE, Osman A, et al. Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells. 2011; 29: 169-78.
    • (2011) Stem Cells , vol.29 , pp. 169-178
    • Wright, K.T.1    Masri, W.E.2    Osman, A.3
  • 14
    • 34250370522 scopus 로고    scopus 로고
    • Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells
    • Cizkova D, Kakinohana O, Kucharova K, et al. Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells. Neuroscience. 2007; 147: 546-60.
    • (2007) Neuroscience , vol.147 , pp. 546-560
    • Cizkova, D.1    Kakinohana, O.2    Kucharova, K.3
  • 15
    • 0037133174 scopus 로고    scopus 로고
    • Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery
    • Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002; 99: 2199-204.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 2199-2204
    • Hofstetter, C.P.1    Schwarz, E.J.2    Hess, D.3
  • 16
    • 68149168615 scopus 로고    scopus 로고
    • Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat
    • Cizkova D, Nagyova M, Slovinska L, et al. Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat. Cell Mol Neurobiol. 2009; 29: 999-1013.
    • (2009) Cell Mol Neurobiol , vol.29 , pp. 999-1013
    • Cizkova, D.1    Nagyova, M.2    Slovinska, L.3
  • 17
    • 77957331909 scopus 로고    scopus 로고
    • Origin of new glial cells in intact and injured adult spinal cord
    • Barnabe-Heider F, Goritz C, Sabelstrom H, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010; 7: 470-82.
    • (2010) Cell Stem Cell , vol.7 , pp. 470-482
    • Barnabe-Heider, F.1    Goritz, C.2    Sabelstrom, H.3
  • 18
    • 22044452715 scopus 로고    scopus 로고
    • Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord
    • Sykova E, Jendelova P. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci. 2005; 1049: 146-60.
    • (2005) Ann N Y Acad Sci , pp. 146-160
    • Sykova, E.1    Jendelova, P.2
  • 19
    • 75949125984 scopus 로고    scopus 로고
    • Nanotechnology for treatment of stroke and spinal cord injury
    • Kubinova S, Sykova E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine-UK. 2010; 5: 99-108.
    • (2010) Nanomedicine-UK , vol.5 , pp. 99-108
    • Kubinova, S.1    Sykova, E.2
  • 20
    • 72049112040 scopus 로고    scopus 로고
    • Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds
    • Madigan NN, McMahon S, O'Brien T, et al. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. Respir Physiol Neurobiol. 2009; 169: 183-99.
    • (2009) Respir Physiol Neurobiol , vol.169 , pp. 183-199
    • Madigan, N.N.1    McMahon, S.2    O'Brien, T.3
  • 21
    • 0036414676 scopus 로고    scopus 로고
    • Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration
    • Blits B, Boer GJ, Verhaagen J. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration. Cell Transplant. 2002; 11: 593-613.
    • (2002) Cell Transplant , vol.11 , pp. 593-613
    • Blits, B.1    Boer, G.J.2    Verhaagen, J.3
  • 22
    • 79960832807 scopus 로고    scopus 로고
    • A systematic review of cellular transplantation therapies for spinal cord injury
    • Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011; 28: 1611-82.
    • (2011) J Neurotrauma , vol.28 , pp. 1611-1682
    • Tetzlaff, W.1    Okon, E.B.2    Karimi-Abdolrezaee, S.3
  • 23
    • 33845549165 scopus 로고    scopus 로고
    • Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair
    • Sykova E, Jendelova P, Urdzikova L, et al. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006; 26: 1113-29.
    • (2006) Cell Mol Neurobiol , vol.26 , pp. 1113-1129
    • Sykova, E.1    Jendelova, P.2    Urdzikova, L.3
  • 24
    • 34547752447 scopus 로고    scopus 로고
    • Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury
    • Papastefanaki F, Chen J, Lavdas AA, et al. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain. 2007; 130: 2159-74.
    • (2007) Brain , vol.130 , pp. 2159-2174
    • Papastefanaki, F.1    Chen, J.2    Lavdas, A.A.3
  • 25
    • 34447263766 scopus 로고    scopus 로고
    • Repair of spinal cord injury by transplantation of olfactory ensheathing cells
    • Raisman G. Repair of spinal cord injury by transplantation of olfactory ensheathing cells. C R Biol. 2007; 330: 557-60.
    • (2007) C R Biol , vol.330 , pp. 557-560
    • Raisman, G.1
  • 26
    • 33747195353 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
    • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76.
    • (2006) Cell , vol.126 , pp. 663-676
    • Takahashi, K.1    Yamanaka, S.2
  • 27
    • 34249880066 scopus 로고    scopus 로고
    • Generation of germline-competent induced pluripotent stem cells
    • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448: 313-7.
    • (2007) Nature , vol.448 , pp. 313-317
    • Okita, K.1    Ichisaka, T.2    Yamanaka, S.3
  • 28
    • 79957807595 scopus 로고    scopus 로고
    • Immunogenicity of induced pluripotent stem cells
    • Zhao T, Zhang ZN, Rong Z, et al. Immunogenicity of induced pluripotent stem cells. Nature. 2011; 474: 212-5.
    • (2011) Nature , vol.474 , pp. 212-215
    • Zhao, T.1    Zhang, Z.N.2    Rong, Z.3
  • 29
    • 0033961920 scopus 로고    scopus 로고
    • Human embryonic stem cell and embryonic germ cell lines
    • Thomson JA, Odorico JS. Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol. 2000; 18: 53-7.
    • (2000) Trends Biotechnol , vol.18 , pp. 53-57
    • Thomson, J.A.1    Odorico, J.S.2
  • 30
    • 34247177103 scopus 로고    scopus 로고
    • Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement
    • Zeng X, Rao MS. Human embryonic stem cells: long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience. 2007; 145: 1348-58.
    • (2007) Neuroscience , vol.145 , pp. 1348-1358
    • Zeng, X.1    Rao, M.S.2
  • 31
    • 79951816916 scopus 로고    scopus 로고
    • Human embryonic stem cells suffer from centrosomal amplification
    • Holubcova Z, Matula P, Sedlackova M, et al. Human embryonic stem cells suffer from centrosomal amplification. Stem Cells. 2011; 29: 46-56.
    • (2011) Stem Cells , vol.29 , pp. 46-56
    • Holubcova, Z.1    Matula, P.2    Sedlackova, M.3
  • 32
    • 0034705056 scopus 로고    scopus 로고
    • Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation
    • Liu S, Qu Y, Stewart TJ, et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA. 2000; 97: 6126-31.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 6126-6131
    • Liu, S.1    Qu, Y.2    Stewart, T.J.3
  • 33
    • 5044239207 scopus 로고    scopus 로고
    • Region-specific cell grafting into cervical and lumbar spinal cord in rat: a qualitative and quantitative stereological study
    • Kakinohana O, Cizkova D, Tomori Z, et al. Region-specific cell grafting into cervical and lumbar spinal cord in rat: a qualitative and quantitative stereological study. Exp Neurol. 2004; 190: 122-32.
    • (2004) Exp Neurol , vol.190 , pp. 122-132
    • Kakinohana, O.1    Cizkova, D.2    Tomori, Z.3
  • 34
    • 1842531073 scopus 로고    scopus 로고
    • Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system?
    • Lang KJ, Rathjen J, Vassilieva S, et al. Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system? J Neurosci Res. 2004; 76: 184-92.
    • (2004) J Neurosci Res , vol.76 , pp. 184-192
    • Lang, K.J.1    Rathjen, J.2    Vassilieva, S.3
  • 35
    • 0035690493 scopus 로고    scopus 로고
    • Enrichment of neurons and neural precursors from human embryonic stem cells
    • Carpenter MK, Inokuma MS, Denham J, et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol. 2001; 172: 383-97.
    • (2001) Exp Neurol , vol.172 , pp. 383-397
    • Carpenter, M.K.1    Inokuma, M.S.2    Denham, J.3
  • 36
    • 13844271605 scopus 로고    scopus 로고
    • Specification of motoneurons from human embryonic stem cells
    • Li XJ, Du ZW, Zarnowska ED, et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol. 2005; 23: 215-21.
    • (2005) Nat Biotechnol , vol.23 , pp. 215-221
    • Li, X.J.1    Du, Z.W.2    Zarnowska, E.D.3
  • 37
    • 18644384444 scopus 로고    scopus 로고
    • Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury
    • Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005; 25: 4694-705.
    • (2005) J Neurosci , vol.25 , pp. 4694-4705
    • Keirstead, H.S.1    Nistor, G.2    Bernal, G.3
  • 38
    • 74049146111 scopus 로고    scopus 로고
    • The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors
    • Seminatore C, Polentes J, Ellman D, et al. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke. 2010; 41: 153-9.
    • (2010) Stroke , vol.41 , pp. 153-159
    • Seminatore, C.1    Polentes, J.2    Ellman, D.3
  • 39
    • 30444459785 scopus 로고    scopus 로고
    • Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury
    • Faulkner J, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol. 2005; 15: 131-42.
    • (2005) Transpl Immunol , vol.15 , pp. 131-142
    • Faulkner, J.1    Keirstead, H.S.2
  • 40
    • 13544264789 scopus 로고    scopus 로고
    • Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation
    • Nistor GI, Totoiu MO, Haque N, et al. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia. 2005; 49: 385-96.
    • (2005) Glia , vol.49 , pp. 385-396
    • Nistor, G.I.1    Totoiu, M.O.2    Haque, N.3
  • 41
    • 34249694635 scopus 로고    scopus 로고
    • Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm
    • Cloutier F, Siegenthaler MM, Nistor G, et al. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med. 2006; 1: 469-79.
    • (2006) Regen Med , vol.1 , pp. 469-479
    • Cloutier, F.1    Siegenthaler, M.M.2    Nistor, G.3
  • 42
    • 0001159822 scopus 로고
    • Are new neurons formed in the brains of adult mammals?
    • Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962; 135: 1127-8.
    • (1962) Science , vol.135 , pp. 1127-1128
    • Altman, J.1
  • 43
    • 0034712047 scopus 로고    scopus 로고
    • Mammalian neural stem cells
    • Gage FH. Mammalian neural stem cells. Science. 2000; 287: 1433-8.
    • (2000) Science , vol.287 , pp. 1433-1438
    • Gage, F.H.1
  • 44
    • 24944508086 scopus 로고    scopus 로고
    • Stem and progenitor cell-based therapy of the human central nervous system
    • Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol. 2005; 23: 862-71.
    • (2005) Nat Biotechnol , vol.23 , pp. 862-871
    • Goldman, S.1
  • 45
    • 33747157935 scopus 로고    scopus 로고
    • Fate of endogenous stem/progenitor cells following spinal cord injury
    • Horky LL, Galimi F, Gage FH, et al. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006; 498: 525-38.
    • (2006) J Comp Neurol , vol.498 , pp. 525-538
    • Horky, L.L.1    Galimi, F.2    Gage, F.H.3
  • 46
    • 3543148393 scopus 로고    scopus 로고
    • Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor
    • Setoguchi T, Nakashima K, Takizawa T, et al. Treatment of spinal cord injury by transplantation of fetal neural precursor cells engineered to express BMP inhibitor. Exp Neurol. 2004; 189: 33-44.
    • (2004) Exp Neurol , vol.189 , pp. 33-44
    • Setoguchi, T.1    Nakashima, K.2    Takizawa, T.3
  • 47
    • 70349408988 scopus 로고    scopus 로고
    • Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting
    • Cizkova D, Cizek M, Nagyova M, et al. Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting. J Neurosci Meth. 2009; 184: 88-94.
    • (2009) J Neurosci Meth , vol.184 , pp. 88-94
    • Cizkova, D.1    Cizek, M.2    Nagyova, M.3
  • 48
    • 0038054469 scopus 로고    scopus 로고
    • Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury
    • Lu P, Jones LL, Snyder EY, et al. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003; 181: 115-29.
    • (2003) Exp Neurol , vol.181 , pp. 115-129
    • Lu, P.1    Jones, L.L.2    Snyder, E.Y.3
  • 49
    • 33845443819 scopus 로고    scopus 로고
    • Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury
    • Ishii K, Nakamura M, Dai H, et al. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury. J Neurosci Res. 2006; 84: 1669-81.
    • (2006) J Neurosci Res , vol.84 , pp. 1669-1681
    • Ishii, K.1    Nakamura, M.2    Dai, H.3
  • 50
    • 33846157139 scopus 로고    scopus 로고
    • Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior
    • Tarasenko YI, Gao J, Nie L, et al. Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res. 2007; 85: 47-57.
    • (2007) J Neurosci Res , vol.85 , pp. 47-57
    • Tarasenko, Y.I.1    Gao, J.2    Nie, L.3
  • 51
    • 25444455637 scopus 로고    scopus 로고
    • Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice
    • Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA. 2005; 102: 14069-74.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 14069-14074
    • Cummings, B.J.1    Uchida, N.2    Tamaki, S.J.3
  • 52
    • 8144224012 scopus 로고    scopus 로고
    • Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia
    • Marsala M, Kakinohana O, Yaksh TL, et al. Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia. Eur J Neurosci. 2004; 20: 2401-14.
    • (2004) Eur J Neurosci , vol.20 , pp. 2401-2414
    • Marsala, M.1    Kakinohana, O.2    Yaksh, T.L.3
  • 53
    • 66749095400 scopus 로고    scopus 로고
    • Nerve injection of viral vectors efficiently transfers transgenes into motor neurons and delivers RNAi therapy against ALS
    • Wu R, Wang H, Xia X, et al. Nerve injection of viral vectors efficiently transfers transgenes into motor neurons and delivers RNAi therapy against ALS. Antioxid Redox Signal. 2009; 11: 1523-34.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 1523-1534
    • Wu, R.1    Wang, H.2    Xia, X.3
  • 54
    • 84878817996 scopus 로고    scopus 로고
    • Using human fetal neural stem cells or human induced pluripotent stem cell-derived neural precursors for the treatment of experimental spinal cord injury. 8th IBRO World Congress of Neuroscience. Florence, Italy
    • Romanyuk N, Amemori T, Turnovcova K, et al. Using human fetal neural stem cells or human induced pluripotent stem cell-derived neural precursors for the treatment of experimental spinal cord injury. 8th IBRO World Congress of Neuroscience. Florence, Italy, 2011.
    • (2011)
    • Romanyuk, N.1    Amemori, T.2    Turnovcova, K.3
  • 55
    • 67650046974 scopus 로고    scopus 로고
    • Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery
    • Hooshmand MJ, Sontag CJ, Uchida N, et al. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS ONE. 2009; 4: e5871.
    • (2009) PLoS ONE , vol.4
    • Hooshmand, M.J.1    Sontag, C.J.2    Uchida, N.3
  • 56
    • 20044370811 scopus 로고    scopus 로고
    • Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome
    • Hofstetter CP, Holmstrom NA, Lilja JA, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nature Neurosci. 2005; 8: 346-53.
    • (2005) Nature Neurosci , vol.8 , pp. 346-353
    • Hofstetter, C.P.1    Holmstrom, N.A.2    Lilja, J.A.3
  • 57
    • 36248957085 scopus 로고    scopus 로고
    • Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain
    • Mukhida K, Mendez I, McLeod M, et al. Spinal GABAergic transplants attenuate mechanical allodynia in a rat model of neuropathic pain. Stem Cells. 2007; 25: 2874-85.
    • (2007) Stem Cells , vol.25 , pp. 2874-2885
    • Mukhida, K.1    Mendez, I.2    McLeod, M.3
  • 58
    • 0036703612 scopus 로고    scopus 로고
    • Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord
    • Takami T, Oudega M, Bates ML, et al. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci. 2002; 22: 6670-81.
    • (2002) J Neurosci , vol.22 , pp. 6670-6681
    • Takami, T.1    Oudega, M.2    Bates, M.L.3
  • 59
    • 0035370177 scopus 로고    scopus 로고
    • Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord
    • Pinzon A, Calancie B, Oudega M, et al. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res. 2001; 64: 533-41.
    • (2001) J Neurosci Res , vol.64 , pp. 533-541
    • Pinzon, A.1    Calancie, B.2    Oudega, M.3
  • 60
    • 14844313297 scopus 로고    scopus 로고
    • Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury
    • Guest JD, Hiester ED, Bunge RP. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp Neurol. 2005; 192: 384-93.
    • (2005) Exp Neurol , vol.192 , pp. 384-393
    • Guest, J.D.1    Hiester, E.D.2    Bunge, R.P.3
  • 61
    • 34250192272 scopus 로고    scopus 로고
    • Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery
    • Pearse DD, Sanchez AR, Pereira FC, et al. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery. Glia. 2007; 55: 976-1000.
    • (2007) Glia , vol.55 , pp. 976-1000
    • Pearse, D.D.1    Sanchez, A.R.2    Pereira, F.C.3
  • 62
    • 50849089965 scopus 로고    scopus 로고
    • Novel combination strategies to repair the injured mammalian spinal cord
    • Bunge MB. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med. 2008; 31: 262-9.
    • (2008) J Spinal Cord Med , vol.31 , pp. 262-269
    • Bunge, M.B.1
  • 63
    • 38649126573 scopus 로고    scopus 로고
    • Growth factors and combinatorial therapies for CNS regeneration
    • Lu P, Tuszynski MH. Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol. 2008; 209: 313-20.
    • (2008) Exp Neurol , vol.209 , pp. 313-320
    • Lu, P.1    Tuszynski, M.H.2
  • 64
    • 77949806552 scopus 로고    scopus 로고
    • Astrocyte-produced ephrins inhibit schwann cell migration via VAV2 signaling
    • Afshari FT, Kwok JC, Fawcett JW. Astrocyte-produced ephrins inhibit schwann cell migration via VAV2 signaling. J Neurosci. 2010; 30: 4246-55.
    • (2010) J Neurosci , vol.30 , pp. 4246-4255
    • Afshari, F.T.1    Kwok, J.C.2    Fawcett, J.W.3
  • 65
    • 17044440480 scopus 로고    scopus 로고
    • Olfactory ensheathing cells and spinal cord repair
    • Mackay-Sim A. Olfactory ensheathing cells and spinal cord repair. Keio J Med. 2005; 54: 8-14.
    • (2005) Keio J Med , vol.54 , pp. 8-14
    • Mackay-Sim, A.1
  • 66
    • 28544446960 scopus 로고    scopus 로고
    • Autologous olfactory ensheathing cell transplantation in human spinal cord injury
    • Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain. 2005; 128: 2951-60.
    • (2005) Brain , vol.128 , pp. 2951-2960
    • Feron, F.1    Perry, C.2    Cochrane, J.3
  • 67
    • 33747619823 scopus 로고    scopus 로고
    • Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study
    • Lima C, Pratas-Vital J, Escada P, et al. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006; 29: 191-203.
    • (2006) J Spinal Cord Med , vol.29 , pp. 191-203
    • Lima, C.1    Pratas-Vital, J.2    Escada, P.3
  • 68
    • 50849127500 scopus 로고    scopus 로고
    • Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial
    • Mackay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain. 2008; 131: 2376-86.
    • (2008) Brain , vol.131 , pp. 2376-2386
    • Mackay-Sim, A.1    Feron, F.2    Cochrane, J.3
  • 69
    • 13944266687 scopus 로고    scopus 로고
    • Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord
    • Fouad K, Schnell L, Bunge MB, et al. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci. 2005; 25: 1169-78.
    • (2005) J Neurosci , vol.25 , pp. 1169-1178
    • Fouad, K.1    Schnell, L.2    Bunge, M.B.3
  • 70
    • 77749298373 scopus 로고    scopus 로고
    • Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat
    • Amemori T, Jendelova P, Ruzickova K, et al. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy. 2010; 12: 212-25.
    • (2010) Cytotherapy , vol.12 , pp. 212-225
    • Amemori, T.1    Jendelova, P.2    Ruzickova, K.3
  • 71
    • 77950551326 scopus 로고    scopus 로고
    • Mesenchymal stromal cells: current understanding and clinical status
    • Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010; 28: 585-96.
    • (2010) Stem Cells , vol.28 , pp. 585-596
    • Salem, H.K.1    Thiemermann, C.2
  • 72
    • 33845534557 scopus 로고    scopus 로고
    • Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat
    • Cizkova D, Rosocha J, Vanicky I, et al. Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol. 2006; 26: 1167-80.
    • (2006) Cell Mol Neurobiol , vol.26 , pp. 1167-1180
    • Cizkova, D.1    Rosocha, J.2    Vanicky, I.3
  • 73
    • 34250747913 scopus 로고    scopus 로고
    • Migration, fate and in vivo imaging of adult stem cells in the CNS
    • Sykova E, Jendelova P. Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ. 2007; 14: 1336-42.
    • (2007) Cell Death Differ , vol.14 , pp. 1336-1342
    • Sykova, E.1    Jendelova, P.2
  • 74
    • 33846187092 scopus 로고    scopus 로고
    • Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats
    • Urdzikova L, Jendelova P, Glogarova K, et al. Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma. 2006; 23: 1379-91.
    • (2006) J Neurotrauma , vol.23 , pp. 1379-1391
    • Urdzikova, L.1    Jendelova, P.2    Glogarova, K.3
  • 76
    • 61449114827 scopus 로고    scopus 로고
    • Differentiation of human adipose-derived adult stem cells into neuronal tissue: Does it work?
    • Lambert APF, Zandonai AF, Bonatto D, et al. Differentiation of human adipose-derived adult stem cells into neuronal tissue: Does it work? Differentiation. 2009; 77: 221-8.
    • (2009) Differentiation , vol.77 , pp. 221-228
    • Lambert, A.P.F.1    Zandonai, A.F.2    Bonatto, D.3
  • 77
    • 79952585505 scopus 로고    scopus 로고
    • Neuroprotective features of mesenchymal stem cells
    • Uccelli A, Benvenuto F, Laroni A, et al. Neuroprotective features of mesenchymal stem cells. Best Pract Res Cl Ha. 2011; 24: 59-64.
    • (2011) Best Pract Res Cl Ha , vol.24 , pp. 59-64
    • Uccelli, A.1    Benvenuto, F.2    Laroni, A.3
  • 78
    • 62549145360 scopus 로고    scopus 로고
    • Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies
    • Geffner LF, Santacruz P, Izurieta M, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008; 17: 1277-93.
    • (2008) Cell Transplant , vol.17 , pp. 1277-1293
    • Geffner, L.F.1    Santacruz, P.2    Izurieta, M.3
  • 79
    • 21844442589 scopus 로고    scopus 로고
    • Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor
    • Park HC, Shim YS, Ha Y, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005; 11: 913-22.
    • (2005) Tissue Eng , vol.11 , pp. 913-922
    • Park, H.C.1    Shim, Y.S.2    Ha, Y.3
  • 80
    • 34547915244 scopus 로고    scopus 로고
    • Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial
    • Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells. 2007; 25: 2066-73.
    • (2007) Stem Cells , vol.25 , pp. 2066-2073
    • Yoon, S.H.1    Shim, Y.S.2    Park, Y.H.3
  • 81
    • 31844433193 scopus 로고    scopus 로고
    • Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study
    • Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol. 2006; 34: 130-1.
    • (2006) Exp Hematol , vol.34 , pp. 130-131
    • Callera, F.1    do Nascimento, R.X.2
  • 82
    • 53749099516 scopus 로고    scopus 로고
    • Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up
    • Deda H, Inci MC, Kurekci AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy. 2008; 10: 565-74.
    • (2008) Cytotherapy , vol.10 , pp. 565-574
    • Deda, H.1    Inci, M.C.2    Kurekci, A.E.3
  • 83
    • 38149140867 scopus 로고    scopus 로고
    • Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report
    • Saito F, Nakatani T, Iwase M, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma. 2008; 64: 53-9.
    • (2008) J Trauma , vol.64 , pp. 53-59
    • Saito, F.1    Nakatani, T.2    Iwase, M.3
  • 84
    • 70450158749 scopus 로고    scopus 로고
    • Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study
    • Pal R, Venkataramana NK, Bansal A, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy. 2009; 11: 897-911.
    • (2009) Cytotherapy , vol.11 , pp. 897-911
    • Pal, R.1    Venkataramana, N.K.2    Bansal, A.3
  • 85
    • 77950466299 scopus 로고    scopus 로고
    • Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons
    • Mason MR, Ehlert EM, Eggers R, et al. Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther. 2010; 18: 715-24.
    • (2010) Mol Ther , vol.18 , pp. 715-724
    • Mason, M.R.1    Ehlert, E.M.2    Eggers, R.3
  • 86
    • 77956825686 scopus 로고    scopus 로고
    • Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats
    • Petruska JC, Kitay B, Boyce VS, et al. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats. Eur J Neurosci. 2010; 32: 997-1005.
    • (2010) Eur J Neurosci , vol.32 , pp. 997-1005
    • Petruska, J.C.1    Kitay, B.2    Boyce, V.S.3
  • 87
    • 34547735385 scopus 로고    scopus 로고
    • Nerve growth factor gene delivery: animal models to clinical trials
    • Tuszynski MH. Nerve growth factor gene delivery: animal models to clinical trials. Dev Neurobiol. 2007; 67: 1204-15.
    • (2007) Dev Neurobiol , vol.67 , pp. 1204-1215
    • Tuszynski, M.H.1
  • 88
    • 72249104303 scopus 로고    scopus 로고
    • Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors
    • Blits B, Derks S, Twisk J, et al. Adeno-associated viral vector (AAV)-mediated gene transfer in the red nucleus of the adult rat brain: comparative analysis of the transduction properties of seven AAV serotypes and lentiviral vectors. J Neurosci Meth. 2010; 185: 257-63.
    • (2010) J Neurosci Meth , vol.185 , pp. 257-263
    • Blits, B.1    Derks, S.2    Twisk, J.3
  • 89
    • 80053492356 scopus 로고    scopus 로고
    • Advancements in adeno-associated viral gene therapy approaches: exploring a new horizon
    • Aalbers CJ, Tak PP, Vervoordeldonk MJ. Advancements in adeno-associated viral gene therapy approaches: exploring a new horizon. F1000 Med Reports. 2011; 3: 17.
    • (2011) F1000 Med Reports , vol.3 , pp. 17
    • Aalbers, C.J.1    Tak, P.P.2    Vervoordeldonk, M.J.3
  • 90
    • 76349097362 scopus 로고    scopus 로고
    • Biomaterial design strategies for the treatment of spinal cord injuries
    • Straley KS, Foo CWP, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma. 2010; 27: 1-19.
    • (2010) J Neurotrauma , vol.27 , pp. 1-19
    • Straley, K.S.1    Foo, C.W.P.2    Heilshorn, S.C.3
  • 91
    • 45849144712 scopus 로고    scopus 로고
    • Biocompatible hydrogels in spinal cord injury repair
    • Hejcl A, Lesny P, Pradny M, et al. Biocompatible hydrogels in spinal cord injury repair. Physiol Res. 2008; 57: S121-32.
    • (2008) Physiol Res , vol.57
    • Hejcl, A.1    Lesny, P.2    Pradny, M.3
  • 92
    • 0036765526 scopus 로고    scopus 로고
    • Biodegradable polymer grafts for surgical repair of the injured spinal cord
    • Friedman JA, Windebank AJ, Moore MJ, et al. Biodegradable polymer grafts for surgical repair of the injured spinal cord. Neurosurgery. 2002; 51: 742-52.
    • (2002) Neurosurgery , vol.51 , pp. 742-752
    • Friedman, J.A.1    Windebank, A.J.2    Moore, M.J.3
  • 93
    • 60549089022 scopus 로고    scopus 로고
    • Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury
    • De Laporte L, Lei Yan A, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials. 2009; 30: 2361-8.
    • (2009) Biomaterials , vol.30 , pp. 2361-2368
    • De Laporte, L.1    Lei Yan, A.2    Shea, L.D.3
  • 94
    • 50149084351 scopus 로고    scopus 로고
    • Macro-architectures in spinal cord scaffold implants influence regeneration
    • Wong DY, Leveque JC, Brumblay H, et al. Macro-architectures in spinal cord scaffold implants influence regeneration. J Neurotrauma. 2008; 25: 1027-37.
    • (2008) J Neurotrauma , vol.25 , pp. 1027-1037
    • Wong, D.Y.1    Leveque, J.C.2    Brumblay, H.3
  • 95
    • 0035053940 scopus 로고    scopus 로고
    • Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: Synthesis and properties
    • Pêgo AP, Poot AA, Grijpma DW, et al. Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: Synthesis and properties. J Biomat Sci-Polym E. 2001; 12: 35-53.
    • (2001) J Biomat Sci-Polym E , vol.12 , pp. 35-53
    • Pêgo, A.P.1    Poot, A.A.2    Grijpma, D.W.3
  • 96
    • 3042736707 scopus 로고    scopus 로고
    • Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection
    • Tsai EC, Dalton PD, Shoichet MS, et al. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma. 2004; 21: 789-804.
    • (2004) J Neurotrauma , vol.21 , pp. 789-804
    • Tsai, E.C.1    Dalton, P.D.2    Shoichet, M.S.3
  • 97
    • 52649095471 scopus 로고    scopus 로고
    • Development of a sialic acid-containing hydrogel of poly[N-(2-hydroxypropyl) methacrylamide]: characterization and implantation study
    • Woerly S, Fort S, Pignot-Paintrand I, et al. Development of a sialic acid-containing hydrogel of poly[N-(2-hydroxypropyl) methacrylamide]: characterization and implantation study. Biomacromolecules. 2008; 9: 2329-37.
    • (2008) Biomacromolecules , vol.9 , pp. 2329-2337
    • Woerly, S.1    Fort, S.2    Pignot-Paintrand, I.3
  • 98
    • 77957949199 scopus 로고    scopus 로고
    • Bioelectrochemical control of neural cell development on conducting polymers
    • Collazos-Castro JE, Polo JL, Hernandez-Labrado GR, et al. Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials. 2010; 31: 9244-55.
    • (2010) Biomaterials , vol.31 , pp. 9244-9255
    • Collazos-Castro, J.E.1    Polo, J.L.2    Hernandez-Labrado, G.R.3
  • 99
    • 30544433665 scopus 로고    scopus 로고
    • Materials for peripheral nerve regeneration
    • Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2006; 6: 13-26.
    • (2006) Macromol Biosci , vol.6 , pp. 13-26
    • Ciardelli, G.1    Chiono, V.2
  • 100
    • 64349084930 scopus 로고    scopus 로고
    • Functional restoration of rabbit spinal cord using collagen-filament scaffold
    • Yoshii S, Ito S, Shima M, et al. Functional restoration of rabbit spinal cord using collagen-filament scaffold. J Tissue Eng Regen M. 2009; 3: 19-25.
    • (2009) J Tissue Eng Regen M , vol.3 , pp. 19-25
    • Yoshii, S.1    Ito, S.2    Shima, M.3
  • 101
    • 3242728530 scopus 로고    scopus 로고
    • Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury
    • Taylor SJ, McDonald III JW, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release. 2004; 98: 281-94.
    • (2004) J Control Release , vol.98 , pp. 281-294
    • Taylor, S.J.1    McDonald III, J.W.2    Sakiyama-Elbert, S.E.3
  • 102
    • 84891735368 scopus 로고    scopus 로고
    • Scaffold-driven regenerative therapy for the spinal cord injury - biomimeting neurogenesis in the CNS
    • Pêgo AP, Mar FM, Rocha DN, et al. Scaffold-driven regenerative therapy for the spinal cord injury - biomimeting neurogenesis in the CNS. Histol Histopathol. 2011; 26: 289.
    • (2011) Histol Histopathol , vol.26 , pp. 289
    • Pêgo, A.P.1    Mar, F.M.2    Rocha, D.N.3
  • 103
    • 78449283683 scopus 로고    scopus 로고
    • Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury
    • Wei YT, He Y, Xu CL, et al. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. J Biomed Mater Res B. 2010; 95: 110-7.
    • (2010) J Biomed Mater Res B , vol.95 , pp. 110-117
    • Wei, Y.T.1    He, Y.2    Xu, C.L.3
  • 104
    • 77950641715 scopus 로고    scopus 로고
    • Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor
    • Park J, Lim E, Back S, et al. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J Biomed Mater Res A. 2010; 93: 1091-9.
    • (2010) J Biomed Mater Res A , vol.93 , pp. 1091-1099
    • Park, J.1    Lim, E.2    Back, S.3
  • 105
    • 77954385643 scopus 로고    scopus 로고
    • Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds
    • Gros T, Sakamoto JS, Blesch A, et al. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials. 2010; 31: 6719-29.
    • (2010) Biomaterials , vol.31 , pp. 6719-6729
    • Gros, T.1    Sakamoto, J.S.2    Blesch, A.3
  • 106
    • 33645899944 scopus 로고    scopus 로고
    • The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels
    • Prang P, Muller R, Eljaouhari A, et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials. 2006; 27: 3560-9.
    • (2006) Biomaterials , vol.27 , pp. 3560-3569
    • Prang, P.1    Muller, R.2    Eljaouhari, A.3
  • 107
    • 78650436738 scopus 로고    scopus 로고
    • Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat
    • Bozkurt G, Mothe AJ, Zahir T, et al. Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat. Neurosurgery. 2010; 67: 1733-44.
    • (2010) Neurosurgery , vol.67 , pp. 1733-1744
    • Bozkurt, G.1    Mothe, A.J.2    Zahir, T.3
  • 108
    • 77951476003 scopus 로고    scopus 로고
    • Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds
    • Shen Y, Qian Y, Zhang H, et al. Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplant. 2010; 19: 147-57.
    • (2010) Cell Transplant , vol.19 , pp. 147-157
    • Shen, Y.1    Qian, Y.2    Zhang, H.3
  • 109
    • 38349075209 scopus 로고    scopus 로고
    • Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair
    • Novikova LN, Pettersson J, Brohlin M, et al. Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair. Biomaterials. 2008; 29: 1198-206.
    • (2008) Biomaterials , vol.29 , pp. 1198-1206
    • Novikova, L.N.1    Pettersson, J.2    Brohlin, M.3
  • 110
    • 67651102573 scopus 로고    scopus 로고
    • Natural-synthetic polyblend nanofibers for biomedical applications
    • Bhattarai N, Li Z, Gunn J, et al. Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater. 2009; 21: 2792-7.
    • (2009) Adv Mater , vol.21 , pp. 2792-2797
    • Bhattarai, N.1    Li, Z.2    Gunn, J.3
  • 111
    • 67649130162 scopus 로고    scopus 로고
    • Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair
    • Hejcl A, Lesny P, Pradny M, et al. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. J Mater Sci Mater Med. 2009; 20: 1571-7.
    • (2009) J Mater Sci Mater Med , vol.20 , pp. 1571-1577
    • Hejcl, A.1    Lesny, P.2    Pradny, M.3
  • 112
    • 67651146360 scopus 로고    scopus 로고
    • Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering
    • Kubinova S, Horak D, Sykova E. Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials. 2009; 30: 4601-9.
    • (2009) Biomaterials , vol.30 , pp. 4601-4609
    • Kubinova, S.1    Horak, D.2    Sykova, E.3
  • 113
    • 80255132113 scopus 로고    scopus 로고
    • Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair
    • Kubinova S, Horak D, Hejcl A, et al. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. J Biomed Mater Res A. 2011; 99: 618-29.
    • (2011) J Biomed Mater Res A , vol.99 , pp. 618-629
    • Kubinova, S.1    Horak, D.2    Hejcl, A.3
  • 114
    • 10344227705 scopus 로고    scopus 로고
    • Adhesive and mechanical properties of hydrogels influence neurite extension
    • Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res A. 2005; 72: 91-7.
    • (2005) J Biomed Mater Res A , vol.72 , pp. 91-97
    • Gunn, J.W.1    Turner, S.D.2    Mann, B.K.3
  • 115
    • 77953809305 scopus 로고    scopus 로고
    • The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors
    • Kubinova S, Horak D, Kozubenko N, et al. The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials. 2010; 31: 5966-75.
    • (2010) Biomaterials , vol.31 , pp. 5966-5975
    • Kubinova, S.1    Horak, D.2    Kozubenko, N.3
  • 116
    • 77950342360 scopus 로고    scopus 로고
    • Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials
    • Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010; 94: 1-18.
    • (2010) Biopolymers , vol.94 , pp. 1-18
    • Cui, H.1    Webber, M.J.2    Stupp, S.I.3
  • 117
    • 43649108455 scopus 로고    scopus 로고
    • Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury
    • Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci. 2008; 28: 3814-23.
    • (2008) J Neurosci , vol.28 , pp. 3814-3823
    • Tysseling-Mattiace, V.M.1    Sahni, V.2    Niece, K.L.3
  • 118
    • 0028999337 scopus 로고
    • Hydrogel-based three-dimensional matrix for neural cells
    • Bellamkonda R, Ranieri JP, Bouche N, et al. Hydrogel-based three-dimensional matrix for neural cells. J Biomed Mater Res. 1995; 29: 663-71.
    • (1995) J Biomed Mater Res , vol.29 , pp. 663-671
    • Bellamkonda, R.1    Ranieri, J.P.2    Bouche, N.3
  • 119
    • 79958252032 scopus 로고    scopus 로고
    • Bioengineered scaffolds for spinal cord repair
    • Wang M, Zhai P, Chen X, et al. Bioengineered scaffolds for spinal cord repair. Tissue Eng Pt B-Rev. 2011; 17: 177-94.
    • (2011) Tissue Eng Pt B-Rev , vol.17 , pp. 177-194
    • Wang, M.1    Zhai, P.2    Chen, X.3
  • 120
    • 33846459468 scopus 로고    scopus 로고
    • Templated agarose scaffolds support linear axonal regeneration
    • Stokols S, Sakamoto J, Breckon C, et al. Templated agarose scaffolds support linear axonal regeneration. Tissue Eng. 2006; 12: 2777-87.
    • (2006) Tissue Eng , vol.12 , pp. 2777-2787
    • Stokols, S.1    Sakamoto, J.2    Breckon, C.3
  • 121
    • 26844557081 scopus 로고    scopus 로고
    • Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury
    • Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials. 2006; 27: 443-51.
    • (2006) Biomaterials , vol.27 , pp. 443-451
    • Stokols, S.1    Tuszynski, M.H.2
  • 122
    • 26844534722 scopus 로고    scopus 로고
    • Multiple-channel scaffolds to promote spinal cord axon regeneration
    • Moore MJ, Friedman JA, Lewellyn EB, et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 2006; 27: 419-29.
    • (2006) Biomaterials , vol.27 , pp. 419-429
    • Moore, M.J.1    Friedman, J.A.2    Lewellyn, E.B.3
  • 123
    • 62349136726 scopus 로고    scopus 로고
    • Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications
    • Wang HB, Mullins ME, Cregg JM, et al. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng. 2009; 6: 016001.
    • (2009) J Neural Eng , vol.6 , pp. 016001
    • Wang, H.B.1    Mullins, M.E.2    Cregg, J.M.3
  • 124
    • 77956630963 scopus 로고    scopus 로고
    • Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration
    • Wang HB, Mullins ME, Cregg JM, et al. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 2010; 6: 2970-8.
    • (2010) Acta Biomater , vol.6 , pp. 2970-2978
    • Wang, H.B.1    Mullins, M.E.2    Cregg, J.M.3
  • 125
    • 66949178254 scopus 로고    scopus 로고
    • Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties
    • Xie J, MacEwan MR, Li X, et al. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano. 2009; 3: 1151-9.
    • (2009) ACS Nano , vol.3 , pp. 1151-1159
    • Xie, J.1    MacEwan, M.R.2    Li, X.3
  • 126
    • 79959907534 scopus 로고    scopus 로고
    • Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers
    • Hurtado A, Cregg JM, Wang HB, et al. Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers. Biomaterials. 2011; 32: 6068-79.
    • (2011) Biomaterials , vol.32 , pp. 6068-6079
    • Hurtado, A.1    Cregg, J.M.2    Wang, H.B.3
  • 127
    • 36749028224 scopus 로고    scopus 로고
    • Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold
    • Guo J, Su H, Zeng Y, et al. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine. 2007; 3: 311-21.
    • (2007) Nanomedicine , vol.3 , pp. 311-321
    • Guo, J.1    Su, H.2    Zeng, Y.3
  • 128
    • 77957702745 scopus 로고    scopus 로고
    • Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI
    • Johnson PJ, Tatara A, McCreedy DA, et al. Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter. 2010; 6: 5127-37.
    • (2010) Soft Matter , vol.6 , pp. 5127-5137
    • Johnson, P.J.1    Tatara, A.2    McCreedy, D.A.3
  • 129
    • 67650682083 scopus 로고    scopus 로고
    • Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord
    • Olson HE, Rooney GE, Gross L, et al. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng Pt A. 2009; 15: 1797-805.
    • (2009) Tissue Eng Pt A , vol.15 , pp. 1797-1805
    • Olson, H.E.1    Rooney, G.E.2    Gross, L.3
  • 130
    • 26844448005 scopus 로고    scopus 로고
    • Poly (D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord
    • Hurtado A, Moon LD, Maquet V, et al. Poly (D, L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord. Biomaterials. 2006; 27: 430-42.
    • (2006) Biomaterials , vol.27 , pp. 430-442
    • Hurtado, A.1    Moon, L.D.2    Maquet, V.3
  • 131
    • 0035098617 scopus 로고    scopus 로고
    • Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel)
    • Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001; 22: 1095-111.
    • (2001) Biomaterials , vol.22 , pp. 1095-1111
    • Woerly, S.1    Pinet, E.2    de Robertis, L.3
  • 132
    • 0034948287 scopus 로고    scopus 로고
    • The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts
    • Loh NK, Woerly S, Bunt SM, et al. The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts. Exp Neurol. 2001; 170: 72-84.
    • (2001) Exp Neurol , vol.170 , pp. 72-84
    • Loh, N.K.1    Woerly, S.2    Bunt, S.M.3
  • 133
    • 77949655518 scopus 로고    scopus 로고
    • HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury
    • Hejcl A, Sedy J, Kapcalova M, et al. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev. 2010; 19: 1535-46.
    • (2010) Stem Cells Dev , vol.19 , pp. 1535-1546
    • Hejcl, A.1    Sedy, J.2    Kapcalova, M.3
  • 134
    • 34249951852 scopus 로고    scopus 로고
    • Approaches to neural tissue engineering using scaffolds for drug delivery
    • Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev. 2007; 59: 325-38.
    • (2007) Adv Drug Deliv Rev , vol.59 , pp. 325-338
    • Willerth, S.M.1    Sakiyama-Elbert, S.E.2
  • 135
    • 19344368945 scopus 로고    scopus 로고
    • Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord
    • Jimenez Hamann MC, Tator CH, Shoichet MS. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol. 2005; 194: 106-19.
    • (2005) Exp Neurol , vol.194 , pp. 106-119
    • Jimenez Hamann, M.C.1    Tator, C.H.2    Shoichet, M.S.3
  • 136
    • 26844574071 scopus 로고    scopus 로고
    • In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury
    • Jain A, Kim YT, McKeon RJ, et al. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials. 2006; 27: 497-504.
    • (2006) Biomaterials , vol.27 , pp. 497-504
    • Jain, A.1    Kim, Y.T.2    McKeon, R.J.3
  • 137
    • 33748430801 scopus 로고    scopus 로고
    • An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury
    • Piantino J, Burdick JA, Goldberg D, et al. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp Neurol. 2006; 201: 359-67.
    • (2006) Exp Neurol , vol.201 , pp. 359-367
    • Piantino, J.1    Burdick, J.A.2    Goldberg, D.3
  • 138
    • 0346219196 scopus 로고    scopus 로고
    • Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord
    • Hendriks WT, Ruitenberg MJ, Blits B, et al. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord. Prog Brain Res. 2004; 146: 451-76.
    • (2004) Prog Brain Res , vol.146 , pp. 451-476
    • Hendriks, W.T.1    Ruitenberg, M.J.2    Blits, B.3
  • 139
    • 33746932893 scopus 로고    scopus 로고
    • Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems
    • Abdellatif AA, Pelt JL, Benton RL, et al. Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems. J Neurosci Res. 2006; 84: 553-67.
    • (2006) J Neurosci Res , vol.84 , pp. 553-567
    • Abdellatif, A.A.1    Pelt, J.L.2    Benton, R.L.3
  • 140
    • 33646576504 scopus 로고    scopus 로고
    • Direct gene therapy for repair of the spinal cord
    • Blits B, Bunge MB. Direct gene therapy for repair of the spinal cord. J Neurotrauma. 2006; 23: 508-20.
    • (2006) J Neurotrauma , vol.23 , pp. 508-520
    • Blits, B.1    Bunge, M.B.2
  • 141
    • 77952239026 scopus 로고    scopus 로고
    • Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c
    • Oliveira H, Fernandez R, Pires LR, et al. Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. J Control Release. 2010; 143: 350-8.
    • (2010) J Control Release , vol.143 , pp. 350-358
    • Oliveira, H.1    Fernandez, R.2    Pires, L.R.3
  • 142
    • 78249240032 scopus 로고    scopus 로고
    • Chitosan-based gene delivery vectors targeted to the peripheral nervous system
    • Oliveira H, Pires LR, Fernandez R, et al. Chitosan-based gene delivery vectors targeted to the peripheral nervous system. J Biomed Mater Res A. 2010; 95: 801-10.
    • (2010) J Biomed Mater Res A , vol.95 , pp. 801-810
    • Oliveira, H.1    Pires, L.R.2    Fernandez, R.3
  • 144
    • 77958033530 scopus 로고    scopus 로고
    • Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth
    • Mittnacht U, Hartmann H, Hein S, et al. Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth. Nano Lett. 2010; 10: 3933-9.
    • (2010) Nano Lett , vol.10 , pp. 3933-3939
    • Mittnacht, U.1    Hartmann, H.2    Hein, S.3
  • 145
    • 0018908523 scopus 로고
    • Axons from CNS neurons regenerate into PNS grafts
    • Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980; 284: 264-5.
    • (1980) Nature , vol.284 , pp. 264-265
    • Richardson, P.M.1    McGuinness, U.M.2    Aguayo, A.J.3
  • 146
    • 0019856865 scopus 로고
    • Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats
    • David S, Aguayo AJ. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981; 214: 931-3.
    • (1981) Science , vol.214 , pp. 931-933
    • David, S.1    Aguayo, A.J.2
  • 147
    • 70350453794 scopus 로고    scopus 로고
    • The natural history of the myelin-derived nerve growth inhibitor Nogo-A
    • Schweigreiter R. The natural history of the myelin-derived nerve growth inhibitor Nogo-A. Neuron Glia Biol. 2008; 4: 83-9.
    • (2008) Neuron Glia Biol , vol.4 , pp. 83-89
    • Schweigreiter, R.1
  • 148
    • 34547652325 scopus 로고    scopus 로고
    • Why is Wallerian degeneration in the CNS so slow?
    • Vargas ME, Barres BA. Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci. 2007; 30: 153-79.
    • (2007) Annu Rev Neurosci , vol.30 , pp. 153-179
    • Vargas, M.E.1    Barres, B.A.2
  • 149
    • 0033137077 scopus 로고    scopus 로고
    • Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury
    • Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron. 1999; 23: 83-91.
    • (1999) Neuron , vol.23 , pp. 83-91
    • Neumann, S.1    Woolf, C.J.2
  • 150
    • 66249141133 scopus 로고    scopus 로고
    • Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon
    • Ylera B, Erturk A, Hellal F, et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol. 2009; 19: 930-6.
    • (2009) Curr Biol , vol.19 , pp. 930-936
    • Ylera, B.1    Erturk, A.2    Hellal, F.3
  • 151
    • 0037071880 scopus 로고    scopus 로고
    • Spinal axon regeneration induced by elevation of cyclic AMP
    • Qiu J, Cai D, Dai H, et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron. 2002; 34: 895-903.
    • (2002) Neuron , vol.34 , pp. 895-903
    • Qiu, J.1    Cai, D.2    Dai, H.3
  • 152
    • 0032142884 scopus 로고    scopus 로고
    • Acceleration of axonal outgrowth in motor axons from mature and old F344 rats after a conditioning lesion
    • Jacob JM, Croes SA. Acceleration of axonal outgrowth in motor axons from mature and old F344 rats after a conditioning lesion. Exp Neurol. 1998; 152: 231-7.
    • (1998) Exp Neurol , vol.152 , pp. 231-237
    • Jacob, J.M.1    Croes, S.A.2
  • 153
    • 0019447903 scopus 로고
    • Effect of a conditioning lesion on optic nerve regeneration in goldfish
    • McQuarrie IG, Grafstein B. Effect of a conditioning lesion on optic nerve regeneration in goldfish. Brain Res. 1981; 216: 253-64.
    • (1981) Brain Res , vol.216 , pp. 253-264
    • McQuarrie, I.G.1    Grafstein, B.2
  • 154
    • 0037071890 scopus 로고    scopus 로고
    • Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation
    • Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron. 2002; 34: 885-93.
    • (2002) Neuron , vol.34 , pp. 885-893
    • Neumann, S.1    Bradke, F.2    Tessier-Lavigne, M.3
  • 155
    • 66749182241 scopus 로고    scopus 로고
    • Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons
    • Zou H, Ho C, Wong K, et al. Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci. 2009; 29: 7116-23.
    • (2009) J Neurosci , vol.29 , pp. 7116-7123
    • Zou, H.1    Ho, C.2    Wong, K.3
  • 156
    • 34547484768 scopus 로고    scopus 로고
    • ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration
    • Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci. 2007; 27: 7911-20.
    • (2007) J Neurosci , vol.27 , pp. 7911-7920
    • Seijffers, R.1    Mills, C.D.2    Woolf, C.J.3
  • 157
    • 0035884814 scopus 로고    scopus 로고
    • Leukemia inhibitory factor determines the growth status of injured adult sensory neurons
    • Cafferty WB, Gardiner NJ, Gavazzi I, et al. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci. 2001; 21: 7161-70.
    • (2001) J Neurosci , vol.21 , pp. 7161-7170
    • Cafferty, W.B.1    Gardiner, N.J.2    Gavazzi, I.3
  • 158
    • 2342493315 scopus 로고    scopus 로고
    • Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice
    • Cafferty WB, Gardiner NJ, Das P, et al. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J Neurosci. 2004; 24: 4432-43.
    • (2004) J Neurosci , vol.24 , pp. 4432-4443
    • Cafferty, W.B.1    Gardiner, N.J.2    Das, P.3
  • 159
    • 33744997909 scopus 로고    scopus 로고
    • The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth
    • Cao Z, Gao Y, Bryson JB, et al. The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J Neurosci. 2006; 26: 5565-73.
    • (2006) J Neurosci , vol.26 , pp. 5565-5573
    • Cao, Z.1    Gao, Y.2    Bryson, J.B.3
  • 160
    • 64149130724 scopus 로고    scopus 로고
    • Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury
    • Minor K, Phillips J, Seeds NW. Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury. J Neurochem. 2009; 109: 706-15.
    • (2009) J Neurochem , vol.109 , pp. 706-715
    • Minor, K.1    Phillips, J.2    Seeds, N.W.3
  • 161
    • 2942720519 scopus 로고    scopus 로고
    • cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury
    • Pearse DD, Pereira FC, Marcillo AE, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med. 2004; 10: 610-6.
    • (2004) Nat Med , vol.10 , pp. 610-616
    • Pearse, D.D.1    Pereira, F.C.2    Marcillo, A.E.3
  • 162
    • 2942558484 scopus 로고    scopus 로고
    • The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery
    • Nikulina E, Tidwell JL, Dai HN, et al. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci USA. 2004; 101: 8786-90.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 8786-8790
    • Nikulina, E.1    Tidwell, J.L.2    Dai, H.N.3
  • 163
    • 0037104645 scopus 로고    scopus 로고
    • Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro
    • Cai D, Deng K, Mellado W, et al. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron. 2002; 35: 711-9.
    • (2002) Neuron , vol.35 , pp. 711-719
    • Cai, D.1    Deng, K.2    Mellado, W.3
  • 164
    • 74949137326 scopus 로고    scopus 로고
    • A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway
    • Ma TC, Campana A, Lange PS, et al. A large-scale chemical screen for regulators of the arginase 1 promoter identifies the soy isoflavone daidzeinas a clinically approved small molecule that can promote neuronal protection or regeneration via a cAMP-independent pathway. J Neurosci. 2010; 30: 739-48.
    • (2010) J Neurosci , vol.30 , pp. 739-748
    • Ma, T.C.1    Campana, A.2    Lange, P.S.3
  • 165
    • 0028867947 scopus 로고
    • Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors
    • Bregman BS, Kunkel-Bagden E, Schnell L, et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995; 378: 498-501.
    • (1995) Nature , vol.378 , pp. 498-501
    • Bregman, B.S.1    Kunkel-Bagden, E.2    Schnell, L.3
  • 166
    • 0037061426 scopus 로고    scopus 로고
    • Chondroitinase ABC promotes functional recovery after spinal cord injury
    • Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002; 416: 636-40.
    • (2002) Nature , vol.416 , pp. 636-640
    • Bradbury, E.J.1    Moon, L.D.2    Popat, R.J.3
  • 167
    • 1442348904 scopus 로고    scopus 로고
    • The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats
    • Bareyre FM, Kerschensteiner M, Raineteau O, et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nature Neurosci. 2004; 7: 269-77.
    • (2004) Nature Neurosci , vol.7 , pp. 269-277
    • Bareyre, F.M.1    Kerschensteiner, M.2    Raineteau, O.3
  • 168
    • 80655147964 scopus 로고    scopus 로고
    • Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases
    • Saberi H, Firouzi M, Habibi Z, et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine. 2011; 15: 515-25.
    • (2011) J Neurosurg Spine , vol.15 , pp. 515-525
    • Saberi, H.1    Firouzi, M.2    Habibi, Z.3
  • 169
    • 52449122647 scopus 로고    scopus 로고
    • The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord
    • Fukushima K, Enomoto M, Tomizawa S, et al. The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord. J Med Dent Sci. 2008; 55: 71-9.
    • (2008) J Med Dent Sci , vol.55 , pp. 71-79
    • Fukushima, K.1    Enomoto, M.2    Tomizawa, S.3
  • 170
    • 43049097913 scopus 로고    scopus 로고
    • Collagen-based matrices with axially oriented pores
    • Madaghiele M, Sannino A, Yannas IV, et al. Collagen-based matrices with axially oriented pores. J Biomed Mater Res A. 2008; 85: 757-67.
    • (2008) J Biomed Mater Res A , vol.85 , pp. 757-767
    • Madaghiele, M.1    Sannino, A.2    Yannas, I.V.3
  • 171
    • 77957303457 scopus 로고    scopus 로고
    • The promotion of neurological recovery in the rat spinal cord crushed injury model by collagen-binding BDNF
    • Liang W, Han Q, Jin W, et al. The promotion of neurological recovery in the rat spinal cord crushed injury model by collagen-binding BDNF. Biomaterials. 2010; 31: 8634-41.
    • (2010) Biomaterials , vol.31 , pp. 8634-8641
    • Liang, W.1    Han, Q.2    Jin, W.3
  • 172
    • 84860517621 scopus 로고    scopus 로고
    • Nanofibrous Collagen Nerve Conduits for Spinal Cord Repair
    • Liu T, Houle JD, Xu J, et al. Nanofibrous Collagen Nerve Conduits for Spinal Cord Repair. Tissue Eng Pt A. 2012; 18: 1057-66.
    • (2012) Tissue Eng Pt A , vol.18 , pp. 1057-1066
    • Liu, T.1    Houle, J.D.2    Xu, J.3
  • 173
    • 79960781696 scopus 로고    scopus 로고
    • High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury
    • Khaing ZZ, Milman BD, Vanscoy JE, et al. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng. 2011; 8: 046033.
    • (2011) J Neural Eng , vol.8 , pp. 046033
    • Khaing, Z.Z.1    Milman, B.D.2    Vanscoy, J.E.3
  • 174
    • 74349083656 scopus 로고    scopus 로고
    • Time Controlled Protein Release from Layer-by-Layer Assembled Multilayer Functionalized Agarose Hydrogels
    • Mehrotra S, Lynam D, Maloney R, et al. Time Controlled Protein Release from Layer-by-Layer Assembled Multilayer Functionalized Agarose Hydrogels. Adv Funct Mater. 2010; 20: 247-58.
    • (2010) Adv Funct Mater , vol.20 , pp. 247-258
    • Mehrotra, S.1    Lynam, D.2    Maloney, R.3
  • 175
    • 2342527151 scopus 로고    scopus 로고
    • Alginate enhances elongation of early regenerating axons in spinal cord of young rats
    • Kataoka K, Suzuki Y, Kitada M, et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng. 2004; 10: 493-504.
    • (2004) Tissue Eng , vol.10 , pp. 493-504
    • Kataoka, K.1    Suzuki, Y.2    Kitada, M.3
  • 176
    • 84855195935 scopus 로고    scopus 로고
    • Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord
    • Chen X, Yang Y, Yao J, et al. Bone marrow stromal cells-loaded chitosan conduits promote repair of complete transection injury in rat spinal cord. J Mater Sci Mater Med. 2011; 22: 2347-56.
    • (2011) J Mater Sci Mater Med , vol.22 , pp. 2347-2356
    • Chen, X.1    Yang, Y.2    Yao, J.3
  • 177
    • 79955646924 scopus 로고    scopus 로고
    • Chitosan implants in the rat spinal cord: biocompatibility and biodegradation
    • Kim H, Tator CH, Shoichet MS. Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. J Biomed Mater Res A. 2011; 97: 395-404.
    • (2011) J Biomed Mater Res A , vol.97 , pp. 395-404
    • Kim, H.1    Tator, C.H.2    Shoichet, M.S.3
  • 178
    • 80053101586 scopus 로고    scopus 로고
    • Fabrication and radial compressive properties of the biodegradable woven regeneration conduits for peripheral nerve repair
    • Ding C, Guo X, Cheng B, et al. Fabrication and radial compressive properties of the biodegradable woven regeneration conduits for peripheral nerve repair. Adv Mat Res. 2011; 332-334: 1481-4.
    • (2011) Adv Mat Res , vol.332-334 , pp. 1481-1484
    • Ding, C.1    Guo, X.2    Cheng, B.3
  • 179
    • 33846862626 scopus 로고    scopus 로고
    • In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats
    • Suwantong O, Waleetorncheepsawat S, Sanchavanakit N, et al. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats. Int J Biol Macromol. 2007; 40: 217-23.
    • (2007) Int J Biol Macromol , vol.40 , pp. 217-223
    • Suwantong, O.1    Waleetorncheepsawat, S.2    Sanchavanakit, N.3
  • 180
    • 77951175537 scopus 로고    scopus 로고
    • Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells
    • Pritchard CD, Slotkin JR, Yu D, et al. Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J Neurosci Meth. 2010; 188: 258-69.
    • (2010) J Neurosci Meth , vol.188 , pp. 258-269
    • Pritchard, C.D.1    Slotkin, J.R.2    Yu, D.3
  • 181
    • 84891738818 scopus 로고    scopus 로고
    • Tunning poly(trymethylene carbonate-co-epsilon-caprolactone) fibers for nerve regeneration
    • Pires LR, Guarino V, Barrias CC, et al. Tunning poly(trymethylene carbonate-co-epsilon-caprolactone) fibers for nerve regeneration. Histol Histopathol. 2011; 26: 251-2.
    • (2011) Histol Histopathol , vol.26 , pp. 251-252
    • Pires, L.R.1    Guarino, V.2    Barrias, C.C.3
  • 182
    • 78149312776 scopus 로고    scopus 로고
    • Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury
    • Tysseling VM, Sahni V, Pashuck ET, et al. Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res. 2010; 88: 3161-70.
    • (2010) J Neurosci Res , vol.88 , pp. 3161-3170
    • Tysseling, V.M.1    Sahni, V.2    Pashuck, E.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.