메뉴 건너뛰기




Volumn 420, Issue , 2013, Pages 1-278

Minimum error entropy classification

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84867489006     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-29029-9     Document Type: Article
Times cited : (6)

References (254)
  • 1
    • 84939024947 scopus 로고
    • A nonparametric estimation of the entropy for absolutely continuous distributions
    • Ahmad, I.A., Lin, P.: A Nonparametric Estimation of the Entropy for Absolutely Continuous Distributions. IEEE Trans. Information Theory 22(3), 372-375 (1976)
    • (1976) IEEE Trans. Information Theory , vol.22 , Issue.3 , pp. 372-375
    • Ahmad, I.A.1    Lin, P.2
  • 3
    • 79959367590 scopus 로고    scopus 로고
    • Single layer complex valued neural network with entropic cost function
    • Honkela, T. (ed.). Springer, Heidelberg
    • Alexandre, L.A.: Single Layer Complex Valued Neural Network with Entropic Cost Function. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 331-338. Springer, Heidelberg (2011)
    • (2011) ICANN 2011, Part I. LNCS , vol.6791 , pp. 331-338
    • Alexandre, L.A.1
  • 4
    • 34547529574 scopus 로고    scopus 로고
    • A probabilistic model for the cooperative modular neural network
    • Perales, F.J., Campilho, A.C., Perez, N., Sanfeliu, A. (eds.) Springer, Heidelberg
    • Alexandre, L.A., Campilho, A., Kamel, M.: A Probabilistic Model for the Cooperative Modular Neural Network. In: Perales, F.J., Campilho, A.C., Perez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 11-18. Springer, Heidelberg (2003)
    • (2003) IbPRIA 2003. LNCS , vol.2652 , pp. 11-18
    • Alexandre, L.A.1    Campilho, A.2    Kamel, M.3
  • 5
    • 35048839786 scopus 로고    scopus 로고
    • Bounds for the average generalization error of the mixture of experts neural network
    • Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) Springer, Heidelberg
    • Alexandre, L.A., Campilho, A., Kamel, M.: Bounds for the Average Generalization Error of the Mixture of Experts Neural Network. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 618-625. Springer, Heidelberg (2004)
    • (2004) SSPR&SPR 2004. LNCS , vol.3138 , pp. 618-625
    • Alexandre, L.A.1    Campilho, A.2    Kamel, M.3
  • 6
    • 33749837658 scopus 로고    scopus 로고
    • Error entropy minimization for lstm training
    • Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) Springer, Heidelberg
    • Alexandre, L.A., Marques de Sa, J.: Error Entropy Minimization for LSTM Training. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 244-253. Springer, Heidelberg (2006)
    • (2006) ICANN 2006. LNCS , vol.4131 , pp. 244-253
    • Alexandre, L.A.1    Marques De Sa, J.2
  • 8
    • 0001868131 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Morgan Kaufmann
    • Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. In: Int. Conf. on Machine Learning, pp. 9-16. Morgan Kaufmann (2000)
    • (2000) Int. Conf. on Machine Learning , pp. 9-16
    • Allwein, E.1    Schapire, R.2    Singer, Y.3
  • 9
    • 58149460022 scopus 로고    scopus 로고
    • Single-layered complex-valued neural network for realvalued classification problems
    • Amin, M., Murase, K.: Single-layered complex-valued neural network for realvalued classification problems. Neurocomputing 72, 945-955 (2009)
    • (2009) Neurocomputing , vol.72 , pp. 945-955
    • Amin, M.1    Murase, K.2
  • 14
    • 0031996853 scopus 로고    scopus 로고
    • Modular neural network classifiers: A comparative study
    • Auda, G., Kamel, M.: Modular neural network classifiers: A comparative study. Intel. Robotic Systems 21, 117-129 (1998)
    • (1998) Intel. Robotic Systems , vol.21 , pp. 117-129
    • Auda, G.1    Kamel, M.2
  • 16
    • 35248854360 scopus 로고    scopus 로고
    • Design of a Multilayered Feed-Forward Neural Network Using Hypersphere Neurons
    • Petkov, N., Westenberg, M.A. (eds.) Springer, Heidelberg
    • Banarer, V., Perwass, C., Sommer, G.: Design of a Multilayered Feed-Forward Neural Network Using Hypersphere Neurons. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 571-578. Springer, Heidelberg (2003)
    • (2003) CAIP 2003. LNCS , vol.2756 , pp. 571-578
    • Banarer, V.1    Perwass, C.2    Sommer, G.3
  • 19
    • 0018043463 scopus 로고
    • Classification and data analysis in vector spaces
    • Batchelor, B. (ed.) Plenum Press, Plenum Pub. Co. Ltd.
    • Batchelor, B.: Classification and data analysis in vector spaces. In: Batchelor, B. (ed.) Pattern Recognition: Ideas in Practice, Plenum Press, Plenum Pub. Co. Ltd. (1978)
    • (1978) Pattern Recognition: Ideas in Practice
    • Batchelor, B.1
  • 20
    • 0001209372 scopus 로고
    • Accelerated backpropagation learning: Two optimization methods
    • Battiti, R.: Accelerated backpropagation learning: Two optimization methods. Complex Systems 3, 331-342 (1989)
    • (1989) Complex Systems , vol.3 , pp. 331-342
    • Battiti, R.1
  • 21
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36(1-2), 105-139 (1999)
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 22
    • 0002099561 scopus 로고
    • Supervised learning of probability distributions by neural networks
    • Baum, E., Wilczek, F.: Supervised learning of probability distributions by neural networks. In: NIPS 1987, pp. 52-61 (1987)
    • (1987) NIPS , vol.1987 , pp. 52-61
    • Baum, E.1    Wilczek, F.2
  • 24
    • 84902189013 scopus 로고    scopus 로고
    • Tight bounds on the size of neural networks for classification problems
    • Cabestany, J., Mira, J., Moreno-Diaz, R. (eds.) Springer, Heidelberg
    • Beiu, V., Pauw, T.: Tight Bounds on the Size of Neural Networks for Classification Problems. In: Cabestany, J., Mira, J., Moreno-Diaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 743-752. Springer, Heidelberg (1997)
    • (1997) IWANN 1997. LNCS , vol.1240 , pp. 743-752
    • Beiu, V.1    Pauw, T.2
  • 29
    • 33845283742 scopus 로고
    • Training a 3-node Neural Network is NP-Complete
    • Hanson, S.J., Rivest, R.L., Remmele, W. (eds.) Springer, Heidelberg
    • Blum, A., Rivest, R.: Training a 3-node Neural Network is NP-Complete. In: Hanson, S.J., Rivest, R.L., Remmele, W. (eds.) MIT-Siemens 1993. LNCS, vol. 661, pp. 9-28. Springer, Heidelberg (1993)
    • (1993) MIT-Siemens 1993. LNCS , vol.661 , pp. 9-28
    • Blum, A.1    Rivest, R.2
  • 30
    • 33846313242 scopus 로고    scopus 로고
    • Introduction to statistical learning theory
    • Bousquet, O., von Luxburg, U., Ratsch, G. (eds.) Springer, Heidelberg
    • Bousquet, O., Boucheron, S., Lugosi, G.: Introduction to statistical learning theory. In: Bousquet, O., von Luxburg, U., Ratsch, G. (eds.) Machine Learning 2003. LNCS (LNAI), vol. 3176, pp. 169-207. Springer, Heidelberg (2004)
    • (2004) Machine Learning 2003. LNCS (LNAI) , vol.3176 , pp. 169-207
    • Bousquet, O.1    Boucheron, S.2    Lugosi, G.3
  • 35
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decisiontree induction
    • Buntine, W., Niblett, T.: A further comparison of splitting rules for decisiontree induction. Machine Learning 8, 75-85 (1992)
    • (1992) Machine Learning , vol.8 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 36
    • 0001031887 scopus 로고
    • An adaptive training algorithm for backpropagation networks
    • Chan, L., Fallside, F.: An adaptive training algorithm for backpropagation networks. Computer Speech and Language 2, 205-218 (1987)
    • (1987) Computer Speech and Language , vol.2 , pp. 205-218
    • Chan, L.1    Fallside, F.2
  • 37
    • 70749126726 scopus 로고    scopus 로고
    • Information theoretic interpretation of error criteria
    • Chen, B., Hu, J., Zhu, Y., Sun, Z.: Information theoretic interpretation of error criteria. Acta Automatica Sinica 35(10), 1302-1309 (2009)
    • (2009) Acta Automatica Sinica , vol.35 , Issue.10 , pp. 1302-1309
    • Chen, B.1    Hu, J.2    Zhu, Y.3    Sun, Z.4
  • 38
    • 46749124769 scopus 로고    scopus 로고
    • On the minimum entropy of a mixture of unimodal and symmetric distributions
    • Chen, T., Geman, S.: On the minimum entropy of a mixture of unimodal and symmetric distributions. IEEE Trans. Information Theory 54(7), 1366-1374 (2008)
    • (2008) IEEE Trans. Information Theory , vol.54 , Issue.7 , pp. 1366-1374
    • Chen, T.1    Geman, S.2
  • 42
    • 0003882879 scopus 로고    scopus 로고
    • American Mathematical Society, Providence
    • Chung, F.: Spectral Graph Theory, vol. 92. American Mathematical Society, Providence (1997)
    • (1997) Spectral Graph Theory , vol.92
    • Chung, F.1
  • 46
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273-297 (1995)
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 47
    • 35248835962 scopus 로고    scopus 로고
    • On Solutions to Multivariate Maximum alpha-Entropy Problems
    • Rangarajan, A., Figueiredo, M., Zerubia, J. (eds.) Springer, Heidelberg
    • Costa, J., Hero, A., Vignat, C.: On Solutions to Multivariate Maximum alpha-Entropy Problems. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 211-226. Springer, Heidelberg (2003)
    • (2003) EMMCVPR 2003. LNCS , vol.2683 , pp. 211-226
    • Costa, J.1    Hero, A.2    Vignat, C.3
  • 51
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demar, J.: Statistical comparisons of classifiers over multiple data sets. J. of Machine Learning Research 7, 1-30 (2006)
    • (2006) J. of Machine Learning Research , vol.7 , pp. 1-30
    • Demar, J.1
  • 54
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139-157 (2000)
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 55
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering
    • Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A min-max cut algorithm for graph partitioning and data clustering. In: Int. Conf. on Data Mining, pp. 107-114 (2001)
    • (2001) Int. Conf. on Data Mining , pp. 107-114
    • Ding, C.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.5
  • 57
    • 84867532244 scopus 로고    scopus 로고
    • Entropy based comparison of neural networks for classification
    • Draghici, S., Beiu, V.: Entropy based comparison of neural networks for classification. In: Italian Conf. on Neural Networks (1997)
    • (1997) Italian Conf. on Neural Networks
    • Draghici, S.1    Beiu, V.2
  • 58
    • 84867504962 scopus 로고    scopus 로고
    • Structure optimization algorithm for radial basis probabilistic neural networks based on the moving median center hyperspheres algorithm
    • Du, J.X., Zhai, C.M.: Structure optimization algorithm for radial basis probabilistic neural networks based on the moving median center hyperspheres algorithm. Advances in Neural Networks 55, 136-143 (2009)
    • (2009) Advances in Neural Networks , vol.55 , pp. 136-143
    • Du, J.X.1    Zhai, C.M.2
  • 63
    • 0004262806 scopus 로고
    • Finding structure in time
    • University of California, Center for Research in Language, San Diego
    • Elman, J.: Finding structure in time. Tech. Rep. CRL 8801, University of California, Center for Research in Language, San Diego (1988)
    • (1988) Tech. Rep. CRL 8801
    • Elman, J.1
  • 65
    • 0036947450 scopus 로고    scopus 로고
    • Blind source separation using Renyi's marginal entropies
    • Erdogmus, D., Hild II, K., Principe, J.: Blind source separation using Renyi's marginal entropies. Neurocomputing 49, 25-38 (2002)
    • (2002) Neurocomputing , vol.49 , pp. 25-38
    • Erdogmus, D.1    Hild, I.I.K.2    Principe, J.3
  • 66
    • 0012092745 scopus 로고    scopus 로고
    • Comparison of entropy and mean square error criteria in adaptive system training using higher order statistics
    • Helsinki, Finland
    • Erdogmus, D., Principe, J.: Comparison of entropy and mean square error criteria in adaptive system training using higher order statistics. In: Int. Conf. on ICA and Signal Separation, Helsinki, Finland, pp. 75-80 (2000)
    • (2000) Int. Conf. on ICA and Signal Separation , pp. 75-80
    • Erdogmus, D.1    Principe, J.2
  • 67
    • 0036647905 scopus 로고    scopus 로고
    • An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems
    • Erdogmus, D., Principe, J.: An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. on Signal Processing 50(7), 1780-1786 (2002)
    • (2002) IEEE Trans. on Signal Processing , vol.50 , Issue.7 , pp. 1780-1786
    • Erdogmus, D.1    Principe, J.2
  • 70
    • 84866137441 scopus 로고    scopus 로고
    • Neuro-fuzzy classification using the correntropy criterion: Application to sleep depth estimation
    • Arabnia, H., de la Fuente, D., Kozerenko, E., Olivas, J., Chang, R., LaMonica, P., Liuzzi, R., Solo, A. (eds.)CSREA Press
    • Alvarez Estevez, D., Principe, J., Moret-Bonillo, V.: Neuro-fuzzy classification using the correntropy criterion: Application to sleep depth estimation. In: Arabnia, H., de la Fuente, D., Kozerenko, E., Olivas, J., Chang, R., LaMonica, P., Liuzzi, R., Solo, A. (eds.) IC-AI, pp. 9-15. CSREA Press (2010)
    • (2010) IC-AI , pp. 9-15
    • Alvarez Estevez, D.1    Principe, J.2    Moret-Bonillo, V.3
  • 72
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • Touretzky, D., Hinton, G., Sejnowski, T. (eds.) Morgan Kaufmann
    • Fhalman, S.: Faster-learning variations on back-propagation: An empirical study. In: Touretzky, D., Hinton, G., Sejnowski, T. (eds.) Connectionist Models Summer School, pp. 38-51. Morgan Kaufmann (1988)
    • (1988) Connectionist Models Summer School , pp. 38-51
    • Fhalman, S.1
  • 73
    • 0000827674 scopus 로고
    • A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
    • Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal 25(100), 619-633 (1975)
    • (1975) Czechoslovak Mathematical Journal , vol.25 , Issue.100 , pp. 619-633
    • Fiedler, M.1
  • 74
    • 0015395891 scopus 로고
    • Considerations of sample and feature size
    • Foley, D.: Considerations of sample and feature size. IEEE Trans. Information Theory 18(5), 618-626 (1972)
    • (1972) IEEE Trans. Information Theory , vol.18 , Issue.5 , pp. 618-626
    • Foley, D.1
  • 75
    • 0000320167 scopus 로고
    • Eigenvector projection and simplified non-linear mapping of fatty acid content of italian olive oils
    • Forina, M., Armanino, C.: Eigenvector projection and simplified non-linear mapping of fatty acid content of italian olive oils. Ann. Chim. 72, 127-155 (1981)
    • (1981) Ann. Chim. , vol.72 , pp. 127-155
    • Forina, M.1    Armanino, C.2
  • 77
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. in Information Theory 21, 32-40 (1975)
    • (1975) IEEE Trans. in Information Theory , vol.21 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.2
  • 78
    • 0032029357 scopus 로고    scopus 로고
    • Multilayer neural networks and Bayes decision theory
    • Funahashi, K.: Multilayer neural networks and Bayes decision theory. Neural Networks 11(2), 209-213 (1998)
    • (1998) Neural Networks , vol.11 , Issue.2 , pp. 209-213
    • Funahashi, K.1
  • 79
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180, 2044-2064 (2010)
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 82
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Gers, F., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with LSTM. Neural Computation 12(10), 2451-2471 (2000)
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.1    Schmidhuber, J.2    Cummins, F.3
  • 83
    • 0025671510 scopus 로고
    • A probabilistic approach to the understanding and training of neural network classifiers
    • Gish, H.: A probabilistic approach to the understanding and training of neural network classifiers. In: Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1361-1364 (1990)
    • (1990) Int. Conf. on Acoustics, Speech, and Signal Processing , vol.3 , pp. 1361-1364
    • Gish, H.1
  • 85
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. In: Int. Conf. on Management of Data, pp. 73-84 (1998)
    • (1998) Int. Conf. on Management of Data , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 86
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A robust clustering algorithm for categorical attributes
    • Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. Information Systems 25(5), 345-366 (2000)
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 88
    • 0026156870 scopus 로고
    • On optimal estimation with respect to a large family of cost functions
    • Hall, E., Wise, G.: On optimal estimation with respect to a large family of cost functions. IEEE Trans. Information Theory 37(3), 691-693 (1991)
    • (1991) IEEE Trans. Information Theory , vol.37 , Issue.3 , pp. 691-693
    • Hall, E.1    Wise, G.2
  • 89
    • 0001770345 scopus 로고
    • Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function
    • Touretzky, D., Elman, J., Sejnowsky, T., Hinton, G. (eds.) San Mateo
    • Hampshire II, J., Pearlmutter, B.: Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function. In: Touretzky, D., Elman, J., Sejnowsky, T., Hinton, G. (eds.) Proc. 1990 Connectionist Models Summer School. Morgan Kaufmann, San Mateo (1990)
    • (1990) Proc. 1990 Connectionist Models Summer School. Morgan Kaufmann
    • Hampshire, I.I.J.1    Pearlmutter, B.2
  • 90
    • 0025449258 scopus 로고
    • A novel objective function for improved phoneme recognition using time-delay neural networks
    • Hampshire II, J.,Waibel, A.: A novel objective function for improved phoneme recognition using time-delay neural networks. IEEE Trans. on Neural Networks 1(2), 216-228 (1990)
    • (1990) IEEE Trans. on Neural Networks , vol.1 , Issue.2 , pp. 216-228
    • Hampshire, I.I.J.1    Waibel, A.2
  • 93
    • 0034515528 scopus 로고    scopus 로고
    • A clustering algorithm based on graph connectivity
    • Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Information Processing Letters 76(4-6), 175-181 (2000)
    • (2000) Information Processing Letters , vol.76 , Issue.4-6 , pp. 175-181
    • Hartuv, E.1    Shamir, R.2
  • 97
    • 84867532253 scopus 로고    scopus 로고
    • K-ANMI: A mutual information based clustering algorithm for categorical data
    • He, Z., Xu, X., Deng, S.: K-ANMI: A mutual information based clustering algorithm for categorical data. Computing Research Repository abs/cs/051 (2005)
    • (2005) Computing Research Repository Abs/cs/ , vol.51
    • He, Z.1    Xu, X.2    Deng, S.3
  • 100
    • 84886980034 scopus 로고    scopus 로고
    • Complex-valued neural networks
    • Hirose, A.: Complex-Valued Neural Networks. Springer (2006)
    • (2006) Springer
    • Hirose, A.1
  • 101
    • 70449455870 scopus 로고    scopus 로고
    • Complex-valued neural networks: The merits and their origins
    • Hirose, A.: Complex-valued neural networks: The merits and their origins. In: Int. Joint Conf. on Neural Networks, pp. 1209-1216 (2009)
    • (2009) Int. Joint Conf. on Neural Networks , pp. 1209-1216
    • Hirose, A.1
  • 105
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang, G.B., Babri, H.: Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. on Neural Networks 9(1), 224-229 (1998)
    • (1998) IEEE Trans. on Neural Networks , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.2
  • 106
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber, P.: Robust estimation of a location parameter. The Annals of Mathematical Statistics 35(1), 73-101 (1964)
    • (1964) The Annals of Mathematical Statistics , vol.35 , Issue.1 , pp. 73-101
    • Huber, P.1
  • 108
    • 0001815269 scopus 로고
    • Constructing Optimal Binary Decision Trees is NPcomplete
    • Hyafil, L., Rivest, R.L.: Constructing Optimal Binary Decision Trees is NPcomplete. Information Processing Letters 5(1), 15-17 (1976)
    • (1976) Information Processing Letters , vol.5 , Issue.1 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 109
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs, R.: Increased rates of convergence through learning rate adaptation. Neural Networks 1, 295-307 (1988)
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.1
  • 111
    • 0031105908 scopus 로고    scopus 로고
    • A bayesian approach to model selection in hierarchical mixtures-of-experts architectures
    • Jacobs, R., Peng, F., Tanner, M.: A bayesian approach to model selection in hierarchical mixtures-of-experts architectures. Neural Networks 10(2), 231-241 (1997)
    • (1997) Neural Networks , vol.10 , Issue.2 , pp. 231-241
    • Jacobs, R.1    Peng, F.2    Tanner, M.3
  • 115
    • 0028467720 scopus 로고
    • Minimum entropy of error principle in estimation
    • Janzura, M., Koski, T., Otahal, A.: Minimum entropy of error principle in estimation. Information Sciences (79), 123-144 (1994)
    • (1994) Information Sciences ( , vol.79 , pp. 123-144
    • Janzura, M.1    Koski, T.2    Otahal, A.3
  • 116
    • 84867530100 scopus 로고    scopus 로고
    • Building simple models: A case study with decision trees
    • Liu, X., Cohen, P., Berthold, M. (eds.) Springer, Heidelberg
    • Jensen, D., Oates, T., Cohen, P.: Building simple models: A case study with decision trees. In: Liu, X., Cohen, P., Berthold, M. (eds.) IDA 1997. LNCS, vol. 1280, pp. 211-222. Springer, Heidelberg (1997)
    • (1997) IDA 1997. LNCS , vol.1280 , pp. 211-222
    • Jensen, D.1    Oates, T.2    Cohen, P.3
  • 119
    • 0012878038 scopus 로고    scopus 로고
    • Neural network classifier based on growing hyperspheres
    • Jirina Jr., M., Jirina, M.: Neural network classifier based on growing hyperspheres. Neural Network World 10(3), 417-428 (2000)
    • (2000) Neural Network World , vol.10 , Issue.3 , pp. 417-428
    • Jirina Jr., M.1    Jirina, M.2
  • 123
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the em algorithm
    • Jordan, M., Jacobs, R.: Hierarchical mixture of experts and the EM algorithm. Neural Computation 6, 181-214 (1994)
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.2
  • 125
    • 84867564692 scopus 로고
    • Maximum-entropy models in science and engineering
    • Kapur, J.: Maximum-Entropy Models in Science and Engineering. John Wiley & Sons, New York (1993)
    • (1993) John Wiley & Sons, New York
    • Kapur, J.1
  • 127
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • Karypis, G., Han, E.H., Kumar, V.: Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer 32(8), 68-75 (1999)
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 130
    • 0018005734 scopus 로고
    • On the mean accuracy of hierarchical classifiers
    • Kulkarni, A.: On the mean accuracy of hierarchical classifiers. IEEE Trans. on Computers C-27(8), 771-776 (1978)
    • (1978) IEEE Trans. on Computers C , vol.27 , Issue.8 , pp. 771-776
    • Kulkarni, A.1
  • 131
    • 39049114504 scopus 로고
    • Information theory and statistics
    • Kullback, S.: Information Theory and Statistics. Dover Pub. (1968)
    • (1968) Dover Pub.
    • Kullback, S.1
  • 132
    • 0032251894 scopus 로고    scopus 로고
    • Convergence properties of the Nelder-Mead simplex method in low dimensions
    • Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization 9, 112-147 (1998)
    • (1998) SIAM Journal of Optimization , vol.9 , pp. 112-147
    • Lagarias, J.1    Reeds, J.2    Wright, M.3    Wright, P.4
  • 133
    • 0017908940 scopus 로고
    • On the entropy of continuous probability distributions
    • Lazo, A.V., Rathie, P.N.: On the Entropy of Continuous Probability Distributions. IEEE Trans. on Information Theory 24(1), 120-122 (1978)
    • (1978) IEEE Trans. on Information Theory , vol.24 , Issue.1 , pp. 120-122
    • Lazo, A.V.1    Rathie, P.N.2
  • 134
    • 10944243750 scopus 로고    scopus 로고
    • Minimum entropy, k-means, spectral clustering
    • Lee, Y., Choi, S.: Minimum entropy, k-means, spectral clustering. In: IEEE Int. Joint Conf. on Neural Networks, vol. 1, pp. 117-122 (2004)
    • (2004) IEEE Int. Joint Conf. on Neural Networks , vol.1 , pp. 117-122
    • Lee, Y.1    Choi, S.2
  • 135
    • 19744367328 scopus 로고    scopus 로고
    • Maximum within-cluster association
    • Lee, Y., Choi, S.: Maximum within-cluster association. Pattern Recognition Letters 26(10), 1412-1422 (2005)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.10 , pp. 1412-1422
    • Lee, Y.1    Choi, S.2
  • 138
    • 57849084709 scopus 로고    scopus 로고
    • Ensembles of cascading trees
    • Li, J., Liu, H.: Ensembles of cascading trees. In: Int. Conf. Data Mining, pp. 585-588 (2003)
    • (2003) Int. Conf. Data Mining , pp. 585-588
    • Li, J.1    Liu, H.2
  • 140
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Linsker, R.: Self-organization in a perceptual network. IEEE Computer 21, 105-117 (1988)
    • (1988) IEEE Computer , vol.21 , pp. 105-117
    • Linsker, R.1
  • 141
    • 36249029853 scopus 로고    scopus 로고
    • Correntropy: Properties and applications in non-Gaussian signal processing
    • Liu, W., Pokharel, P., Principe, J.: Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. on Signal Processing 55(11), 5286-5298 (2007)
    • (2007) IEEE Trans. on Signal Processing , vol.55 , Issue.11 , pp. 5286-5298
    • Liu, W.1    Pokharel, P.2    Principe, J.3
  • 143
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287-289 (1977)
    • (1977) Science , vol.197 , pp. 287-289
    • MacKey, M.1    Glass, L.2
  • 144
    • 0039302821 scopus 로고
    • Computing probability integrals of a bivariate normal distribution
    • Maghsoodloo, S., Huang, C.: Computing probability integrals of a bivariate normal distribution. Interstat. (334) (1995)
    • (1995) Interstat. ( , vol.334
    • Maghsoodloo, S.1    Huang, C.2
  • 145
    • 0031028741 scopus 로고    scopus 로고
    • Effective back-propagation with variable stepsize
    • Magoulas, G., Vrahatis, M., Androulakis, G.: Effective back-propagation with variable stepsize. Neural Networks 10, 69-82 (1997)
    • (1997) Neural Networks , vol.10 , pp. 69-82
    • Magoulas, G.1    Vrahatis, M.2    Androulakis, G.3
  • 146
    • 0033209687 scopus 로고    scopus 로고
    • Improving the convergence of the backpropagation algorithm using learning rate adaptation methods
    • Magoulas, G., Vrahatis, M., Androulakis, G.: Improving the convergence of the backpropagation algorithm using learning rate adaptation methods. Neural Computation 11(7), 1769-1796 (1999)
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1769-1796
    • Magoulas, G.1    Vrahatis, M.2    Androulakis, G.3
  • 147
    • 77954333874 scopus 로고    scopus 로고
    • Decomposition methodology for knowledge discovery and data mining: Theory and applications
    • Maimon, O., Rokach, L.: Decomposition Methodology for Knowledge Discovery and Data Mining: Theory and Applications. World Scientific Pub. Co. (2005)
    • (2005) World Scientific Pub. Co.
    • Maimon, O.1    Rokach, L.2
  • 151
    • 70349306674 scopus 로고    scopus 로고
    • Decision trees using the minimum entropy-of-error principle
    • Jiang, X., Petkov, N. (eds.) Springer, Heidelberg
    • Marques de Sa, J., Gama, J., Sebastiao, R., Alexandre, L.A.: Decision Trees Using the Minimum Entropy-of-Error Principle. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 799-807. Springer, Heidelberg (2009)
    • (2009) CAIP 2009. LNCS , vol.5702 , pp. 799-807
    • Marques De Sa, J.1    Gama, J.2    Sebastiao, R.3    Alexandre, L.A.4
  • 153
    • 81855161442 scopus 로고    scopus 로고
    • New results on minimum error entropy decision trees
    • San Martin, C., Kim, S.-W. (eds.) Springer, Heidelberg
    • Marques de Sa, J., Sebastiao, R., Gama, J., Fontes, T.: New results on minimum error entropy decision trees. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 355-362. Springer, Heidelberg (2011)
    • (2011) CIARP 2011. LNCS , vol.7042 , pp. 355-362
    • Marques De Sa, J.1    Sebastiao, R.2    Gama, J.3    Fontes, T.4
  • 154
    • 0007841528 scopus 로고
    • Cluster analysis via graph theoretic techniques
    • Mullin, R., Reid, K., Roselle, D. (eds.)
    • Matula, D.: Cluster analysis via graph theoretic techniques. In: Mullin, R., Reid, K., Roselle, D. (eds.) Proc. Luisiana Conf. on Combinatorics, Graph Theory and Computing, pp. 199-212 (1970)
    • (1970) Proc. Luisiana Conf. on Combinatorics, Graph Theory and Computing , pp. 199-212
    • Matula, D.1
  • 155
    • 0007792193 scopus 로고
    • K-components, clusters and slicings in graphs
    • Matula, D.: k-components, clusters and slicings in graphs. SIAM J. Appl. Math. 22(3), 459-480 (1972)
    • (1972) SIAM J. Appl. Math. , vol.22 , Issue.3 , pp. 459-480
    • Matula, D.1
  • 156
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-133 (1943)
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 158
    • 0010518236 scopus 로고    scopus 로고
    • Test of goodness of fit for the inverse-Gaussian distribution
    • Mergel, V.: Test of goodness of fit for the inverse-Gaussian distribution. Math. Commun. 4(2), 191-195 (1999)
    • (1999) Math. Commun. , vol.4 , Issue.2 , pp. 191-195
    • Mergel, V.1
  • 159
    • 34250822407 scopus 로고
    • Estimation of the entropy and information of absolutely continuous random variables
    • Mokkadem, A.: Estimation of the entropy and information of absolutely continuous random variables. IEEE Trans. Information Theory 35(1), 193-196 (1989)
    • (1989) IEEE Trans. Information Theory , vol.35 , Issue.1 , pp. 193-196
    • Mokkadem, A.1
  • 161
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multidisciplinary survey
    • Murthy, S.: Automatic construction of decision trees from data: A multidisciplinary survey. Data Mining and Knowledge Discovery 2(4), 345-389 (1998)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 345-389
    • Murthy, S.1
  • 162
    • 0043237950 scopus 로고    scopus 로고
    • Formulas for Renyi information and related measures for univariate distributions
    • Nadarajah, S., Zografos, K.: Formulas for Renyi information and related measures for univariate distributions. Inf. Sci. 155(1-2), 119-138 (2003)
    • (2003) Inf. Sci. , vol.155 , Issue.1-2 , pp. 119-138
    • Nadarajah, S.1    Zografos, K.2
  • 164
    • 0030520369 scopus 로고    scopus 로고
    • Csiszar's generalized error measures for gradient-descent-based optimizations in neural networks using the backpropagation algorithm
    • Neelakanta, P., Abusalah, S., Groff, D., Sudhakar, R., Park, J.: Csiszar's generalized error measures for gradient-descent-based optimizations in neural networks using the backpropagation algorithm. Connection Science 8(1), 79-114 (1996)
    • (1996) Connection Science , vol.8 , Issue.1 , pp. 79-114
    • Neelakanta, P.1    Abusalah, S.2    Groff, D.3    Sudhakar, R.4    Park, J.5
  • 165
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, J., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308-313 (1965)
    • (1965) Computer Journal , vol.7 , pp. 308-313
    • Nelder, J.1    Mead, R.2
  • 167
    • 1542435014 scopus 로고    scopus 로고
    • Entropy learning and relevance criteria for neural network pruning
    • Ng, G., Wahab, A., Shi, D.: Entropy learning and relevance criteria for neural network pruning. Int. Journal of Neural Systems 13(5), 291-305 (2003)
    • (2003) Int. Journal of Neural Systems , vol.13 , Issue.5 , pp. 291-305
    • Ng, G.1    Wahab, A.2    Shi, D.3
  • 168
    • 33646939196 scopus 로고
    • Probability, random variables and stochastic processes
    • Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill Co. Inc. (1991)
    • (1991) McGraw-Hill Co. Inc.
    • Papoulis, A.1
  • 169
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and the mode
    • Parzen, E.: On the estimation of a probability density function and the mode. Annals of Mathematical Statistics 33, 1065-1076 (1962)
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 170
    • 0031240408 scopus 로고    scopus 로고
    • Entropic analysis and incremental synthesis of multilayered feedforward neural networks
    • Pelagotti, A., Piuri, V.: Entropic analysis and incremental synthesis of multilayered feedforward neural networks. Int. Journal of Neural Systems 8(5-6), 647-659 (1997)
    • (1997) Int. Journal of Neural Systems , vol.8 , Issue.5-6 , pp. 647-659
    • Pelagotti, A.1    Piuri, V.2
  • 171
    • 0038764011 scopus 로고    scopus 로고
    • Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
    • Perez-Ortiz, J., Gers, F., Eck, D., Schmidhuber, J.: Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks 16(2), 241-250 (2003)
    • (2003) Neural Networks , vol.16 , Issue.2 , pp. 241-250
    • Perez-Ortiz, J.1    Gers, F.2    Eck, D.3    Schmidhuber, J.4
  • 172
    • 0001300564 scopus 로고
    • Automatic screening of normal and abnormal electrocardiograms by means of digital electronic computer
    • Pipberger, H., Arms, R., Stallmann, F.: Automatic screening of normal and abnormal electrocardiograms by means of digital electronic computer. In: Proc. Soc. Exp. Biol. Med., pp. 106-130 (1961)
    • (1961) Proc. Soc. Exp. Biol. Med. , pp. 106-130
    • Pipberger, H.1    Arms, R.2    Stallmann, F.3
  • 173
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter, M.: An algorithm for suffix stripping. Program 14(3), 130-137 (1980)
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.1
  • 174
    • 80053054924 scopus 로고    scopus 로고
    • Information theoretic learning: renyi's entropy and kernel perspectives
    • Principe, J.: Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives. Springer (2010)
    • (2010) Springer
    • Principe, J.1
  • 175
    • 0034245254 scopus 로고    scopus 로고
    • Learning from examples with information theoretic criteria
    • Principe, J., Xu, D.: Learning from examples with information theoretic criteria. Journal of VLSI Signal Processing Systems 26(1-2), 61-77 (2000)
    • (2000) Journal of VLSI Signal Processing Systems , vol.26 , Issue.1-2 , pp. 61-77
    • Principe, J.1    Xu, D.2
  • 176
    • 84867523961 scopus 로고    scopus 로고
    • Pearson curves
    • Hazewinkel, M. (ed.) Kluwer Academic Pub.
    • Prokhorov, A.V.: Pearson Curves. In: Hazewinkel, M. (ed.) Encyclopaedia of Mathematics. Kluwer Academic Pub. (2002)
    • (2002) Encyclopaedia of Mathematics
    • Prokhorov, A.V.1
  • 180
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846-850 (1971)
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.1
  • 182
    • 0019020917 scopus 로고
    • On dimesionality, sample size, classification error, and complexity of classification algorithm in pattern recognition
    • Raudys, S., Pikelis, V.: On dimesionality, sample size, classification error, and complexity of classification algorithm in pattern recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 2(3), 242-252 (1980)
    • (1980) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.2 , Issue.3 , pp. 242-252
    • Raudys, S.1    Pikelis, V.2
  • 183
    • 0003981318 scopus 로고
    • Elsevier Science Pub. Co. Inc.
    • Renyi, A.: Probability Theory. Elsevier Science Pub. Co. Inc. (1970)
    • (1970) Probability Theory
    • Renyi, A.1
  • 184
    • 84867538567 scopus 로고
    • An introduction to information theory
    • Reza, F.: An Introduction to Information Theory. Dover Pub. (1994)
    • (1994) Dover Pub.
    • Reza, F.1
  • 185
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard, M., Lippmann, R.: Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation 3, 461-483 (1991)
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.1    Lippmann, R.2
  • 186
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The Rprop algorithm
    • Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The Rprop algorithm. In: IEEE Int. Conf. on Neural Networks, pp. 586-591 (1993)
    • (1993) IEEE Int. Conf. on Neural Networks , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 187
    • 0003838146 scopus 로고
    • The utility driven dynamic error propagation network
    • Cambridge University, Engineering Department
    • Robinson, A., Fallside, F.: The utility driven dynamic error propagation network. Tech. Rep. CUED/F-INFENG/TR.1, Cambridge University, Engineering Department (1987)
    • (1987) Tech. Rep. CUED/F-INFENG/TR. , vol.1
    • Robinson, A.1    Fallside, F.2
  • 191
    • 18544361899 scopus 로고    scopus 로고
    • A one-dimensional analysis for the probability of error of linear classifiers for normally distributed classes
    • Rueda, L.: A one-dimensional analysis for the probability of error of linear classifiers for normally distributed classes. Pattern Recognition 38(8), 1197-1207 (2005)
    • (2005) Pattern Recognition , vol.38 , Issue.8 , pp. 1197-1207
    • Rueda, L.1
  • 192
    • 0022471098 scopus 로고
    • Learning representations by backpropagation errors
    • Rumelhart, D., Hinton, G., Williams, R.: Learning representations by backpropagation errors. Nature 323, 533-536 (1986)
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 193
    • 0036738964 scopus 로고    scopus 로고
    • Any reasonable cost function can be used for a posteriori probability approximation
    • Saerens, M., Latinne, P., Decaestecker, C.: Any reasonable cost function can be used for a posteriori probability approximation. IEEE Trans. on Neural Networks 13(5), 1204-1210 (2002)
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.5 , pp. 1204-1210
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 195
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S.: On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1, 317-327 (1997)
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-327
    • Salzberg, S.1
  • 196
    • 33744538091 scopus 로고    scopus 로고
    • Generalized correlation function: Definition, properties, and application to blind equalization
    • Santamaria, I., Pokharel, P., Principe, J.: Generalized correlation function: definition, properties, and application to blind equalization. IEEE Trans. on Signal Processing 54(6-1), 2187-2197 (2006)
    • (2006) IEEE Trans. on Signal Processing , vol.54 , Issue.6-11 , pp. 2187-2197
    • Santamaria, I.1    Pokharel, P.2    Principe, J.3
  • 202
    • 33646244992 scopus 로고    scopus 로고
    • Batch-sequential algorithm for neural networks trained with entropic criteria
    • Duch, W., Kacprzyk, J., Oja, E., Zadro?ny, S. (eds.) Springer, Heidelberg
    • Santos, J., Marques de Sa, J., Alexandre, L.: Batch-Sequential Algorithm for Neural Networks Trained with Entropic Criteria. In: Duch, W., Kacprzyk, J., Oja, E., Zadro?ny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 91-96. Springer, Heidelberg (2005)
    • (2005) ICANN 2005. LNCS , vol.3697 , pp. 91-96
    • Santos, J.1    Marques De Sa, J.2    Alexandre, L.3
  • 203
    • 21844450579 scopus 로고    scopus 로고
    • Neural networks trained with the eem algorithm: Tuning the smoothing parameter
    • Santos, J., Marques de Sa, J., Alexandre, L.: Neural networks trained with the EEM algorithm: Tuning the smoothing parameter. WSEAS Trans. on Systems 4(4), 295-300 (2005)
    • (2005) WSEAS Trans. on Systems , vol.4 , Issue.4 , pp. 295-300
    • Santos, J.1    Marques De Sa, J.2    Alexandre, L.3
  • 205
    • 21844468374 scopus 로고    scopus 로고
    • Optimization of the error entropy minimization algorithm for neural network classification
    • Dagli, C.H., Buczak, A., Enke, D., Embrechts, M., Ersoy, O. (eds.) ASME Press
    • Santos, J., Marques de Sa, J., Alexandre, L., Sereno, F.: Optimization of the error entropy minimization algorithm for neural network classification. In: Dagli, C.H., Buczak, A., Enke, D., Embrechts, M., Ersoy, O. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks, vol. 14, pp. 81-86. ASME Press (2004)
    • (2004) Intelligent Engineering Systems Through Artificial Neural Networks , vol.14 , pp. 81-86
    • Santos, J.1    Marques De Sa, J.2    Alexandre, L.3    Sereno, F.4
  • 206
    • 69249205575 scopus 로고    scopus 로고
    • A new learning algorithm with logarithmic performance index for complex-valued neural networks
    • Savitha, R., Suresh, S., Sundararajan, N., Saratchandran, P.: A new learning algorithm with logarithmic performance index for complex-valued neural networks. Neurocomputing 72, 3771-3781 (2009)
    • (2009) Neurocomputing , vol.72 , pp. 3771-3781
    • Savitha, R.1    Suresh, S.2    Sundararajan, N.3    Saratchandran, P.4
  • 208
    • 0000989949 scopus 로고
    • Non-mean-square error criteria
    • Sherman, S.: Non-mean-square error criteria. IRE Trans. Information Theory 4(3), 125-126 (1958)
    • (1958) IRE Trans. Information Theory , vol.4 , Issue.3 , pp. 125-126
    • Sherman, S.1
  • 210
    • 0002824981 scopus 로고
    • Speeding up backpropagation
    • Eckmiller, R. (ed.)
    • Silva, F., Almeida, L.: Speeding up backpropagation. In: Eckmiller, R. (ed.) Advanced Neural Computers, pp. 151-158 (1990)
    • (1990) Advanced Neural Computers , pp. 151-158
    • Silva, F.1    Almeida, L.2
  • 213
    • 27244450344 scopus 로고    scopus 로고
    • Neural network classification: maximizing zero-error density
    • Singh, S., Singh, M., Apte, C., Perner, P. (eds.) Springer, Heidelberg
    • Silva, L.M., Alexandre, L.A., Marques de Sa, J.: Neural Network Classification: Maximizing Zero-Error Density. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 127-135. Springer, Heidelberg (2005)
    • (2005) ICAPR 2005. LNCS , vol.3686 , pp. 127-135
    • Silva, L.M.1    Alexandre, L.A.2    Marques De Sa, J.3
  • 215
    • 58849129862 scopus 로고    scopus 로고
    • The influence of the risk functional in data classification with mlps
    • K?rkova, V., Neruda, R., Koutnik, J. (eds.) Springer, Heidelberg
    • Silva, L.M., Embrechts, M.J., Santos, J.M., Marques de Sa, J.: The Influence of the Risk Functional in Data Classification with MLPs. In: K?rkova, V., Neruda, R., Koutnik, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 185-194. Springer, Heidelberg (2008)
    • (2008) ICANN 2008, Part I. LNCS , vol.5163 , pp. 185-194
    • Silva, L.M.1    Embrechts, M.J.2    Santos, J.M.3    Marques De Sa, J.4
  • 216
    • 33748288090 scopus 로고    scopus 로고
    • Error entropy in classification problems: A univariate data analysis
    • Silva, L.M., Felgueiras, C., Alexandre, L., Marques de Sa, J.: Error entropy in classification problems: a univariate data analysis. Neural Computation 18(9), 2036-2061 (2006)
    • (2006) Neural Computation , vol.18 , Issue.9 , pp. 2036-2061
    • Silva, L.M.1    Felgueiras, C.2    Alexandre, L.3    Marques De Sa, J.4
  • 218
    • 54449100428 scopus 로고    scopus 로고
    • Data classification with multilayer perceptrons using a generalized error function
    • Silva, L.M., Marques de Sa, J., Alexandre, L.: Data classification with multilayer perceptrons using a generalized error function. Neural Networks 21(9), 1302-1310 (2008)
    • (2008) Neural Networks , vol.21 , Issue.9 , pp. 1302-1310
    • Silva, L.M.1    Marques De Sa, J.2    Alexandre, L.3
  • 219
    • 78149334887 scopus 로고    scopus 로고
    • The MEE principle in data classification: A perceptron-based analysis
    • Silva, L.M., Marques de Sa, J., Alexandre, L.: The MEE principle in data classification: A perceptron-based analysis. Neural Computation 22(10), 2698-2728 (2010)
    • (2010) Neural Computation , vol.22 , Issue.10 , pp. 2698-2728
    • Silva, L.M.1    Marques De Sa, J.2    Alexandre, L.3
  • 222
    • 12944295719 scopus 로고
    • Some inequalities satisfied by the quantities of information of Fisher and Shannon
    • Stam, A.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Information and Control 2, 101-112 (1959)
    • (1959) Information and Control , vol.2 , pp. 101-112
    • Stam, A.1
  • 223
    • 0004561183 scopus 로고
    • Univariate two-population distribution free discrimination
    • Stoller, D.: Univariate two-population distribution free discrimination. Journal of the American Statistical Association 49, 770-777 (1954)
    • (1954) Journal of the American Statistical Association , vol.49 , pp. 770-777
    • Stoller, D.1
  • 226
    • 2442573834 scopus 로고    scopus 로고
    • Entropy-based generation of supervised neural networks for classification of structured patterns
    • Tsai, H., Lee, S.: Entropy-based generation of supervised neural networks for classification of structured patterns. IEEE Trans. on Neural Networks 15(2), 283-297 (2004)
    • (2004) IEEE Trans. on Neural Networks , vol.15 , Issue.2 , pp. 283-297
    • Tsai, H.1    Lee, S.2
  • 229
    • 34547404361 scopus 로고    scopus 로고
    • A comparison of spectral clustering algorithms
    • 03-05-01, Washington University
    • Verma, D., Meila, M.: A comparison of spectral clustering algorithms. Tech. Rep. UW-CSE-03-05-01, Washington University (2003)
    • (2003) Tech. Rep. UW-CSE
    • Verma, D.1    Meila, M.2
  • 231
    • 33751037160 scopus 로고    scopus 로고
    • Class decomposition via clustering: A new framework for low-variance classifiers
    • Vilalta, R., Achari, M., Eick, C.: Class decomposition via clustering: a new framework for low-variance classifiers. In: IEEE Int. Conf. on Data Mining, pp. 673-676 (2003)
    • (2003) IEEE Int. Conf. on Data Mining , pp. 673-676
    • Vilalta, R.1    Achari, M.2    Eick, C.3
  • 232
    • 34250094997 scopus 로고
    • Accelerating the convergence of the back-propagation method
    • Vogl, T., Mangis, J., Rigler, J., Zink, W., Alkon, D.: Accelerating the convergence of the back-propagation method. Biological Cybernetics 59(4-5), 257-263 (1988)
    • (1988) Biological Cybernetics , vol.59 , Issue.4-5 , pp. 257-263
    • Vogl, T.1    Mangis, J.2    Rigler, J.3    Zink, W.4    Alkon, D.5
  • 233
    • 79957600404 scopus 로고    scopus 로고
    • Statistical learning theory: Models, concepts, and results
    • Gabbay, S.H.D., Woods, J. (eds.) Elsevier
    • von Luxburg, U., Scholkopf, B.: Statistical learning theory: Models, concepts, and results. In: Gabbay, S.H.D., Woods, J. (eds.) Handbook for the History of Logic. Inductive Logic, vol. 10, Elsevier (2011)
    • (2011) Handbook for the History of Logic. Inductive Logic , vol.10
    • Von Luxburg, U.1    Scholkopf, B.2
  • 234
    • 34247634684 scopus 로고    scopus 로고
    • A mutual information based face clustering algorithm for movies
    • IEEE
    • Vretos, N., Solachildis, V., Pitas, I.: A mutual information based face clustering algorithm for movies. In: Int. Conf. on Multimedia and Expo, pp. 1013-1016. IEEE (2006)
    • (2006) Int. Conf. on Multimedia and Expo , pp. 1013-1016
    • Vretos, N.1    Solachildis, V.2    Pitas, I.3
  • 236
    • 27144498981 scopus 로고    scopus 로고
    • Recognition of Leaf Images based on Shape Features using a Hypersphere Classifier
    • Huang,D.-S., Zhang, X.-P., Huang, G.-B. (eds.) Springer,Heidelberg
    • Wang, X.F., Du, J.X., Zhang, G.J.: Recognition of Leaf Images based on Shape Features using a Hypersphere Classifier. In: Huang,D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 87-96. Springer,Heidelberg (2005)
    • (2005) ICIC 2005. LNCS , vol.3644 , pp. 87-96
    • Wang, X.F.1    Du, J.X.2    Zhang, G.J.3
  • 237
    • 0019390123 scopus 로고
    • Pattern recognition as a quest for minimum entropy
    • Watanabe, S.: Pattern recognition as a quest for minimum entropy. Pattern Recognition 13(5), 381-387 (1981)
    • (1981) Pattern Recognition , vol.13 , Issue.5 , pp. 381-387
    • Watanabe, S.1
  • 240
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • Werbos, P.: Generalization of backpropagation with application to a recurrent gas market model. Neural Networks 1(4), 339-356 (1988)
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 339-356
    • Werbos, P.1
  • 241
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1, 270-280 (1989)
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 242
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Chauvin, Y., Rumelhart, D.E. (eds.) Erlbaum, Hillsdale
    • Williams, R., Zipser, D.: Gradient-based learning algorithms for recurrent networks and their computational complexity. In: Chauvin, Y., Rumelhart, D.E. (eds.) Back-propagation: Theory, Architectures and Applications. Erlbaum, Hillsdale (1995)
    • (1995) Back-propagation: Theory, Architectures and Applications
    • Williams, R.1    Zipser, D.2
  • 244
    • 0027697605 scopus 로고
    • An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation
    • Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Trans. on Pattern Analysis and Machine Learning 15(11), 1101-1113 (1993)
    • (1993) IEEE Trans. on Pattern Analysis and Machine Learning , vol.15 , Issue.11 , pp. 1101-1113
    • Wu, Z.1    Leahy, R.2
  • 248
    • 84867536305 scopus 로고    scopus 로고
    • Xu, X.: Dbscan, http://ifsc.ualr.edu/xwxu
    • Dbscan
    • Xu, X.1
  • 250
    • 0042740660 scopus 로고    scopus 로고
    • A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy
    • Yuan, H., Xiong, F., Huai, X.: A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy. Computers and Electronics in Agriculture 40(1-3), 57-64 (2003)
    • (2003) Computers and Electronics in Agriculture , vol.40 , Issue.1-3 , pp. 57-64
    • Yuan, H.1    Xiong, F.2    Huai, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.