메뉴 건너뛰기




Volumn 5163 LNCS, Issue PART 1, 2008, Pages 185-194

The influence of the risk functional in data classification with MLPs

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX MAPPING; DATA CLASSIFICATION; DATA SETS; FUNCTIONALS; MINIMUM PROBABILITY OF ERROR; MLP CLASSIFIERS; MULTI LAYER PERCEPTRON; MULTI-LAYER PERCEPTRONS; OPTIMAL PERFORMANCE; STATISTICAL ANALYSIS; WEIGHTED DISTANCE;

EID: 58849129862     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-87536-9_20     Document Type: Conference Paper
Times cited : (5)

References (17)
  • 1
    • 54449100428 scopus 로고    scopus 로고
    • Silva, L.M., Alexandre, L.A., Marques de Sá, J.: Data classification with multilayer perceptrons using a generalized error function. Neural Networks (2008) doi:10.1016/j.neunet.2008.04,004
    • Silva, L.M., Alexandre, L.A., Marques de Sá, J.: Data classification with multilayer perceptrons using a generalized error function. Neural Networks (2008) doi:10.1016/j.neunet.2008.04,004
  • 2
    • 0036737108 scopus 로고    scopus 로고
    • Generalized information potential criterion for adaptive system training
    • Erdogmus, D., Principe, J.C.: Generalized information potential criterion for adaptive system training. IEEE Transactions on Neural Networks 13(5), 1035-1044 (2002)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1035-1044
    • Erdogmus, D.1    Principe, J.C.2
  • 3
    • 0036647905 scopus 로고    scopus 로고
    • An Error-Entropy Minimization Algorithm for Supervised Training of Nonlinear Adaptive Systems
    • Erdogmus, D., Principe, J.C.: An Error-Entropy Minimization Algorithm for Supervised Training of Nonlinear Adaptive Systems. IEEE Transactions on Signal Processing 50(7), 1780-1786 (2002)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.7 , pp. 1780-1786
    • Erdogmus, D.1    Principe, J.C.2
  • 7
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E.B., Haussler, D.: What size net gives valid generalization? Neural Computation 1(1), 151-160 (1990)
    • (1990) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 8
    • 21844450579 scopus 로고    scopus 로고
    • Neural Networks Trained with the EEM Algorithm: Tuning the Smoothing Parameter
    • Santos, J.M., Marques de Sá, J., Alexandre, L.A.: Neural Networks Trained with the EEM Algorithm: Tuning the Smoothing Parameter. WSEAS Transactions on Systems 4(4), 295-300 (2005)
    • (2005) WSEAS Transactions on Systems , vol.4 , Issue.4 , pp. 295-300
    • Santos, J.M.1    Marques de Sá, J.2    Alexandre, L.A.3
  • 10
    • 84957717057 scopus 로고    scopus 로고
    • Introduction to Scientific Data Mining: Direct Kernel Methods and Applications
    • ch. 10, pp, Wiley Interscience, Chichester
    • Embrechts, M.J., Szymanski, B., Sternickel, M.: Introduction to Scientific Data Mining: Direct Kernel Methods and Applications. In: Computationally Intelligent Hybrid Systems, ch. 10, pp. 317-363. Wiley Interscience, Chichester (2004)
    • (2004) Computationally Intelligent Hybrid Systems , pp. 317-363
    • Embrechts, M.J.1    Szymanski, B.2    Sternickel, M.3
  • 11
    • 2442514721 scopus 로고    scopus 로고
    • An Optimization Perspective on Kernel Partial Least Squares Regression
    • Advances in Learning Theory: Methods, 190, pp, IOS Press, Amsterdam
    • Bennett, K.P., Embrechts, M.J.: An Optimization Perspective on Kernel Partial Least Squares Regression. In: Advances in Learning Theory: Methods, Models and Applications. NATO Science Series, Series III: Computer and System Sciences, vol. 190, pp. 227-249. IOS Press, Amsterdam (2003)
    • (2003) Models and Applications. NATO Science Series , vol.3 , pp. 227-249
    • Bennett, K.P.1    Embrechts, M.J.2
  • 12
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Processing Letters 9(3), 293-300 (1999)
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 14
    • 0037313407 scopus 로고    scopus 로고
    • SMO algorithm for least squares SVM formulations
    • Keerthi, S.S., Shevade, S.K.: SMO algorithm for least squares SVM formulations. Neural Computation 15, 487-507 (2003)
    • (2003) Neural Computation , vol.15 , pp. 487-507
    • Keerthi, S.S.1    Shevade, S.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.