메뉴 건너뛰기




Volumn 72, Issue 4-6, 2009, Pages 945-955

Single-layered complex-valued neural network for real-valued classification problems

Author keywords

Activation function; Classification; Complex valued neural networks; Generalization; Phase encoding

Indexed keywords

ACTIVATION FUNCTION; CLASSIFICATION; COMPLEX-VALUED NEURAL NETWORKS; GENERALIZATION; PHASE-ENCODING;

EID: 58149460022     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.04.006     Document Type: Article
Times cited : (170)

References (17)
  • 1
    • 33748371451 scopus 로고    scopus 로고
    • Multilayer feedforward neural network based on multi-valued neurons and a backpropagation learning algorithm
    • Aizenberg I., and Moraga C. Multilayer feedforward neural network based on multi-valued neurons and a backpropagation learning algorithm. Soft Comput. 11 2 (2007) 169-183
    • (2007) Soft Comput. , vol.11 , Issue.2 , pp. 169-183
    • Aizenberg, I.1    Moraga, C.2
  • 2
    • 58149462332 scopus 로고    scopus 로고
    • Application of complex-valued neural networks for image processing
    • Hirose A. (Ed), World Scientific Publishing, Singapore
    • Aoki H. Application of complex-valued neural networks for image processing. In: Hirose A. (Ed). Complex-Valued Neural Networks: Theories and Applications vol. 5 (2003), World Scientific Publishing, Singapore 181-204
    • (2003) Complex-Valued Neural Networks: Theories and Applications , vol.5 , pp. 181-204
    • Aoki, H.1
  • 4
    • 0028501207 scopus 로고
    • Applications of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme
    • Hirose A. Applications of complex-valued neural networks to coherent optical computing using phase-sensitive detection scheme. Inf. Sci.-Appl. 2 2 (1994) 103-117
    • (1994) Inf. Sci.-Appl. , vol.2 , Issue.2 , pp. 103-117
    • Hirose, A.1
  • 6
    • 0024880831 scopus 로고
    • Multilayer Feedforward networks are universal approximators
    • Hornik K., Stinchombe M., and White H. Multilayer Feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 8
    • 0026219227 scopus 로고
    • The complex backpropagation algorithm
    • Leung H., and Haykin S. The complex backpropagation algorithm. IEEE Trans. Signal Process. 39 9 (1991) 2101-2104
    • (1991) IEEE Trans. Signal Process. , vol.39 , Issue.9 , pp. 2101-2104
    • Leung, H.1    Haykin, S.2
  • 9
    • 85131707179 scopus 로고    scopus 로고
    • H.E. Michel, A.A.S. Awwal, Enhanced artificial neural networks using complex-numbers, in: Proceedings of IJCNN'99 International Joint Conference on Neural Networks, vol. 1, 1999, pp. 456-461.
    • H.E. Michel, A.A.S. Awwal, Enhanced artificial neural networks using complex-numbers, in: Proceedings of IJCNN'99 International Joint Conference on Neural Networks, vol. 1, 1999, pp. 456-461.
  • 10
    • 0031277466 scopus 로고    scopus 로고
    • An extension of the backpropagation algorithm to complex numbers
    • Nitta T. An extension of the backpropagation algorithm to complex numbers. Neural Networks 10 8 (1997) 1391-1415
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1391-1415
    • Nitta, T.1
  • 11
    • 0037243394 scopus 로고    scopus 로고
    • On the inherent property of the decision boundary in complex-valued neural networks
    • Nitta T. On the inherent property of the decision boundary in complex-valued neural networks. Neurocomputing 50 C (2003) 291-303
    • (2003) Neurocomputing , vol.50 , Issue.C , pp. 291-303
    • Nitta, T.1
  • 12
    • 0041833488 scopus 로고    scopus 로고
    • Solving the XOR problem and the detection of symmetry using a single complex-valued neuron
    • Nitta T. Solving the XOR problem and the detection of symmetry using a single complex-valued neuron. Neural Networks 16 8 (2003) 1101-1105
    • (2003) Neural Networks , vol.16 , Issue.8 , pp. 1101-1105
    • Nitta, T.1
  • 13
    • 47249150871 scopus 로고    scopus 로고
    • Three-dimensional vector valued neural network and its generalization ability
    • Nitta T. Three-dimensional vector valued neural network and its generalization ability. Neural Inf. Process.-Lett. Rev. 10 10 (2006) 237-242
    • (2006) Neural Inf. Process.-Lett. Rev. , vol.10 , Issue.10 , pp. 237-242
    • Nitta, T.1
  • 14
    • 58149470897 scopus 로고    scopus 로고
    • L. Prechelt, PROBEN1-A Set of Benchmarks and Benchmarking Rules for Neural Network Training Algorithms, University of Karlsruhe, Germany, Available FTP: 〈ftp.ira.uka.de/pub/neuron/proben1.tar.gz〉.
    • L. Prechelt, PROBEN1-A Set of Benchmarks and Benchmarking Rules for Neural Network Training Algorithms, University of Karlsruhe, Germany, Available FTP: 〈ftp.ira.uka.de/pub/neuron/proben1.tar.gz〉.
  • 15
    • 58149470898 scopus 로고    scopus 로고
    • Adaptive interferometric radar image processing by complex-valued neural networks
    • Hirose A. (Ed), World Scientific Publishing, Singapore
    • Suksmono A.B., and Hirose A. Adaptive interferometric radar image processing by complex-valued neural networks. In: Hirose A. (Ed). Complex-Valued Neural Networks: Theories and Applications vol. 5 (2003), World Scientific Publishing, Singapore 277-301
    • (2003) Complex-Valued Neural Networks: Theories and Applications , vol.5 , pp. 277-301
    • Suksmono, A.B.1    Hirose, A.2
  • 16
    • 0016494934 scopus 로고
    • The complex LMS algorithm
    • Widrow B., McCool J., and Ball M. The complex LMS algorithm. Proc. IEEE 63 4 (1975) 719-720
    • (1975) Proc. IEEE , vol.63 , Issue.4 , pp. 719-720
    • Widrow, B.1    McCool, J.2    Ball, M.3
  • 17
    • 0025651706 scopus 로고
    • Multisurface method of pattern separation for medical diagnosis applied to breast cytology
    • Wolberg W.H., and Mangasarian O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc. Natl. Acad. Sci. 87 (1990) 9193-9196
    • (1990) Proc. Natl. Acad. Sci. , vol.87 , pp. 9193-9196
    • Wolberg, W.H.1    Mangasarian, O.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.