-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0035478854
-
Random forest
-
L. Breiman. Random forest. Machine Learning, 45:5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:139-158, 2000.
-
(2000)
Machine Learning
, vol.40
, pp. 139-158
-
-
Dietterich, T.G.1
-
5
-
-
0002978642
-
Experiments with a new boosting algorithm
-
L. Saitta, editor, Bari, Italy, July Morgan Kaufmann
-
Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In L. Saitta, editor, Machine Learning: Proceedings of the Thirteenth International Conference, pages 148-156, Bari, Italy, July 1996. Morgan Kaufmann.
-
(1996)
Machine Learning: Proceedings of the Thirteenth International Conference
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
0037245821
-
Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients
-
J. Li, H. Liu, J. R. Downing, A. E.-J. Yeoh, and L. Wong. Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics, 19:71-78, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 71-78
-
-
Li, J.1
Liu, H.2
Downing, J.R.3
Yeoh, A.E.-J.4
Wong, L.5
-
8
-
-
7244225752
-
Discovery of significant rules for classifying cancer diagnosis data
-
To appear
-
J. Li, H. Liu, S.-K. Ng, and L. Wong. Discovery of significant rules for classifying cancer diagnosis data. Bioinformatics, 19:To appear, 2003.
-
(2003)
Bioinformatics
, vol.19
-
-
Li, J.1
Liu, H.2
Ng, S.-K.3
Wong, L.4
-
9
-
-
0036083435
-
Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns
-
J. Li and L. Wong. Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns. Bioinformatics, 18:725-734, 2002.
-
(2002)
Bioinformatics
, vol.18
, pp. 725-734
-
-
Li, J.1
Wong, L.2
-
11
-
-
19044399684
-
Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
-
E.-J. Yeoh, M. E. Ross, S. A. Shurtleff, W. K. Williams, D. Patel, R. Mahfouz, F. G. Behm, S. C. Raimondi, M. V. Relling, A. Patel, C. Cheng, D. Campana, D. Wilkins, X. Zhou, J. Li, H. Liu, C.-H. Pui, W. E. Evans, C. Naeve, L. Wong, and J. R. Downing. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1:133-143, 2002.
-
(2002)
Cancer Cell
, vol.1
, pp. 133-143
-
-
Yeoh, E.-J.1
Ross, M.E.2
Shurtleff, S.A.3
Williams, W.K.4
Patel, D.5
Mahfouz, R.6
Behm, F.G.7
Raimondi, S.C.8
Relling, M.V.9
Patel, A.10
Cheng, C.11
Campana, D.12
Wilkins, D.13
Zhou, X.14
Li, J.15
Liu, H.16
Pui, C.-H.17
Evans, W.E.18
Naeve, C.19
Wong, L.20
Downing, J.R.21
more..
|