메뉴 건너뛰기




Volumn 6, Issue 1, 2003, Pages 1-9

From data topology to a modular classifier

Author keywords

Clustering; Distributed and modular classification systems; Learning; Neural networks; Pattern recognition

Indexed keywords

CLASSIFICATION SYSTEM; CLUSTERING; HANDWRITTEN DIGIT RECOGNITION; HIER-ARCHICAL CLUSTERING; K-NEAREST NEIGHBOR CLASSIFIER; LEARNING; MULTI LAYER PERCEPTRON; REPRESENTATION SPACE;

EID: 34547505554     PISSN: 14332833     EISSN: 14332825     Source Type: Journal    
DOI: 10.1007/s10032-002-0095-3     Document Type: Article
Times cited : (3)

References (40)
  • 2
    • 0001391075 scopus 로고
    • GAL: Networks that grow when they learn and shrink when they forget
    • Alpaydin E (1994) GAL: networks that grow when they learn and shrink when they forget. Int J Pattern Recogn Artificial Intell 8:391-414
    • (1994) Int J Pattern Recogn Artificial Intell , vol.8 , pp. 391-414
    • Alpaydin, E.1
  • 3
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • Ash T (1989) Dynamic node creation in backpropagation networks. Connection Sci 1:365-375
    • (1989) Connection Sci , vol.1 , pp. 365-375
    • Ash, T.1
  • 4
    • 84892706402 scopus 로고
    • Comparison of genetic and other unconstrained optimisation methods
    • In:, Pearson DW, Steele NC, Albrecht RF (eds), Springer, Berlin Heidelberg New York
    • Autere A (1995) Comparison of genetic and other unconstrained optimisation methods. In: Pearson DW, Steele NC, Albrecht RF (eds) Artificial neural nets and genetic algorithms. Springer, Berlin Heidelberg New York, pp 348-351
    • (1995) Artificial neural nets and genetic algorithms , pp. 348-351
    • Autere, A.1
  • 6
    • 0002279798 scopus 로고
    • Evolving network: Using the genetic algorithm with connectionist learning
    • In, Langton CG (ed), Addison-Wesley, Reading, MA
    • Belew RK et al. (1991) Evolving network: using the genetic algorithm with connectionist learning. In: Langton CG (ed) Artificial life II, SFI studies in the sciences of complexity, vol X. Addison-Wesley, Reading, MA, pp 511-547
    • (1991) Artificial life II, SFI studies in the sciences of complexity , vol.10 , pp. 511-547
    • Belew, R.K.1
  • 7
    • 0030356761 scopus 로고    scopus 로고
    • Learning from examples, agents teams and the concept of reflection
    • Beyer U, Smieja F (1996) Learning from examples, agents teams and the concept of reflection. Int J Pattern Recogn Artificial Intell 10(3):251-272
    • (1996) Int J Pattern Recogn Artificial Intell , vol.10 , Issue.3 , pp. 251-272
    • Beyer, U.1    Smieja, F.2
  • 10
    • 0000155950 scopus 로고
    • The cascade correlation learning architecture
    • In, Touretsky DS (ed), Morgan Kauffmann, San Mateo, CA
    • Fahlman SE, Lebiere C (1990) The cascade correlation learning architecture. In: Touretsky DS (ed) Advances in neural information processing systems 2. Morgan Kauffmann, San Mateo, CA, pp 524-532
    • (1990) Advances in neural information processing systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 11
    • 0034072495 scopus 로고    scopus 로고
    • Combination of neural and statistical algorithms for supervised classification of remote-sensing images
    • Giancinto G, Roli F, Bruzzone L (2000) Combination of neural and statistical algorithms for supervised classification of remote-sensing images. Pattern Recogn Lett 21:385-397
    • (2000) Pattern Recogn Lett , vol.21 , pp. 385-397
    • Giancinto, G.1    Roli, F.2    Bruzzone, L.3
  • 12
    • 0002478960 scopus 로고    scopus 로고
    • Hierarchical classification
    • In, Arabie P, Hubert LJ, DeSoete G (ed), World Scientific, River Edge, NJ
    • Gordon AD (1996) Hierarchical classification. In: Arabie P, Hubert LJ, DeSoete G (ed) Clustering and classification. World Scientific, River Edge, NJ, pp 65-121
    • (1996) Clustering and classification , pp. 65-121
    • Gordon, A.D.1
  • 16
    • 0033308115 scopus 로고    scopus 로고
    • A new hybrid ANN architecture for active and incremental learning: The self organizing perceptron (SOP) network
    • In:, International joint conference on artificial neural networks, Washington, DC
    • Hebert JF, Parizeau M, Ghazzali N (1999) A new hybrid ANN architecture for active and incremental learning: the self organizing perceptron (SOP) network. In: Proceedings of IJCNN, International joint conference on artificial neural networks, Washington, DC
    • (1999) Proceedings of IJCNN
    • Hebert, J.F.1    Parizeau, M.2    Ghazzali, N.3
  • 17
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251-257
    • (1991) Neural Netw , vol.4 , pp. 251-257
    • Hornik, K.1
  • 26
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2):159-179
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 28
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Giros F (1990) Networks for approximation and learning. Proceedings of the IEEE 78(9):1481-1497
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Giros, F.2
  • 31
    • 0038144387 scopus 로고    scopus 로고
    • Multiple expert classification: A new methodology for parallel decision fusion
    • Rahman AFR, Fairhurst MC (2000) Multiple expert classification: a new methodology for parallel decision fusion. Int J Document Anal Recogn 3(1):40-55
    • (2000) Int J Document Anal Recogn , vol.3 , Issue.1 , pp. 40-55
    • Rahman, A.F.R.1    Fairhurst, M.C.2
  • 35
    • 0030291988 scopus 로고    scopus 로고
    • An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images
    • Serpico SB, Bruzzone L, Roli F (1996) An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images. Pattern Recogn Lett 17:1331-1341
    • (1996) Pattern Recogn Lett , vol.17 , pp. 1331-1341
    • Serpico, S.B.1    Bruzzone, L.2    Roli, F.3
  • 40
    • 0026860706 scopus 로고
    • Methods for combining multiple classifiers and their application to handwriting recognition
    • Xu L, Suen CY (1992) Methods for combining multiple classifiers and their application to handwriting recognition. IEEE Transactions on systems, man and cybernetics, 22:418-435
    • (1992) IEEE Transactions on systems, man and cybernetics , vol.22 , pp. 418-435
    • Xu, L.1    Suen, C.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.