메뉴 건너뛰기




Volumn 1240 LNCS, Issue , 1997, Pages 743-752

Tight bounds on the size of neural networks for classification problems

Author keywords

Boolean functions; Classification problems; Entropy; Neural networks; Size complexity

Indexed keywords

BOOLEAN FUNCTIONS; CLASSIFICATION (OF INFORMATION); ENTROPY;

EID: 84902189013     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/bfb0032533     Document Type: Conference Paper
Times cited : (6)

References (30)
  • 1
    • 0344828792 scopus 로고
    • Connectivity versus entropy
    • D.Z. Anderson (ed.):, (NIPS*87, Denver, CO), American Institute of Physics, NY
    • Abu-Mostafa, Y.S.: Connectivity versus entropy, in D.Z. Anderson (ed.): Neural information processing systems (NIPS*87, Denver, CO), American Institute of Physics, NY (1988) 1-8.
    • (1988) Neural Information Processing Systems , pp. 1-8
    • Abu-Mostafa, Y.S.1
  • 2
    • 0027290318 scopus 로고
    • Bounds on the number of hidden units in binary-valued three-layer neural networks
    • Arai, M.: Bounds on the number of hidden units in binary-valued three-layer neural networks, Neural Networks 6(6) (1993) 855-860.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 855-860
    • Arai, M.1
  • 4
    • 0001632845 scopus 로고
    • On the capabilities of multilayer perceptrons
    • Baum, E.B.: On the Capabilities of Multilayer Perceptrons, J. of Complexity 4 (1988) 193-215.
    • (1988) J. of Complexity , vol.4 , pp. 193-215
    • Baum, E.B.1
  • 5
    • 84902196350 scopus 로고
    • When are k-nearest neighbour and back propagation accurate for feasible size sets of examples?
    • E. Amaldi and E. Mayoraz:, (summer school lecture notes), Swiss Federal Institute of Technology (Lausanne) and Kurt BOsch Academic Institute (Sion)
    • Baum, E.B.: When are k-nearest neighbour and back propagation accurate for feasible size sets of examples?, in E. Amaldi and E. Mayoraz: Mathematical foundations of artificial neural networks (summer school lecture notes), Swiss Federal Institute of Technology (Lausanne) and Kurt BOsch Academic Institute (Sion), 1992.
    • (1992) Mathematical Foundations of Artificial Neural Networks
    • Baum, E.B.1
  • 7
    • 0029696220 scopus 로고    scopus 로고
    • Entropy bounds for classification algorithms
    • Beiu, V.: Entropy bounds for classification algorithms, Neural Network Worm 6(4) (1996) 497-505.
    • (1996) Neural Network Worm , vol.6 , Issue.4 , pp. 497-505
    • Beiu, V.1
  • 10
    • 0344828788 scopus 로고
    • VLSI-optimal neural network learning algorithm
    • D.W. Pearson, N.C. Steele and R.F. Albrecht (eds.), (ICANNGA'95, Ales, France), Springer-Verlag, Vienna
    • Beiu, V., Taylor, J.G.: VLSI-optimal neural network learning algorithm, in D.W. Pearson, N.C. Steele and R.F. Albrecht (eds.): Artificial neural nets and genetic algorithms (ICANNGA'95, Ales, France), Springer-Verlag, Vienna (1995) 61-64.
    • (1995) Artificial Neural Nets and Genetic Algorithms , pp. 61-64
    • Beiu, V.1    Taylor, J.G.2
  • 11
    • 0345691722 scopus 로고    scopus 로고
    • Direct synthesis of neural networks
    • Lausanne, Switzerland), IEEE CS Press, Los Alamitos, CA
    • Beiu, V., Taylor, J.G.: Direct synthesis of neural networks, Proc. MicroNeuro'96 (Lausanne, Switzerland), IEEE CS Press, Los Alamitos, CA (1996) 257-264.
    • (1996) Proc. MicroNeuro'96 , pp. 257-264
    • Beiu, V.1    Taylor, J.G.2
  • 13
    • 84902213867 scopus 로고
    • Polynomial threshold functions, ac functions and spectral norms
    • (67387), 11/15/89, IBM Yorktown Heights, NY
    • Bruck, J., Smolensky, R.: Polynomial threshold functions, AC functions and spectral norms, Res. Rep. RJ 7410 (67387), 11/15/89, IBM Yorktown Heights, NY (1989).
    • (1989) Res. Rep. RJ , vol.7410
    • Bruck, J.1    Smolensky, R.2
  • 14
    • 33644885080 scopus 로고
    • SIAM J, Computing 21(1) (1992) 33-42.
    • (1992) SIAM J, Computing , vol.21 , Issue.1 , pp. 33-42
  • 15
    • 0004259250 scopus 로고    scopus 로고
    • eds., Oxford University Press and the Institute of Physics Publishing, NY
    • Fiesler, E., Beale, R. (eds.): Handbook of neural computation. Oxford University Press and the Institute of Physics Publishing, NY (1996).
    • (1996) Handbook of Neural Computation
    • Fiesler, E.1    Beale, R.2
  • 18
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons of multilayer perceptrons in classification and recognition
    • Huang, S.-C., Huang, Y.-F.: Bounds on the number of hidden neurons of multilayer perceptrons in classification and recognition, IEEE Trans. on Neural Networks 2(1) (1991) 47-55.
    • (1991) IEEE Trans. on Neural Networks , vol.2 , Issue.1 , pp. 47-55
    • Huang, S.-C.1    Huang, Y.-F.2
  • 21
    • 0001687394 scopus 로고
    • The synthesis of circuits from threshold elements
    • Lupanov, O.B.: The synthesis of circuits from threshold elements, Problemy Kibernetiki 20 (1973) 109-140.
    • (1973) Problemy Kibernetiki , vol.20 , pp. 109-140
    • Lupanov, O.B.1
  • 22
    • 0011995096 scopus 로고
    • The synthesis of networks from threshold elements
    • Neciporuk, E.I.: The synthesis of networks from threshold elements, Problemy Kibernetiki 11 (1964) 49-62.
    • (1964) Problemy Kibernetiki , vol.11 , pp. 49-62
    • Neciporuk, E.I.1
  • 26
    • 2342481497 scopus 로고
    • Ph.D. thesis, Laboratoire de l'Informatique du Parallelisme LIP-IMAG, Ecole Normale Superieure de Lyon, 46 Allee d'Italie, 69364 Lyon, France
    • Pangam-Moisy, H.: Optimisation des rs des neurones artificiels. Ph.D. thesis, Laboratoire de l'Informatique du Parallelisme LIP-IMAG, Ecole Normale Superieure de Lyon, 46 Allee d'Italie, 69364 Lyon, France (1992).
    • (1992) Optimisation des Rs des Neurones Artificiels
    • Pangam-Moisy, H.1
  • 27
    • 0002577864 scopus 로고
    • Learning in threshold networks: A computational model and applications
    • IBM Res
    • Raghavan, P.: Learning in threshold networks: A computational model and applications. Tech. Rep. RC 13859, IBM Res. (1988).
    • (1988) Tech. Rep. RC 13859
    • Raghavan, P.1
  • 29
    • 0026367608 scopus 로고
    • Depth-size tradeoffs for neural computations
    • Siu, K.-Y., Roychowdhury, V., Kailath, T.: Depth-size tradeoffs for neural computations, IEEE Trans. on Comp. 40(12) (1991) 1402-1412.
    • (1991) IEEE Trans. on Comp. , vol.40 , Issue.12 , pp. 1402-1412
    • Siu, K.-Y.1    Roychowdhury, V.2    Kailath, T.3
  • 30
    • 0012010299 scopus 로고
    • E-entropy and the complexity of feedforward neural networks
    • R.P. Lippmann, J.E. Moody and D.S. Touretzky (eds.):, (NIPS*90, Denver, CO), Morgan Kaufmann, San Mateo, CA
    • Williamson, R.C." E-entropy and the complexity of feedforward neural networks, in R.P. Lippmann, J.E. Moody and D.S. Touretzky (eds.): Neural information processing systems (NIPS*90, Denver, CO), Morgan Kaufmann, San Mateo, CA (1991) 946-952.
    • (1991) Neural Information Processing Systems , pp. 946-952
    • Williamson, R.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.