-
1
-
-
84995343329
-
Reinforcement learning with long short-term memory
-
T.G. Dietterich, S. Becker, & Z. Ghahramani. Cambridge, MA: MIT Press
-
Bakker B. Reinforcement learning with long short-term memory. Dietterich T.G., Becker S., Ghahramani Z. Advances in neural information processing systems. 2001;MIT Press, Cambridge, MA.
-
(2001)
Advances in neural information processing systems
-
-
Bakker, B.1
-
2
-
-
0034345038
-
Context-free and context-sensitive dynamics in recurrent neural networks
-
Boden M., Wiles J. Context-free and context-sensitive dynamics in recurrent neural networks. Connection Science. 12:(3):2000.
-
(2000)
Connection Science
, vol.12
, Issue.3
-
-
Boden, M.1
Wiles, J.2
-
4
-
-
26444565569
-
Finding structure in time
-
Elman J.L. Finding structure in time. Cognitive Science. (14):1990;179-211.
-
(1990)
Cognitive Science
, Issue.14
, pp. 179-211
-
-
Elman, J.L.1
-
6
-
-
0035505385
-
LSTM recurrent networks learn simple context free and context sensitive languages
-
Gers F.A., Schmidhuber J. LSTM recurrent networks learn simple context free and context sensitive languages. IEEE Transactions on Neural Networks. 12:(6):2002;1333-1340.
-
(2002)
IEEE Transactions on Neural Networks
, vol.12
, Issue.6
, pp. 1333-1340
-
-
Gers, F.A.1
Schmidhuber, J.2
-
8
-
-
0034293152
-
Learning to forget: Continual prediction with LSTM
-
Gers F.A., Schmidhuber J., Cummins F. Learning to forget: continual prediction with LSTM. Neural Computation. 12:(10):2000;2451-2471.
-
(2000)
Neural Computation
, vol.12
, Issue.10
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
11
-
-
0041914606
-
Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
-
S.C. Kremer, & J.F. Kolen. New York: IEEE Press
-
Hochreiter S., Bengio Y., Frasconi P., Schmidhuber J. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. Kremer S.C., Kolen J.F. A field guide to dynamical recurrent neural networks. 2001;IEEE Press, New York.
-
(2001)
A field guide to dynamical recurrent neural networks
-
-
Hochreiter, S.1
Bengio, Y.2
Frasconi, P.3
Schmidhuber, J.4
-
14
-
-
0029375851
-
Gradient calculations for dynamic recurrent neural networks: A survey
-
Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Transactions on Neural Networks. 6:(5):1995;1212-1228.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.5
, pp. 1212-1228
-
-
Pearlmutter, B.A.1
-
15
-
-
0003794792
-
-
Technical Report CMU-CS-86-126, Carnegie-Mellon University, Pittsburgh, PA
-
Plaut, D. C., Nowlan, S. J., & Hinton, G. E. (1986). Experiments on learning back propagation. Technical Report CMU-CS-86-126, Carnegie-Mellon University, Pittsburgh, PA.
-
(1986)
Experiments on Learning Back Propagation
-
-
Plaut, D.C.1
Nowlan, S.J.2
Hinton, G.E.3
-
16
-
-
0028401031
-
Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
-
Puskorius G.V., Feldkamp L.A. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks. 5:(2):1994;279-297.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.2
, pp. 279-297
-
-
Puskorius, G.V.1
Feldkamp, L.A.2
-
17
-
-
0000329355
-
A recurrent error propagation speech recognition system
-
Robinson A.J., Fallside F. A recurrent error propagation speech recognition system. Computer Speech and Language. 5:1991;259-274.
-
(1991)
Computer Speech and Language
, vol.5
, pp. 259-274
-
-
Robinson, A.J.1
Fallside, F.2
-
18
-
-
0002098405
-
-
Cambridge, MA: MIT Press. pp. 87-93
-
Rodriguez P., Wiles J. Advances in Neural Information Processing Systems, 10. Advances in Neural Information Processing Systems, 10. 1998;MIT Press, Cambridge, MA. pp. 87-93.
-
(1998)
Advances in Neural Information Processing Systems, 10. Advances in Neural Information Processing Systems, 10
-
-
Rodriguez, P.1
Wiles, J.2
-
19
-
-
0033098329
-
A recurrent neural network that learns to count
-
Rodriguez P., Wiles J., Elman J. A recurrent neural network that learns to count. Connection Science. 11:(1):1999;5-40.
-
(1999)
Connection Science
, vol.11
, Issue.1
, pp. 5-40
-
-
Rodriguez, P.1
Wiles, J.2
Elman, J.3
-
20
-
-
0001623105
-
A local learning algorithm for dynamic feedforward and recurrent networks
-
Schmidhuber J. A local learning algorithm for dynamic feedforward and recurrent networks. Connection Science. 1:(4):1989;403-412.
-
(1989)
Connection Science
, vol.1
, Issue.4
, pp. 403-412
-
-
Schmidhuber, J.1
-
21
-
-
0000053463
-
3) time complexity learning algorithm for fully recurrent continually running networks
-
3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation. 4:(2):1992;243-248.
-
(1992)
Neural Computation
, vol.4
, Issue.2
, pp. 243-248
-
-
Schmidhuber, J.1
-
22
-
-
0001274675
-
Learning sequential structures with the real-time recurrent learning algorithm
-
Smith A.W., Zipser D. Learning sequential structures with the real-time recurrent learning algorithm. International Journal of Neural Systems. 1:(2):1989;125-131.
-
(1989)
International Journal of Neural Systems
, vol.1
, Issue.2
, pp. 125-131
-
-
Smith, A.W.1
Zipser, D.2
-
23
-
-
3142639916
-
-
Technical Report CS-TR-3118, University of Maryland, College Park
-
Sun, G. Z., Giles, C. L., Chen, H. H., & Lee, Y. C. (1993). The neural network pushdown automaton: model, stack and learning simulations. Technical Report CS-TR-3118, University of Maryland, College Park.
-
(1993)
The Neural Network Pushdown Automaton: Model, Stack and Learning Simulations
-
-
Sun, G.Z.1
Giles, C.L.2
Chen, H.H.3
Lee, Y.C.4
-
24
-
-
0002365180
-
Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks
-
Cambridge, MA: MIT Press. pp. 482-487
-
Wiles J., Elman J. Learning to count without a counter: a case study of dynamics and activation landscapes in recurrent networks. Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society. 1995;MIT Press, Cambridge, MA. pp. 482-487.
-
(1995)
Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society
-
-
Wiles, J.1
Elman, J.2
-
25
-
-
0001609567
-
An efficient gradient-based algorithm for on-line training of recurrent network trajectories
-
Williams R.J., Peng J. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation. 2:(4):1990;490-501.
-
(1990)
Neural Computation
, vol.2
, Issue.4
, pp. 490-501
-
-
Williams, R.J.1
Peng, J.2
-
26
-
-
0001202594
-
A learning algorithm for continually training recurrent neural networks
-
Williams R.J., Zipser D. A learning algorithm for continually training recurrent neural networks. Neural Computation. 1:1989;270-280.
-
(1989)
Neural Computation
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
27
-
-
0001765578
-
Gradient-based learning algorithms for recurrent networks and their computational complexity
-
Y. Chauvin, & D.E. Rumelhart. Hillsdale, NJ: Erlbaum
-
Williams R.J., Zipser D. Gradient-based learning algorithms for recurrent networks and their computational complexity. Chauvin Y., Rumelhart D.E. Back-propagation: theory, architectures and applications. 1992;Erlbaum, Hillsdale, NJ.
-
(1992)
Back-propagation: Theory, architectures and applications
-
-
Williams, R.J.1
Zipser, D.2
|