메뉴 건너뛰기




Volumn 16, Issue 2, 2003, Pages 241-250

Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets

Author keywords

Context sensitive language inference; Decoupled extended Kalman filter; Long short term memory; Online prediction; Recurrent neural networks

Indexed keywords

ALGORITHMIC LANGUAGES; KALMAN FILTERING; PROBLEM SOLVING; ROBUSTNESS (CONTROL SYSTEMS);

EID: 0038764011     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(02)00219-8     Document Type: Article
Times cited : (85)

References (27)
  • 1
    • 84995343329 scopus 로고    scopus 로고
    • Reinforcement learning with long short-term memory
    • T.G. Dietterich, S. Becker, & Z. Ghahramani. Cambridge, MA: MIT Press
    • Bakker B. Reinforcement learning with long short-term memory. Dietterich T.G., Becker S., Ghahramani Z. Advances in neural information processing systems. 2001;MIT Press, Cambridge, MA.
    • (2001) Advances in neural information processing systems
    • Bakker, B.1
  • 2
    • 0034345038 scopus 로고    scopus 로고
    • Context-free and context-sensitive dynamics in recurrent neural networks
    • Boden M., Wiles J. Context-free and context-sensitive dynamics in recurrent neural networks. Connection Science. 12:(3):2000.
    • (2000) Connection Science , vol.12 , Issue.3
    • Boden, M.1    Wiles, J.2
  • 4
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science. (14):1990;179-211.
    • (1990) Cognitive Science , Issue.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0035505385 scopus 로고    scopus 로고
    • LSTM recurrent networks learn simple context free and context sensitive languages
    • Gers F.A., Schmidhuber J. LSTM recurrent networks learn simple context free and context sensitive languages. IEEE Transactions on Neural Networks. 12:(6):2002;1333-1340.
    • (2002) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1333-1340
    • Gers, F.A.1    Schmidhuber, J.2
  • 8
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Gers F.A., Schmidhuber J., Cummins F. Learning to forget: continual prediction with LSTM. Neural Computation. 12:(10):2000;2451-2471.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 14
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Transactions on Neural Networks. 6:(5):1995;1212-1228.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 16
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • Puskorius G.V., Feldkamp L.A. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks. 5:(2):1994;279-297.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 17
    • 0000329355 scopus 로고
    • A recurrent error propagation speech recognition system
    • Robinson A.J., Fallside F. A recurrent error propagation speech recognition system. Computer Speech and Language. 5:1991;259-274.
    • (1991) Computer Speech and Language , vol.5 , pp. 259-274
    • Robinson, A.J.1    Fallside, F.2
  • 19
    • 0033098329 scopus 로고    scopus 로고
    • A recurrent neural network that learns to count
    • Rodriguez P., Wiles J., Elman J. A recurrent neural network that learns to count. Connection Science. 11:(1):1999;5-40.
    • (1999) Connection Science , vol.11 , Issue.1 , pp. 5-40
    • Rodriguez, P.1    Wiles, J.2    Elman, J.3
  • 20
    • 0001623105 scopus 로고
    • A local learning algorithm for dynamic feedforward and recurrent networks
    • Schmidhuber J. A local learning algorithm for dynamic feedforward and recurrent networks. Connection Science. 1:(4):1989;403-412.
    • (1989) Connection Science , vol.1 , Issue.4 , pp. 403-412
    • Schmidhuber, J.1
  • 21
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation. 4:(2):1992;243-248.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 243-248
    • Schmidhuber, J.1
  • 22
    • 0001274675 scopus 로고
    • Learning sequential structures with the real-time recurrent learning algorithm
    • Smith A.W., Zipser D. Learning sequential structures with the real-time recurrent learning algorithm. International Journal of Neural Systems. 1:(2):1989;125-131.
    • (1989) International Journal of Neural Systems , vol.1 , Issue.2 , pp. 125-131
    • Smith, A.W.1    Zipser, D.2
  • 24
    • 0002365180 scopus 로고
    • Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks
    • Cambridge, MA: MIT Press. pp. 482-487
    • Wiles J., Elman J. Learning to count without a counter: a case study of dynamics and activation landscapes in recurrent networks. Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society. 1995;MIT Press, Cambridge, MA. pp. 482-487.
    • (1995) Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society
    • Wiles, J.1    Elman, J.2
  • 25
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Williams R.J., Peng J. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation. 2:(4):1990;490-501.
    • (1990) Neural Computation , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 26
    • 0001202594 scopus 로고
    • A learning algorithm for continually training recurrent neural networks
    • Williams R.J., Zipser D. A learning algorithm for continually training recurrent neural networks. Neural Computation. 1:1989;270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 27
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Y. Chauvin, & D.E. Rumelhart. Hillsdale, NJ: Erlbaum
    • Williams R.J., Zipser D. Gradient-based learning algorithms for recurrent networks and their computational complexity. Chauvin Y., Rumelhart D.E. Back-propagation: theory, architectures and applications. 1992;Erlbaum, Hillsdale, NJ.
    • (1992) Back-propagation: Theory, architectures and applications
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.