메뉴 건너뛰기




Volumn , Issue , 2010, Pages 351-358

A nonparametric information theoretic clustering algorithm

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER DISTRIBUTIONS; DATA POINTS; DATA SETS; INFORMATION THEORETIC CLUSTERING ALGORITHMS; MUTUAL INFORMATIONS; NON-PARAMETRIC; NON-PARAMETRIC ESTIMATIONS; PARAMETRIC MODELS;

EID: 77956520100     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (66)

References (23)
  • 7
    • 16244388254 scopus 로고    scopus 로고
    • A new class of random vector entropy estimators and its applications in testing statistical hypotheses
    • Goria, M., Leonenko, N., Mergel, V. and Inverardi, P. A new class of random vector entropy estimators and its applications in testing statistical hypotheses. J. Non-param. Statist, pp. 277-297, 2005.
    • (2005) J. Non-param. Statist. , pp. 277-297
    • Goria, M.1    Leonenko, N.2    Mergel, V.3    Inverardi, P.4
  • 8
    • 0023325560 scopus 로고
    • On statistical estimation of entropy of random vector
    • Kozachenko, L. and Leonenko, N. On statistical estimation of entropy of random vector. Problems Infor. Trans-miss., 23 (2), 1987.
    • (1987) Problems Infor. Trans-miss. , vol.23 , Issue.2
    • Kozachenko, L.1    Leonenko, N.2
  • 11
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. Objective criteria for the evaluation of clustering methods. J. Amer.Statist. Assoc. 66, pp. 846-850, 1971.
    • (1971) J. Amer.Statist. Assoc. , vol.66 , pp. 846-850
    • Rand, W.1
  • 20
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual informtaion maximization
    • Torkkola, K. Feature extraction by non-parametric mutual informtaion maximization. Journal of Machine Learning Research, 2003.
    • (2003) Journal of Machine Learning Research
    • Torkkola, K.1
  • 22
    • 65749108082 scopus 로고    scopus 로고
    • Divergence estimation for multidimensional densities via k-nearest-neighbor distances
    • Wang, Q., Kulkarni, S. R. and Verdu, S. Divergence estimation for multidimensional densities via k-nearest-neighbor distances. IEEE Trans. Information Theory, pp. 2392-2405, 2009.
    • (2009) IEEE Trans. Information Theory , pp. 2392-2405
    • Wang, Q.1    Kulkarni, S.R.2    Verdu, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.