메뉴 건너뛰기




Volumn 53, Issue 1-3, 2012, Pages 251-265

Systems immunology: A survey of modeling formalisms, applications and simulation tools

Author keywords

Integration; Modeling and simulation; Modeling formalisms; Multiscale modeling; Software; Systems immunology

Indexed keywords

ALGORITHM; ARTICLE; COMPUTER PROGRAM; COMPUTER SIMULATION; HUMAN; MATHEMATICAL MODEL; MEDICAL RESEARCH; MEDICAL TECHNOLOGY; NONHUMAN; PRIORITY JOURNAL; SYSTEMS BIOLOGY; SYSTEMS IMMUNOLOGY;

EID: 84866732828     PISSN: 0257277X     EISSN: 15590755     Source Type: Journal    
DOI: 10.1007/s12026-012-8305-7     Document Type: Article
Times cited : (36)

References (146)
  • 2
    • 0141561891 scopus 로고    scopus 로고
    • Integrating 'omic' information: A bridge between genomics and systems biology
    • Ge H, Walhout AJM, Vidal M. Integrating 'omic' information: a bridge between genomics and systems biology. Trends Genet. 2003;19(10):551.
    • (2003) Trends Genet. , vol.19 , Issue.10 , pp. 551
    • Ge, H.1    Walhout, A.J.M.2    Vidal, M.3
  • 3
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: Integrating 'omics' data sets
    • doi:10.1038/nrm1857
    • Joyce AR, Palsson B. The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol. 2006;7(3),198. doi:10.1038/nrm1857.
    • (2006) Nat Rev Mol Cell Biol. , vol.7 , Issue.3 , pp. 198
    • Joyce, A.R.1    Palsson, B.2
  • 4
    • 10044298236 scopus 로고    scopus 로고
    • Reductionism and complexity in molecular biology
    • doi:10.1038/sj. embor.7400284
    • Regenmortel MHVV. Reductionism and complexity in molecular biology. EMBO Rep. 2004;5(11):1016. doi:10.1038/sj. embor.7400284.
    • (2004) EMBO Rep. , vol.5 , Issue.11 , pp. 1016
    • Regenmortel, M.H.V.V.1
  • 5
    • 33847626655 scopus 로고    scopus 로고
    • Multiscale modeling in biology
    • doi:10.1511/2007.64.1018
    • Schnell S, Grima R, Maini PK. Multiscale modeling in biology. Am Sci. 2007;95(2):134. doi:10.1511/2007.64.1018.
    • (2007) Am Sci. , vol.95 , Issue.2 , pp. 134
    • Schnell, S.1    Grima, R.2    Maini, P.K.3
  • 6
    • 45449110225 scopus 로고    scopus 로고
    • Systems biology of persistent infection: Tuberculosis as a case study
    • doi:10.1038/nrmicro1919
    • Young D, Stark J, Kirschner D. Systems biology of persistent infection: tuberculosis as a case study. Nat Rev Microbiol. 2008; 6(7):520. doi:10.1038/nrmicro1919.
    • (2008) Nat Rev Microbiol. , vol.6 , Issue.7 , pp. 520
    • Young, D.1    Stark, J.2    Kirschner, D.3
  • 7
    • 33645276014 scopus 로고    scopus 로고
    • A plaidoyer for systems immunology
    • doi:10.1111/j.0105- 2896. 2006.00374.x. URL
    • Benoist C, Germain RN, Mathis D. A plaidoyer for systems immunology. Immunol Rev. 2006;210(1):229. doi:10.1111/j.0105- 2896.2006.00374.x. URL http://www.ingentaconnect.com/content/ mksg/imr/2006/00000210/00000001/art00015.
    • (2006) Immunol Rev. , vol.210 , Issue.1 , pp. 229
    • Benoist, C.1    Germain, R.N.2    Mathis, D.3
  • 8
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: A brief overview
    • doi:10.1126/science.1069492
    • Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662. doi:10.1126/science.1069492.
    • (2002) Science. , vol.295 , Issue.5560 , pp. 1662
    • Kitano, H.1
  • 9
    • 79953242705 scopus 로고    scopus 로고
    • How scientific models can explain
    • eprint 1. doi:10.1007/s11229-009-9565-1
    • Bokulich A. How scientific models can explain. Synthese. 2009; eprint 1. doi:10.1007/s11229-009-9565-1.
    • (2009) Synthese.
    • Bokulich, A.1
  • 10
    • 33751524084 scopus 로고    scopus 로고
    • When mechanistic models explain
    • doi:10.1007/s11229-006-9097-x
    • Craver C. When mechanistic models explain. Synthese. 2006; 153(3):355. doi:10.1007/s11229-006-9097-x.
    • (2006) Synthese. , vol.153 , Issue.3 , pp. 355
    • Craver, C.1
  • 11
    • 33947181077 scopus 로고    scopus 로고
    • Deciphering the complexity of acute inflammation using mathematical models
    • doi:10.1385/IR:36:1:237
    • Vodovotz Y. Deciphering the complexity of acute inflammation using mathematical models. Immunol Res. 2006;36(1-3):237. doi:10.1385/IR:36:1:237.
    • (2006) Immunol Res. , vol.36 , Issue.1-3 , pp. 237
    • Vodovotz, Y.1
  • 12
    • 77952791119 scopus 로고    scopus 로고
    • Computational systems biology in cancer: Modeling methods and applications
    • Materi W, Wishart DS. Computational systems biology in cancer: modeling methods and applications. Gene Regul Syst Bio. 2007;1:91.
    • (2007) Gene Regul Syst Bio. , vol.1 , pp. 91
    • Materi, W.1    Wishart, D.S.2
  • 13
    • 54249142981 scopus 로고    scopus 로고
    • A hybrid agent-based approach for modeling microbiological systems
    • doi:10.1016/j.jtbi.2008.08.008
    • Guo Z, Sloot PMA, Tay JC. A hybrid agent-based approach for modeling microbiological systems. J Theor Biol. 2008;255(2): 163. doi:10.1016/j.jtbi. 2008.08.008.
    • (2008) J Theor Biol. , vol.255 , Issue.2 , pp. 163
    • Guo, Z.1    Sloot, P.M.A.2    Tay, J.C.3
  • 15
    • 36049044199 scopus 로고    scopus 로고
    • Executable cell biology
    • doi:10.1038/nbt1356
    • Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol. 2007;25(11):1239. doi:10.1038/nbt1356.
    • (2007) Nat Biotechnol. , vol.25 , Issue.11 , pp. 1239
    • Fisher, J.1    Henzinger, T.A.2
  • 16
    • 0345863935 scopus 로고    scopus 로고
    • The kegg resource for deciphering the genome
    • doi:10.1093/nar/gkh063
    • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The kegg resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database issue):D277. doi:10.1093/nar/gkh063.
    • (2004) Nucleic Acids Res. , vol.32 , Issue.DATABASE ISSUE
    • Kanehisa, M.1    Goto, S.2    Kawashima, S.3    Okuno, Y.4    Hattori, M.5
  • 17
    • 18244391495 scopus 로고    scopus 로고
    • A versatile petri net based architecture for modeling and simulation of complex biological processes
    • Nagasaki M, Doi A, Matsuno H, Miyano S. A versatile petri net based architecture for modeling and simulation of complex biological processes. Genome Inform. 2004;15(1):180.
    • (2004) Genome Inform. , vol.15 , Issue.1 , pp. 180
    • Nagasaki, M.1    Doi, A.2    Matsuno, H.3    Miyano, S.4
  • 19
    • 33845451529 scopus 로고    scopus 로고
    • Resources for integrative systems biology: From data through databases to networks and dynamic system models
    • doi:10.1093/bib/bbl036
    • Ng A, Bursteinas B, Gao Q, Mollison E, Zvelebil M. Resources for integrative systems biology: from data through databases to networks and dynamic system models. Brief Bioinform. 2006;7(4):318. doi:10.1093/bib/bbl036.
    • (2006) Brief Bioinform. , vol.7 , Issue.4 , pp. 318
    • Ng, A.1    Bursteinas, B.2    Gao, Q.3    Mollison, E.4    Zvelebil, M.5
  • 20
    • 58149229704 scopus 로고    scopus 로고
    • Systems biology model databases and resources
    • doi:10.1042/BSE0450223
    • van Gend C, Snoep JL. Systems biology model databases and resources. Essays Biochem. 2008;45:223. doi:10.1042/BSE0450223.
    • (2008) Essays Biochem. , vol.45 , pp. 223
    • Van Gend, C.1    Snoep, J.L.2
  • 21
    • 34249950625 scopus 로고    scopus 로고
    • Stochastic simulation of chemical kinetics
    • doi:10.1146/annurev.physchem. 58.032806.104637
    • Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem. 2007;58:35. doi:10.1146/annurev.physchem. 58.032806.104637.
    • (2007) Annu Rev Phys Chem. , vol.58 , pp. 35
    • Gillespie, D.T.1
  • 23
    • 34248209065 scopus 로고    scopus 로고
    • Rival approaches to mathematical modelling in immunology
    • Andrew SM, Baker CT, Bocharov GA. Rival approaches to mathematical modelling in immunology. J Comput Appl Math. 2007;205(2):669. URL http://www.sciencedirect.com/science/ article/B6TYH-4KGPND0-7/2/ 879347b51f188098ab9e03e0fb0 612a8.
    • (2007) J Comput Appl Math. , vol.205 , Issue.2 , pp. 669
    • Andrew, S.M.1    Baker, C.T.2    Bocharov, G.A.3
  • 24
    • 71549163142 scopus 로고    scopus 로고
    • Modeling and simulation of the immune system as a self-regulating network
    • doi:10.1016/S0076-6879(09)67004-X
    • Kim PS, Levy D, Lee PP. Modeling and simulation of the immune system as a self-regulating network. Methods Enzymol. 2009;467:79. doi:10.1016/S0076- 6879(09)67004-X.
    • (2009) Methods Enzymol. , vol.467 , Issue.79
    • Kim, P.S.1    Levy, D.2    Lee, P.P.3
  • 26
    • 53749087283 scopus 로고    scopus 로고
    • Model-based analysis of interferon-b induced signaling pathway
    • Smieja J, Jamaluddin M, Brasier A, Kimmel M. Model-based analysis of interferon-b induced signaling pathway. Bioinformatics. 2008;24(20):2363.
    • (2008) Bioinformatics. , vol.24 , Issue.20 , pp. 2363
    • Smieja, J.1    Jamaluddin, M.2    Brasier, A.3    Kimmel, M.4
  • 27
    • 0037044575 scopus 로고    scopus 로고
    • The ikappab- nf-kappab signaling module: Temporal control and selective gene activation
    • doi:10.1126/ science.1071914
    • Hoffmann A, Levchenko A, Scott ML, Baltimore D. The ikappab- nf-kappab signaling module: temporal control and selective gene activation. Science. 2002;298(5596):1241. doi:10.1126/ science.1071914.
    • (2002) Science. , vol.298 , Issue.5596 , pp. 1241
    • Hoffmann, A.1    Levchenko, A.2    Scott, M.L.3    Baltimore, D.4
  • 28
    • 1942421298 scopus 로고    scopus 로고
    • Mathematical model of nf-kappab regulatory module
    • doi:10.1016/j.jtbi.2004.01.001
    • Lipniacki T, Paszek P, Brasier ARAR, Luxon B, Kimmel M. Mathematical model of nf-kappab regulatory module. J Theor Biol. 2004;228(2):195. doi:10.1016/j.jtbi.2004.01.001.
    • (2004) J Theor Biol. , vol.228 , Issue.2 , pp. 195
    • Lipniacki, T.1    Paszek, P.2    Brasier, A.R.A.R.3    Luxon, B.4    Kimmel, M.5
  • 29
    • 24744472075 scopus 로고    scopus 로고
    • A validated mathematical model of cellmediated immune response to tumor growth
    • de Pillis L, Radunskaya A, Wiseman C. A validated mathematical model of cellmediated immune response to tumor growth. Cancer Research. 2005;65(17):7950.
    • (2005) Cancer Research. , vol.65 , Issue.17 , pp. 7950
    • De Pillis, L.1    Radunskaya, A.2    Wiseman, C.3
  • 32
    • 0019797316 scopus 로고
    • A model of the role of natural killer cells in immune surveillance
    • Merill SJ. A model of the role of natural killer cells in immune surveillance. J Math Biol. 1981;12:363.
    • (1981) J Math Biol. , vol.12 , pp. 363
    • Merill, S.J.1
  • 33
    • 0025296465 scopus 로고
    • Dynamics of a class of immune networks i. global stability of idiotype interactions
    • Varela F, Stewart J. Dynamics of a class of immune networks i. global stability of idiotype interactions. J Theor Biol. 1990; 144(1):93.
    • (1990) J Theor Biol. , vol.144 , Issue.1 , pp. 93
    • Varela, F.1    Stewart, J.2
  • 34
    • 0025849021 scopus 로고
    • Size and connectivity as emergent properties of a developing immune network
    • De Boer R, Perelson A. Size and connectivity as emergent properties of a developing immune network. J Theor Biol. 1991;149(3):381.
    • (1991) J Theor Biol. , vol.149 , Issue.3 , pp. 381
    • De Boer, R.1    Perelson, A.2
  • 35
    • 77955171002 scopus 로고    scopus 로고
    • An ode model of early stages of atherosclerosis: Mechanisms of the inflammatory response
    • Ougrinovskaia A, Thompson RS, Myerscough MR. An ode model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bull Math Biol 2010;72(6):1534. URL http://www.ncbi.nlm.nih.gov/pubmed/20440571.
    • (2010) Bull Math Biol , vol.72 , Issue.6 , pp. 1534
    • Ougrinovskaia, A.1    Thompson, R.S.2    Myerscough, M.R.3
  • 36
    • 0028116794 scopus 로고
    • Modeling hiv infection of cd4? t-cell subpopulations
    • Essunger P, Perelson AS. Modeling hiv infection of cd4? t-cell subpopulations. J Theor Biol. 1994;170(4):367.
    • (1994) J Theor Biol. , vol.170 , Issue.4 , pp. 367
    • Essunger, P.1    Perelson, A.S.2
  • 37
    • 0032494689 scopus 로고    scopus 로고
    • Mathematical model of a virusneutralizing immunglobulin response
    • Funk G, Barbour A, Hengartner H, Kalinke U. Mathematical model of a virusneutralizing immunglobulin response. J Theor Biol. 1998;195(1):41.
    • (1998) J Theor Biol. , vol.195 , Issue.1 , pp. 41
    • Funk, G.1    Barbour, A.2    Hengartner, H.3    Kalinke, U.4
  • 38
    • 24144457002 scopus 로고    scopus 로고
    • Effect of the ctl proliferation program on virus dynamics
    • Wodarz D, Thomsen A. Effect of the ctl proliferation program on virus dynamics. Int Immunol. 2005;17(9):1269.
    • (2005) Int Immunol. , vol.17 , Issue.9 , pp. 1269
    • Wodarz, D.1    Thomsen, A.2
  • 39
    • 81855176270 scopus 로고    scopus 로고
    • A model of cytotoxic t antitumor activation stimulated by pulsed dendritic cells
    • Simos TE, Psihoyios G, Tsitouras C, Anastassi Z, editors. American Institute of Physics Conference Series
    • Pennisi M, Pappalardo F, Chiacchio F, Motta S. A model of cytotoxic t antitumor activation stimulated by pulsed dendritic cells. In: Simos TE, Psihoyios G, Tsitouras C, Anastassi Z, editors. American Institute of Physics Conference Series, American Institute of Physics Conference Series, vol. 1389, American Institute of Physics Conference Series. 2011. p. 1236-1239.
    • (2011) American Institute of Physics Conference Series, American Institute of Physics Conference Series , vol.1389 , pp. 1236-1239
    • Pennisi, M.1    Pappalardo, F.2    Chiacchio, F.3    Motta, S.4
  • 41
    • 66449092314 scopus 로고    scopus 로고
    • Kinetic control of negative feedback regulators of NFkappaB/ RelA determines their pathogen- and cytokine-receptor signaling specificity
    • doi:10.1073/pnas.0812367106
    • Shih VF, Kearns JD, Basak S, Savinova OV, Ghosh G, Hoffmann A. Kinetic control of negative feedback regulators of NFkappaB/ RelA determines their pathogen- and cytokine-receptor signaling specificity. Proc Nat Acad Sci. 2009;106(24):9619. doi:10.1073/pnas.0812367106.
    • (2009) Proc Nat Acad Sci. , vol.106 , Issue.24 , pp. 9619
    • Shih, V.F.1    Kearns, J.D.2    Basak, S.3    Savinova, O.V.4    Ghosh, G.5    Hoffmann, A.6
  • 42
    • 0035193294 scopus 로고    scopus 로고
    • Stochasticity in transcriptional regulation: Origins, consequences, and mathematical representations
    • doi:10.1016/S0006-3495(01)75949-8
    • Kepler TB, Elston TC. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J. 2001;81(6):3116. doi:10.1016/S0006-3495(01)75949-8.
    • (2001) Biophys J. , vol.81 , Issue.6 , pp. 3116
    • Kepler, T.B.1    Elston, T.C.2
  • 43
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells
    • Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells. Genetics 1998;149(4):1633.
    • (1998) Genetics , vol.149 , Issue.4 , pp. 1633
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 46
    • 66549109067 scopus 로고    scopus 로고
    • Optimization of immunoglobulin substitution therapy by a stochastic immune response model
    • Figge M. Optimization of immunoglobulin substitution therapy by a stochastic immune response model. PloS one. 2009;4(5): e5685.
    • (2009) PloS One. , vol.4 , Issue.5
    • Figge, M.1
  • 47
    • 0036400749 scopus 로고    scopus 로고
    • Stochastic vs. deterministic modeling of intracellular viral kinetics
    • Srivastava R, You L, Summers J, Yin J. Stochastic vs. deterministic modeling of intracellular viral kinetics. J Theor Biol. 2002;218(3):309.
    • (2002) J Theor Biol. , vol.218 , Issue.3 , pp. 309
    • Srivastava, R.1    You, L.2    Summers, J.3    Yin, J.4
  • 49
    • 2442595958 scopus 로고    scopus 로고
    • Cellml: Its future, present and past
    • doi:10.1016/j.pbiomolbio.2004.01.004
    • Lloyd CM, Halstead MDB, Nielsen PF. Cellml: its future, present and past. Prog Biophys Mol Biol. (2004);85(2-3):433. doi:10.1016/j.pbiomolbio.2004.01. 004.
    • (2004) Prog Biophys Mol Biol. , vol.85 , Issue.2-3 , pp. 433
    • Lloyd, C.M.1    Halstead, M.D.B.2    Nielsen, P.F.3
  • 51
    • 0021755192 scopus 로고
    • Cellular automata as models of complexity
    • Wolfram S. Cellular automata as models of complexity. Nature. 1984;311(5985):419.
    • (1984) Nature. , vol.311 , Issue.5985 , pp. 419
    • Wolfram, S.1
  • 52
    • 0030026711 scopus 로고    scopus 로고
    • Affinity maturation and hypermutation in a simulation of the humoral immune response
    • Celada F, Seiden P. Affinity maturation and hypermutation in a simulation of the humoral immune response. Eu J Immunol. 1996;26(6):1350.
    • (1996) Eu J Immunol. , vol.26 , Issue.6 , pp. 1350
    • Celada, F.1    Seiden, P.2
  • 53
    • 0031571212 scopus 로고    scopus 로고
    • A solution to the rheumatoid factor paradox: Pathologic rheumatoid factors can be tolerized by competition with natural rheumatoid factors
    • Stewart J, Agosto H, Litwin S, Welsh J, Shlomchik M, Weigert M, Seiden P. A solution to the rheumatoid factor paradox: pathologic rheumatoid factors can be tolerized by competition with natural rheumatoid factors. J Immunol. 1997;159(4):1728.
    • (1997) J Immunol. , vol.159 , Issue.4 , pp. 1728
    • Stewart, J.1    Agosto, H.2    Litwin, S.3    Welsh, J.4    Shlomchik, M.5    Weigert, M.6    Seiden, P.7
  • 54
    • 0035824717 scopus 로고    scopus 로고
    • A cellular automaton model of early tumor growth and invasion
    • doi:10.1006/jtbi.2001.2385
    • Patel AA, Gawlinski ET, Lemieux SK, Gatenby RA. A cellular automaton model of early tumor growth and invasion. J Theor Biol. 2001;213(3):315. doi:10.1006/jtbi.2001.2385.
    • (2001) J Theor Biol. , vol.213 , Issue.3 , pp. 315
    • Patel, A.A.1    Gawlinski, E.T.2    Lemieux, S.K.3    Gatenby, R.A.4
  • 55
    • 1542344734 scopus 로고    scopus 로고
    • Modeling of self-organized avascular tumor growth with a hybrid cellular automaton
    • Dormann S, Deutsch A. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2002;2(3):393.
    • (2002) In Silico Biol. , vol.2 , Issue.3 , pp. 393
    • Dormann, S.1    Deutsch, A.2
  • 56
    • 33750715064 scopus 로고    scopus 로고
    • Modeling the effects of vasculature evolution on early brain tumor growth
    • doi:10.1016/j.jtbi.2006.07.002
    • Gevertz JL, Torquato S. Modeling the effects of vasculature evolution on early brain tumor growth. J Theor Biol. 2006;243(4): 517. doi:10.1016/j.jtbi. 2006.07.002.
    • (2006) J Theor Biol. , vol.243 , Issue.4 , pp. 517
    • Gevertz, J.L.1    Torquato, S.2
  • 57
    • 33644890522 scopus 로고    scopus 로고
    • A cellular automata model of tumorimmune system interactions
    • doi:10.1016/j.jtbi.2005.08.002
    • Mallet DG, Pillis LGD. A cellular automata model of tumorimmune system interactions. J Theor Biol. 2006;239(3):334. doi:10.1016/j.jtbi.2005.08.002.
    • (2006) J Theor Biol. , vol.239 , Issue.3 , pp. 334
    • Mallet, D.G.1    Pillis, L.G.D.2
  • 58
    • 34247619795 scopus 로고    scopus 로고
    • Cellular automaton simulation examining progenitor hierarchy structure effects on mammary ductal carcinoma in situ
    • doi:10.1016/j.jtbi.2007.01.011
    • Bankhead A, Magnuson NS, Heckendorn RB. Cellular automaton simulation examining progenitor hierarchy structure effects on mammary ductal carcinoma in situ. J Theor Biol. 2007; 246(3):491. doi:10.1016/j.jtbi.2007.01.011.
    • (2007) J Theor Biol. , vol.246 , Issue.3 , pp. 491
    • Bankhead, A.1    Magnuson, N.S.2    Heckendorn, R.B.3
  • 59
    • 34248216634 scopus 로고    scopus 로고
    • An evolutionary hybrid cellular automaton model of solid tumour growth
    • doi:10.1016/j.jtbi.2007.01.027
    • Gerlee P, Anderson ARA. An evolutionary hybrid cellular automaton model of solid tumour growth. J Theor Biol. 2007;246(4):583. doi:10.1016/j.jtbi.2007. 01.027.
    • (2007) J Theor Biol. , vol.246 , Issue.4 , pp. 583
    • Gerlee, P.1    Anderson, A.R.A.2
  • 60
    • 38649099056 scopus 로고    scopus 로고
    • A hybrid cellular automaton model of clonal evolution in cancer: The emergence of the glycolytic phenotype
    • doi:10.1016/j.jtbi. 2007.10.038
    • Gerlee P, Anderson ARA. A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype. J Theor Biol. 2008;250(4):705. doi:10.1016/j.jtbi. 2007.10.038.
    • (2008) J Theor Biol. , vol.250 , Issue.4 , pp. 705
    • Gerlee, P.1    Anderson, A.R.A.2
  • 61
    • 70149105936 scopus 로고    scopus 로고
    • The role of transforming growth factor-beta-mediated tumor-stroma interactions in prostate cancer progression: An integrative approach
    • doi:10.1158/0008-5472.CAN-08-3957
    • Basanta D, Strand DW, Lukner RB, Franco OE, Cliffel DE, Ayala GE, Hayward SW, Anderson ARA. The role of transforming growth factor-beta-mediated tumor-stroma interactions in prostate cancer progression: an integrative approach. Cancer Res. 2009;69(17):7111. doi:10.1158/0008-5472.CAN-08-3957.
    • (2009) Cancer Res. , vol.69 , Issue.17 , pp. 7111
    • Basanta, D.1    Strand, D.W.2    Lukner, R.B.3    Franco, O.E.4    Cliffel, D.E.5    Ayala, G.E.6    Hayward, S.W.7    Anderson, A.R.A.8
  • 62
    • 70349655451 scopus 로고    scopus 로고
    • Chlamydial infection and spatial ascension of the female genital tract: A novel hybrid cellular automata and continuum mathematical model
    • doi:10.1111/j.1574-695X.2009.00596.x
    • Mallet DG, Heymer KJ, Rank RG, Wilson DP. Chlamydial infection and spatial ascension of the female genital tract: a novel hybrid cellular automata and continuum mathematical model. FEMS Immunol Med Microbiol. 2009;57(2):173. doi:10.1111/j.1574-695X.2009.00596.x.
    • (2009) FEMS Immunol Med Microbiol. , vol.57 , Issue.2 , pp. 173
    • Mallet, D.G.1    Heymer, K.J.2    Rank, R.G.3    Wilson, D.P.4
  • 63
    • 77954627336 scopus 로고    scopus 로고
    • Diffusion-limited tumour growth: Simulations and analysis
    • Gerlee P, Anderson ARA. Diffusion-limited tumour growth: simulations and analysis. Math Biosci Eng. 2010;7(2):385.
    • (2010) Math Biosci Eng. , vol.7 , Issue.2 , pp. 385
    • Gerlee, P.1    Anderson, A.R.A.2
  • 64
    • 77950934594 scopus 로고    scopus 로고
    • Episodic, transient systemic acidosis delays evolution of the malignant phenotype: Possible mechanism for cancer prevention by increased physical activity
    • doi:10.1186/1745-6150-5-22
    • Smallbone K, Maini PK, Gatenby RA. Episodic, transient systemic acidosis delays evolution of the malignant phenotype: Possible mechanism for cancer prevention by increased physical activity. Biol Direct. 2010;5:22. doi:10.1186/1745-6150-5-22.
    • (2010) Biol Direct. , vol.5 , pp. 22
    • Smallbone, K.1    Maini, P.K.2    Gatenby, R.A.3
  • 65
    • 42749102416 scopus 로고    scopus 로고
    • Dynamics of hiv infection: A cellular automata approach
    • Zorzenon dos Santos R, Coutinho S. Dynamics of hiv infection: a cellular automata approach. Phys Rev Lett. 2001;87(16): 168102.
    • (2001) Phys Rev Lett. , vol.87 , Issue.16 , pp. 168102
    • Zorzenon Dos Santos, R.1    Coutinho, S.2
  • 68
    • 33750735048 scopus 로고    scopus 로고
    • Modeling intercellular interactions in early mycobacterium infection
    • Warrender C, Forrest S, Koster F. Modeling intercellular interactions in early mycobacterium infection. Bull Math Biol. 2006;68(8):2233.
    • (2006) Bull Math Biol. , vol.68 , Issue.8 , pp. 2233
    • Warrender, C.1    Forrest, S.2    Koster, F.3
  • 70
    • 0035790856 scopus 로고    scopus 로고
    • The immune system as a reactive system: Modeling t cell activation with statecharts
    • ed. by Cohen IR, Harel D., doi: 10.1109/HCC.2001.995228
    • Kam N. The immune system as a reactive system: Modeling t cell activation with statecharts. In: Human-centric computing languages and environments, IEEE CS International Symposium on, vol. 0, ed. by Cohen IR, Harel D. 2001;vol. 0, p. 15-15. doi: 10.1109/HCC.2001.995228.
    • (2001) Human-centric Computing Languages and Environments IEEE CS International Symposium on , pp. 15-15
    • Kam, N.1
  • 71
    • 0242574975 scopus 로고    scopus 로고
    • Toward rigorous comprehension of biological complexity: Modeling, execution, and visualization of thymic t-cell maturation
    • doi: 10.1101/gr.1215303
    • Efroni S, Harel D, Cohen IR. Toward rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic t-cell maturation. Genome Res. 2003;13(11), 2485. doi: 10.1101/gr.1215303.
    • (2003) Genome Res. , vol.13 , Issue.11 , pp. 2485
    • Efroni, S.1    Harel, D.2    Cohen, I.R.3
  • 72
    • 33846542982 scopus 로고    scopus 로고
    • Emergent dynamics of thymocyte development and lineage determination
    • doi:10.1371/journal.pcbi.0030013
    • Efroni S, Harel D, Cohen IR. Emergent dynamics of thymocyte development and lineage determination. PLoS Comput Biol. 2007;3(1):e13. doi:10.1371/journal. pcbi.0030013.
    • (2007) PLoS Comput Biol. , vol.3 , Issue.1
    • Efroni, S.1    Harel, D.2    Cohen, I.R.3
  • 73
    • 47949098283 scopus 로고    scopus 로고
    • The lymph node b cell immune response: Dynamic analysis in-silico
    • Naamah S, David CIRH. The lymph node b cell immune response: dynamic analysis in-silico. Proc IEEE. 2008;96(8): 1421.
    • (2008) Proc IEEE , vol.96 , Issue.8 , pp. 1421
    • Naamah, S.1    David, C.I.R.H.2
  • 74
    • 0026556477 scopus 로고
    • A computer model of cellular interactions in the immune system
    • Celada F, Seiden P. A computer model of cellular interactions in the immune system. Immunol Today. 1992;13(2):56.
    • (1992) Immunol Today. , vol.13 , Issue.2 , pp. 56
    • Celada, F.1    Seiden, P.2
  • 75
    • 0036640183 scopus 로고    scopus 로고
    • Immsim, a flexible model for in machina experiments on immune system responses
    • Puzone R, Kohler B, Seiden P, Celada F. Immsim, a flexible model for in machina experiments on immune system responses. Fut Gen Comput Syst. 2002;18(7):961.
    • (2002) Fut Gen Comput Syst. , vol.18 , Issue.7 , pp. 961
    • Puzone, R.1    Kohler, B.2    Seiden, P.3    Celada, F.4
  • 77
    • 80054829961 scopus 로고    scopus 로고
    • Biocharts: A visual formalism for complex biological systems
    • Kugler H, Larjo A, Harel D. Biocharts: a visual formalism for complex biological systems. J R Soc Interface. 2009. URL http://www.biomedsearch.com/ nih/Biocharts-visual-formalismcomplex- biological/20022895.html.
    • (2009) J R Soc Interface.
    • Kugler, H.1    Larjo, A.2    Harel, D.3
  • 78
    • 0035491584 scopus 로고    scopus 로고
    • Agent-based computer simulation and sirs: Building a bridge between basic science and clinical trials
    • An G. Agent-based computer simulation and sirs: building a bridge between basic science and clinical trials. Shock. 2001; 16(4):266.
    • (2001) Shock. , vol.16 , Issue.4 , pp. 266
    • An, G.1
  • 79
    • 33645957683 scopus 로고    scopus 로고
    • Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling
    • doi:10.1016/j.jcrc.2005.11.012
    • An G. Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J Crit Care. 2006;21(1):105. doi:10.1016/j.jcrc.2005.11.012.
    • (2006) J Crit Care. , vol.21 , Issue.1 , pp. 105
    • An, G.1
  • 80
    • 34249826054 scopus 로고    scopus 로고
    • Challenges and rewards on the road to translational systems biology in acute illness: Four case reports from interdisciplinary teams
    • doi:10.1016/j.jcrc.2006.12.011
    • An G, Hunt CA, Clermont G, Neugebauer E, Vodovotz Y. Challenges and rewards on the road to translational systems biology in acute illness: four case reports from interdisciplinary teams. J Crit Care. 2007;22(2):169. doi:10.1016/j.jcrc.2006.12.011.
    • (2007) J Crit Care. , vol.22 , Issue.2 , pp. 169
    • An, G.1    Hunt, C.A.2    Clermont, G.3    Neugebauer, E.4    Vodovotz, Y.5
  • 81
    • 73949109493 scopus 로고    scopus 로고
    • Nitrite protects against morbidity and mortality associated with tnf- or lps-induced shock in a soluble guanylate cyclase-dependent manner
    • doi:10.1084/jem.20091236
    • Cauwels A, Buys ES, Thoonen R, Geary L, Delanghe J, Shiva S, Brouckaert P. Nitrite protects against morbidity and mortality associated with tnf- or lps-induced shock in a soluble guanylate cyclase-dependent manner. J Exp Med. 2009;206(13):2915. doi:10.1084/jem.20091236.
    • (2009) J Exp Med. , vol.206 , Issue.13 , pp. 2915
    • Cauwels, A.1    Buys, E.S.2    Thoonen, R.3    Geary, L.4    Delanghe, J.5    Shiva, S.6    Brouckaert, P.7
  • 82
    • 34249663748 scopus 로고    scopus 로고
    • Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking
    • doi:10.1007/s10439-007-9266-1
    • Bailey AM, Thorne BC, Peirce SM. Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng. 2007;35(6):916. doi:10.1007/s10439-007-9266-1.
    • (2007) Ann Biomed Eng. , vol.35 , Issue.6 , pp. 916
    • Bailey, A.M.1    Thorne, B.C.2    Peirce, S.M.3
  • 83
    • 34848830242 scopus 로고    scopus 로고
    • Agentbased model of inflammation and wound healing: Insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1
    • doi:10.1111/j.1524-475X.2007.00271.x
    • Mi Q, Rivire B, Clermont G, Steed DL, Vodovotz Y. Agentbased model of inflammation and wound healing: insights into diabetic foot ulcer pathology and the role of transforming growth factor-beta1. Wound Repair Regen. 2007;15(5):671. doi:10.1111/j.1524-475X.2007.00271.x.
    • (2007) Wound Repair Regen. , vol.15 , Issue.5 , pp. 671
    • Mi, Q.1    Rivire, B.2    Clermont, G.3    Steed, D.L.4    Vodovotz, Y.5
  • 84
    • 46449119246 scopus 로고    scopus 로고
    • Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation
    • doi:10.1186/ 1742-4682-5-11
    • An G. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor Biol Med Model. 2008;5:11. doi:10.1186/ 1742-4682-5-11.
    • (2008) Theor Biol Med Model. , vol.5 , Issue.11
    • An, G.1
  • 85
    • 77949496645 scopus 로고    scopus 로고
    • Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes
    • doi:10.1371/journal.pone.0009249
    • Dong X, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes. PLoS One. 2010;5(2): e9249. doi:10.1371/journal.pone.0009249.
    • (2010) PLoS One. , vol.5 , Issue.2
    • Dong, X.1    Foteinou, P.T.2    Calvano, S.E.3    Lowry, S.F.4    Androulakis, I.P.5
  • 86
    • 51749108892 scopus 로고    scopus 로고
    • Development of a twodimensional agent-based model for chronic chagasic cardiomyopathy after stem cell transplantation
    • doi:10.1093/bioinformatics/btn362
    • Galvo V, Miranda JGV, dos Santos RR. Development of a twodimensional agent-based model for chronic chagasic cardiomyopathy after stem cell transplantation. Bioinformatics. 2008;24(18):2051. doi:10.1093/bioinformatics/ btn362.
    • (2008) Bioinformatics. , vol.24 , Issue.18 , pp. 2051
    • Galvo, V.1    Miranda, J.G.V.2    Dos Santos, R.R.3
  • 87
    • 77952545257 scopus 로고    scopus 로고
    • A three-dimensional multi-agent-based model for the evolution of chagas' disease
    • doi:10.1016/j.biosystems.2010.03.007
    • Galvo V, Miranda JGV. A three-dimensional multi-agent-based model for the evolution of chagas' disease. Biosystems. 2010; 100(3):225. doi:10.1016/j.biosystems.2010.03.007.
    • (2010) Biosystems. , vol.100 , Issue.3 , pp. 225
    • Galvo, V.1    Miranda, J.G.V.2
  • 88
    • 50949091234 scopus 로고    scopus 로고
    • A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury
    • doi:10.1371/journal.pone.0002789
    • Li NYK, Verdolini K, Clermont G, Mi Q, Rubinstein EN, Hebda PA, Vodovotz Y. A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS One. 2008;3(7):e2789. doi:10.1371/journal.pone. 0002789.
    • (2008) PLoS One. , vol.3 , Issue.7
    • Li, N.Y.K.1    Verdolini, K.2    Clermont, G.3    Mi, Q.4    Rubinstein, E.N.5    Hebda, P.A.6    Vodovotz, Y.7
  • 89
    • 61449164943 scopus 로고    scopus 로고
    • Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on p-selectin
    • doi:10.1371/journal. pcbi.1000294
    • Bailey AM, Lawrence MB, Shang H, Katz AJ, Peirce SM. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on p-selectin. PLoS Comput Biol. 2009;5(2):e1000294. doi:10.1371/journal. pcbi.1000294.
    • (2009) PLoS Comput Biol. , vol.5 , Issue.2
    • Bailey, A.M.1    Lawrence, M.B.2    Shang, H.3    Katz, A.J.4    Peirce, S.M.5
  • 90
    • 77649207414 scopus 로고    scopus 로고
    • Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion
    • doi:10.1371/journal.pcbi.1000681
    • Tang J, Hunt CA. Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion. PLoS Comput Biol. 2010;6(2):e1000681. doi:10.1371/journal.pcbi.1000681.
    • (2010) PLoS Comput Biol. , vol.6 , Issue.2
    • Tang, J.1    Hunt, C.A.2
  • 91
    • 77952477710 scopus 로고    scopus 로고
    • Development of a three dimensional multiscale computational model of the human epidermis
    • doi:10.1371/journal.pone.0008511
    • Adra S, Sun T, MacNeil S, Holcombe M, Smallwood R. Development of a three dimensional multiscale computational model of the human epidermis. PLoS One. 2010;5(1):e8511. doi:10.1371/journal.pone.0008511.
    • (2010) PLoS One. , vol.5 , Issue.1
    • Adra, S.1    Sun, T.2    MacNeil, S.3    Holcombe, M.4    Smallwood, R.5
  • 92
    • 6344281115 scopus 로고    scopus 로고
    • Identifying control mechanisms of granuloma formation during m. tuberculosis infection using an agent-based model
    • doi:10.1016/j.jtbi.2004.06.031
    • Segovia-Juarez JL, Ganguli S, Kirschner D. Identifying control mechanisms of granuloma formation during m. tuberculosis infection using an agent-based model. J Theor Biol. 2004; 231(3):357. doi:10.1016/j.jtbi.2004.06.031.
    • (2004) J Theor Biol. , vol.231 , Issue.3 , pp. 357
    • Segovia-Juarez, J.L.1    Ganguli, S.2    Kirschner, D.3
  • 93
    • 48249141403 scopus 로고    scopus 로고
    • Modeling immune system control of atherogenesis
    • doi: 10.1093/bioinformatics/btn306
    • Pappalardo F, Musumeci S, Motta S. Modeling immune system control of atherogenesis. Bioinformatics. 2008;24(15):1715. doi: 10.1093/bioinformatics/ btn306.
    • (2008) Bioinformatics. , vol.24 , Issue.15 , pp. 1715
    • Pappalardo, F.1    Musumeci, S.2    Motta, S.3
  • 95
    • 23744434889 scopus 로고    scopus 로고
    • Agent-based modeling of the context dependency in t cell recognition
    • doi:10.1016/j.jtbi.2005.03.019
    • Casal A, Sumen C, Reddy TE, Alber MS, Lee PP. Agent-based modeling of the context dependency in t cell recognition. J Theor Biol. 2005;236(4):376. doi:10.1016/j.jtbi.2005.03.019.
    • (2005) J Theor Biol. , vol.236 , Issue.4 , pp. 376
    • Casal, A.1    Sumen, C.2    Reddy, T.E.3    Alber, M.S.4    Lee, P.P.5
  • 96
    • 68749120548 scopus 로고    scopus 로고
    • In-silico cell surface modeling reveals mechanism for initial steps of b-cell receptor signal transduction
    • doi: 10.1016/j.molimm.2009.03.027
    • Nudelman G, Weigert M, Louzoun Y. In-silico cell surface modeling reveals mechanism for initial steps of b-cell receptor signal transduction. Mol Immunol. 2009;46(15):3141. doi: 10.1016/j.molimm.2009.03.027.
    • (2009) Mol Immunol. , vol.46 , Issue.15 , pp. 3141
    • Nudelman, G.1    Weigert, M.2    Louzoun, Y.3
  • 97
    • 77149134316 scopus 로고    scopus 로고
    • Agent-based simulation of t-cell activation and proliferation within a lymph node
    • doi:10.1038/icb.2009.78
    • Bogle G, Dunbar PR. Agent-based simulation of t-cell activation and proliferation within a lymph node. Immunol Cell Biol. 2010;88(2):172. doi:10.1038/icb.2009.78.
    • (2010) Immunol Cell Biol. , vol.88 , Issue.2 , pp. 172
    • Bogle, G.1    Dunbar, P.R.2
  • 98
    • 33750108678 scopus 로고    scopus 로고
    • An analysis of b cell selection mechanisms in germinal centers
    • doi:10.1093/imammb/dql012
    • Meyer-Hermann ME, Maini PK, Iber D. An analysis of b cell selection mechanisms in germinal centers. Math Med Biol. 2006;23(3):255. doi:10.1093/imammb/dql012.
    • (2006) Math Med Biol. , vol.23 , Issue.3 , pp. 255
    • Meyer-Hermann, M.E.1    Maini, P.K.2    Iber, D.3
  • 99
    • 44349185622 scopus 로고    scopus 로고
    • Implementation of a regulatory gene network to simulate the th1/2 differentiation in an agent-based model of hypersensitivity reactions
    • doi:10.1093/bioinformatics/btn135
    • Santoni D, Pedicini M, Castiglione F. Implementation of a regulatory gene network to simulate the th1/2 differentiation in an agent-based model of hypersensitivity reactions. Bioinformatics. 2008;24(11):1374. doi:10.1093/bioinformatics/btn135.
    • (2008) Bioinformatics. , vol.24 , Issue.11 , pp. 1374
    • Santoni, D.1    Pedicini, M.2    Castiglione, F.3
  • 100
    • 58249107138 scopus 로고    scopus 로고
    • A discrete computer model of the immune system reveals competitive interactions between the humoral and cellular branch and between cross-reacting memory and nave responses
    • doi:10.1016/j.vaccine.2008.11.109
    • Cheng Y, Ghersi D, Calcagno C, Selin LK, Puzone R, Celada F. A discrete computer model of the immune system reveals competitive interactions between the humoral and cellular branch and between cross-reacting memory and nave responses. Vaccine. 2009;27(6):833. doi:10.1016/j.vaccine.2008.11.109.
    • (2009) Vaccine. , vol.27 , Issue.6 , pp. 833
    • Cheng, Y.1    Ghersi, D.2    Calcagno, C.3    Selin, L.K.4    Puzone, R.5    Celada, F.6
  • 101
    • 34248390839 scopus 로고    scopus 로고
    • An enhanced agent based model of the immune system response
    • doi:10.1016/j.cellimm.2006.12.006
    • Baldazzi V, Castiglione F, Bernaschi M. An enhanced agent based model of the immune system response. Cell Immunol. 2006;244(2):77. doi:10.1016/j.cellimm. 2006.12.006.
    • (2006) Cell Immunol. , vol.244 , Issue.2 , pp. 77
    • Baldazzi, V.1    Castiglione, F.2    Bernaschi, M.3
  • 102
    • 38049136890 scopus 로고    scopus 로고
    • The basic immune simulator: An agent-based model to study the interactions between innate and adaptive immunity
    • doi: 10.1186/1742-4682-4-39
    • Folcik VA, An GC, Orosz CG. The basic immune simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor Biol Med Model. 2007;4:39. doi: 10.1186/1742-4682-4-39.
    • (2007) Theor Biol Med Model. , vol.4 , pp. 39
    • Folcik, V.A.1    An, G.C.2    Orosz, C.G.3
  • 103
    • 45549108791 scopus 로고    scopus 로고
    • The multiscale systems immunology project: Software for cell-based immunological simulation
    • doi: 10.1186/1751-0473-3-6
    • Mitha F, Lucas TA, Feng F, Kepler TB, Chan C. The multiscale systems immunology project: software for cell-based immunological simulation. Source Code Biol Med. 2008;3:6. doi: 10.1186/1751-0473-3-6.
    • (2008) Source Code Biol Med. , vol.3 , pp. 6
    • Mitha, F.1    Lucas, T.A.2    Feng, F.3    Kepler, T.B.4    Chan, C.5
  • 105
    • 77956357957 scopus 로고    scopus 로고
    • Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system
    • doi:10.1371/journal.pone.0009862
    • Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One. 2010;5(4):e9862. doi:10.1371/journal. pone.0009862.
    • (2010) PLoS One. , vol.5 , Issue.4
    • Rapin, N.1    Lund, O.2    Bernaschi, M.3    Castiglione, F.4
  • 106
    • 84858613793 scopus 로고    scopus 로고
    • Wikipedia, http://en.wikipedia.org/wiki/comparison-of-agentbased- modeling-software.
    • Wikipedia
  • 107
    • 84872215252 scopus 로고    scopus 로고
    • Swarm, http://www.swarm.org/index.php/tools-for-agent-based- modelling.
    • Swarm
  • 108
    • 0141877349 scopus 로고    scopus 로고
    • Wilensky U. Netlogo. http://ccl.northwestern.edu/netlogo/. (1999).
    • (1999) Netlogo
    • Wilensky, U.1
  • 109
    • 84866733126 scopus 로고    scopus 로고
    • (Springer, London), chap. From artificial life to in silico medicine: Net- Logo as a means of translational knowledge representation in biomedical research;
    • An G, Wilensky U. Artificial life models in software. (Springer, London), chap. From artificial life to in silico medicine: Net- Logo as a means of translational knowledge representation in biomedical research; 2009. p. 183-214.
    • (2009) Artificial Life Models in Software , pp. 183-214
    • An, G.1    Wilensky, U.2
  • 110
    • 38549114452 scopus 로고    scopus 로고
    • From logical regulatory graphs to standard petri nets: Dynamical roles and functionality of feedback circuits
    • Priami C, Ingolfsdottir A, Mishra B, Riis Nielson H, editors. Springer, Berlin/Heidelberg;
    • Remy E, Ruet P, Mendoza L, Thieffry D, Chaouiya C. From logical regulatory graphs to standard petri nets: Dynamical roles and functionality of feedback circuits. In: Priami C, Ingolfsdottir A, Mishra B, Riis Nielson H, editors. Transactions on Computational Systems Biology VII, Lecture Notes in Computer Science, vol. 4230. Springer, Berlin/Heidelberg; 2006. p. 56-72.
    • (2006) Transactions on Computational Systems Biology VII, Lecture Notes in Computer Science , vol.4230 , pp. 56-72
    • Remy, E.1    Ruet, P.2    Mendoza, L.3    Thieffry, D.4    Chaouiya, C.5
  • 111
    • 33646345600 scopus 로고    scopus 로고
    • A network model for the control of the differentiation process in th cells
    • doi:10.1016/j.biosystems.2005.10.004
    • Mendoza L. A network model for the control of the differentiation process in th cells. Biosystems. 2006;84(2):101. doi:10.1016/j.biosystems.2005.10.004.
    • (2006) Biosystems. , vol.84 , Issue.2 , pp. 101
    • Mendoza, L.1
  • 113
    • 71449120701 scopus 로고    scopus 로고
    • Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction
    • doi:10.1038/msb.2009.87
    • Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol. 2009;5:331. doi:10.1038/msb.2009.87.
    • (2009) Mol Syst Biol. , vol.5 , pp. 331
    • Saez-Rodriguez, J.1    Alexopoulos, L.G.2    Epperlein, J.3    Samaga, R.4    Lauffenburger, D.A.5    Klamt, S.6    Sorger, P.K.7
  • 114
    • 40149109180 scopus 로고    scopus 로고
    • Hostpathogen systems biology: Logical modelling of hepatocyte growth factor and helicobacter pylori induced c-met signal transduction
    • doi: 10.1186/1752-0509-2-4
    • Franke R, Mller M, Wundrack N, Gilles ED, Klamt S, Khne T, Naumann M. Hostpathogen systems biology: logical modelling of hepatocyte growth factor and helicobacter pylori induced c-met signal transduction. BMC Syst Biol. 2008;2:4. doi: 10.1186/1752-0509-2-4.
    • (2008) BMC Syst Biol. , vol.2 , pp. 4
    • Franke, R.1    Mller, M.2    Wundrack, N.3    Gilles, E.D.4    Klamt, S.5    Khne, T.6    Naumann, M.7
  • 115
    • 34548302044 scopus 로고    scopus 로고
    • Petri net modelling of biological networks
    • doi:10.1093/bib/bbm029
    • Chaouiya C. Petri net modelling of biological networks. Brief Bioinform. 2007;8(4):210. doi:10.1093/bib/bbm029.
    • (2007) Brief Bioinform. , vol.8 , Issue.4 , pp. 210
    • Chaouiya, C.1
  • 116
    • 0035235039 scopus 로고    scopus 로고
    • Representation and simulation of biochemical processes using the pi-calculus process algebra
    • Regev A, Silverman W, Shapiro E. Representation and simulation of biochemical processes using the pi-calculus process algebra. Pac Symp Biocomput; 2001:459-470.
    • (2001) Pac Symp Biocomput; , pp. 459-470
    • Regev, A.1    Silverman, W.2    Shapiro, E.3
  • 118
    • 26944469780 scopus 로고    scopus 로고
    • Integration of immune models using petri nets
    • Nicosia Giuseppe, Cutello Vincenzo, Bentley Peter J, et al, editors., ICARIS 2004, Catania, Sicily, Italy, September 13-16, 2004- Vol 3239 of Lecture Notes in Computer Science. Berlin: Springer
    • Na D, Park I, Lee KH, Lee D. Integration of immune models using petri nets. In: Nicosia Giuseppe, Cutello Vincenzo, Bentley Peter J, et al, editors. Proceedings of Artificial Immune Systems: Third International Conference, ICARIS 2004, Catania, Sicily, Italy, September 13-16, 2004-Vol 3239 of Lecture Notes in Computer Science. Berlin: Springer; 2004. p. 205-216.
    • (2004) Proceedings of Artificial Immune Systems: Third International Conference , pp. 205-216
    • Na, D.1    Park, I.2    Lee, K.H.3    Lee, D.4
  • 121
    • 38949179852 scopus 로고    scopus 로고
    • Stochastic p systems and the simulation of biochemical processes with dynamic compartments
    • doi: 10.1016/j.biosystems.2006.12.009
    • Spicher A, Michel O, Cieslak M, Giavitto JL, Prusinkiewicz P. Stochastic p systems and the simulation of biochemical processes with dynamic compartments. Biosystems. 2008;91(3):458. doi: 10.1016/j.biosystems.2006.12.009.
    • (2008) Biosystems. , vol.91 , Issue.3 , pp. 458
    • Spicher, A.1    Michel, O.2    Cieslak, M.3    Giavitto, J.L.4    Prusinkiewicz, P.5
  • 122
    • 38949165633 scopus 로고    scopus 로고
    • Dynamics of hiv infection studied with cellular automata and conformon-p systems
    • doi:10.1016/j.biosystems.2007.01.007
    • Corne DW, Frisco P. Dynamics of hiv infection studied with cellular automata and conformon-p systems. Biosystems. 2008; 91(3):531. doi:10.1016/j.biosystems.2007.01.007.
    • (2008) Biosystems. , vol.91 , Issue.3 , pp. 531
    • Corne, D.W.1    Frisco, P.2
  • 123
    • 79959303368 scopus 로고    scopus 로고
    • A framework for multiscale and multiscience modeling and numerical simulations
    • Chopard B, Falcone J, Hoekstra A, Borgdorff J. A framework for multiscale and multiscience modeling and numerical simulations. Unconvent Comput; 2011:2-8.
    • (2011) Unconvent Comput; , pp. 2-8
    • Chopard, B.1    Falcone, J.2    Hoekstra, A.3    Borgdorff, J.4
  • 124
    • 80054718671 scopus 로고    scopus 로고
    • Acomputational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology disease biology and molecular reaction networks
    • Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, Goerlitz L, Jaeger J, Loosen R, Ludewig B, et al.Acomputational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol. 2011;2.
    • (2011) Front Physiol. , pp. 2
    • Eissing, T.1    Kuepfer, L.2    Becker, C.3    Block, M.4    Coboeken, K.5    Gaub, T.6    Goerlitz, L.7    Jaeger, J.8    Loosen, R.9    Ludewig, B.10
  • 126
    • 73449137909 scopus 로고    scopus 로고
    • Quantifying adaptive evolution in the drosophila immune system
    • Obbard D, Welch J, Kim K, Jiggins F. Quantifying adaptive evolution in the drosophila immune system. PLoS Genet. 2009;5(10):e1000698.
    • (2009) PLoS Genet. , vol.5 , Issue.10
    • Obbard, D.1    Welch, J.2    Kim, K.3    Jiggins, F.4
  • 128
    • 0023063205 scopus 로고
    • Adaptive dynamic networks as models for the immune system and autocatalytic sets
    • Farmer J, Kauffman S, Packard N, Perelson A. Adaptive dynamic networks as models for the immune system and autocatalytic sets. Ann N Y Acad Sci. 1987;504(1):118.
    • (1987) Ann N y Acad Sci. , vol.504 , Issue.1 , pp. 118
    • Farmer, J.1    Kauffman, S.2    Packard, N.3    Perelson, A.4
  • 131
    • 3543122436 scopus 로고    scopus 로고
    • Immune memory and gene library evolution in the dynamic clonal selection algorithm
    • Kim J, Bentley P. Immune memory and gene library evolution in the dynamic clonal selection algorithm. Genet Program Evolvable Mach. 2004;5(4):361.
    • (2004) Genet Program Evolvable Mach. , vol.5 , Issue.4 , pp. 361
    • Kim, J.1    Bentley, P.2
  • 133
    • 33947193447 scopus 로고    scopus 로고
    • Computer immunology
    • doi:10.1111/j.1600-065X.2007.00499.x
    • Forrest S, Beauchemin C. Computer immunology. Immunol Rev. 2007;216:176. doi:10.1111/j.1600-065X.2007.00499.x.
    • (2007) Immunol Rev. , vol.216 , pp. 176
    • Forrest, S.1    Beauchemin, C.2
  • 134
    • 34147122539 scopus 로고    scopus 로고
    • Self-organizing behavior in a lattice model for co-evolution of virus and immune systems
    • Izmailian N, Papoyan V, Priezzhev V, Hu C, et al. Self-organizing behavior in a lattice model for co-evolution of virus and immune systems. Phys Rev E, Stat Nonlinear Soft Matter Phys. 2007;75(4 Pt 1):041104.
    • (2007) Phys Rev e Stat Nonlinear Soft Matter Phys. , vol.75 , Issue.4 PART 1 , pp. 041104
    • Izmailian, N.1    Papoyan, V.2    Priezzhev, V.3    Hu, C.4
  • 135
    • 84866733281 scopus 로고    scopus 로고
    • Short-time evolution in the adaptive immune system
    • Guttenberg N, Ali Tabei SM, Dinner AR. Short-time evolution in the adaptive immune system. Phys Rev E. 2011;84(3):031932.
    • (2011) Phys Rev E. , vol.84 , Issue.3 , pp. 031932
    • Guttenberg, N.1    Ali Tabei, S.M.2    Dinner, A.R.3
  • 137
    • 33750533388 scopus 로고    scopus 로고
    • Physicochemical modelling of cell signalling pathways
    • doi:10.1038/ncb1497
    • Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical modelling of cell signalling pathways. Nat Cell Biol. 2006;8(11):1195. doi:10.1038/ncb1497.
    • (2006) Nat Cell Biol. , vol.8 , Issue.11 , pp. 1195
    • Aldridge, B.B.1    Burke, J.M.2    Lauffenburger, D.A.3    Sorger, P.K.4
  • 138
    • 33745075591 scopus 로고    scopus 로고
    • Tools for kinetic modeling of biochemical networks
    • doi:10.1038/nbt0606-667
    • Alves R, Antunes F, Salvador A. Tools for kinetic modeling of biochemical networks. Nat Biotechnol. 2006;24(6):667. doi:10.1038/nbt0606-667.
    • (2006) Nat Biotechnol. , vol.24 , Issue.6 , pp. 667
    • Alves, R.1    Antunes, F.2    Salvador, A.3
  • 139
    • 58549110252 scopus 로고    scopus 로고
    • Stochastic modelling for quantitative description of heterogeneous biological systems
    • doi:10.1038/nrg2509
    • Wilkinson DJ. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet. 2009.10(2): 122. doi:10.1038/nrg2509.
    • (2009) Nat Rev Genet. , vol.10 , Issue.2 , pp. 122
    • Wilkinson, D.J.1
  • 141
    • 71549131604 scopus 로고    scopus 로고
    • Discrete dynamic modeling of cellular signaling networks
    • doi:10.1016/ S0076-6879(09)67011-7
    • Albert R, Wang RS. Discrete dynamic modeling of cellular signaling networks. Methods Enzymol. 2009;467:281. doi:10.1016/ S0076-6879(09)67011-7.
    • (2009) Methods Enzymol. , vol.467 , Issue.281
    • Albert, R.1    Wang, R.S.2
  • 142
    • 34047105227 scopus 로고    scopus 로고
    • Explaining a complex living system: Dynamics, multi-scaling and emergence
    • doi:10.1098/rsif.2006.0173
    • Cohen IR, Harel D. Explaining a complex living system: dynamics, multi-scaling and emergence. J R Soc Interface. 2007;4(13):175. doi:10.1098/rsif.2006.0173.
    • (2007) J R Soc Interface. , vol.4 , Issue.13 , pp. 175
    • Cohen, I.R.1    Harel, D.2
  • 143
    • 77950347868 scopus 로고    scopus 로고
    • The executable pathway to biological networks
    • doi:10.1093/bfgp/ elp054
    • Fisher J, Piterman N. The executable pathway to biological networks. Brief Funct Genomics. 2010;9(1):79. doi:10.1093/bfgp/ elp054.
    • (2010) Brief Funct Genomics. , vol.9 , Issue.1 , pp. 79
    • Fisher, J.1    Piterman, N.2
  • 145
    • 84872214045 scopus 로고    scopus 로고
    • Swarm, http://www.swarm.org/wiki/agent-based-models-in- biology-and-medicine.
    • Swarm


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.