메뉴 건너뛰기




Volumn 1819, Issue 7, 2012, Pages 673-683

Co-transcriptional regulation of alternative pre-mRNA splicing

Author keywords

Alternative pre mRNA splicing; Chromatin; RNA polymerase II; Transcription elongation

Indexed keywords

DNA; MESSENGER RNA; RNA BINDING PROTEIN; RNA POLYMERASE II;

EID: 84861848461     PISSN: 18749399     EISSN: 18764320     Source Type: Journal    
DOI: 10.1016/j.bbagrm.2012.01.014     Document Type: Review
Times cited : (73)

References (182)
  • 1
    • 0344622123 scopus 로고
    • Spliced segments at the 5' terminus of adenovirus 2 late mRNA
    • Berget S.M., Moore C., Sharp P.A. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. U.S.A. 1977, 74:3171-3175.
    • (1977) Proc. Natl. Acad. Sci. U.S.A. , vol.74 , pp. 3171-3175
    • Berget, S.M.1    Moore, C.2    Sharp, P.A.3
  • 2
    • 0017688583 scopus 로고
    • An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA
    • Chow L.T., Gelinas R.E., Broker T.R., Roberts R.J. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 1977, 12:1-8.
    • (1977) Cell , vol.12 , pp. 1-8
    • Chow, L.T.1    Gelinas, R.E.2    Broker, T.R.3    Roberts, R.J.4
  • 4
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q., Shai O., Lee L.J., Frey B.J., Blencowe B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40:1413-1415.
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3    Frey, B.J.4    Blencowe, B.J.5
  • 6
    • 79957865299 scopus 로고    scopus 로고
    • Pre-mRNA splicing: where and when in the nucleus
    • Han J., Xiong J., Wang D., Fu X.D. Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol. 2011, 21:336-343.
    • (2011) Trends Cell Biol. , vol.21 , pp. 336-343
    • Han, J.1    Xiong, J.2    Wang, D.3    Fu, X.D.4
  • 7
    • 0013394889 scopus 로고    scopus 로고
    • Mechanisms of alternative pre-messenger RNA splicing
    • Black D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 2003, 72:291-336.
    • (2003) Annu. Rev. Biochem. , vol.72 , pp. 291-336
    • Black, D.L.1
  • 8
    • 0037068447 scopus 로고    scopus 로고
    • Comprehensive proteomic analysis of the human spliceosome
    • Zhou Z., Licklider L.J., Gygi S.P., Reed R. Comprehensive proteomic analysis of the human spliceosome. Nature 2002, 419:182-185.
    • (2002) Nature , vol.419 , pp. 182-185
    • Zhou, Z.1    Licklider, L.J.2    Gygi, S.P.3    Reed, R.4
  • 9
    • 68549111145 scopus 로고    scopus 로고
    • The spliceosome: a self-organized macromolecular machine in the nucleus?
    • Rino J., Carmo-Fonseca M. The spliceosome: a self-organized macromolecular machine in the nucleus?. Trends Cell Biol. 2009, 19:375-384.
    • (2009) Trends Cell Biol. , vol.19 , pp. 375-384
    • Rino, J.1    Carmo-Fonseca, M.2
  • 10
    • 18344364099 scopus 로고    scopus 로고
    • Understanding alternative splicing: towards a cellular code
    • Matlin A.J., Clark F., Smith C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 2005, 6:386-398.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 386-398
    • Matlin, A.J.1    Clark, F.2    Smith, C.W.3
  • 11
    • 0019851631 scopus 로고
    • Correlation of hnRNP structure and nascent transcript cleavage
    • Beyer A.L., Bouton A.H., Miller O.L. Correlation of hnRNP structure and nascent transcript cleavage. Cell 1981, 26:155-165.
    • (1981) Cell , vol.26 , pp. 155-165
    • Beyer, A.L.1    Bouton, A.H.2    Miller, O.L.3
  • 12
    • 0024021747 scopus 로고
    • Splice site selection, rate of splicing, and alternative splicing on nascent transcripts
    • Beyer A.L., Osheim Y.N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 1988, 2:754-765.
    • (1988) Genes Dev. , vol.2 , pp. 754-765
    • Beyer, A.L.1    Osheim, Y.N.2
  • 13
    • 1842376906 scopus 로고    scopus 로고
    • The dynamics of a pre-mRNA splicing factor in living cells
    • Misteli T., Caceres J.F., Spector D.L. The dynamics of a pre-mRNA splicing factor in living cells. Nature 1997, 387:523-527.
    • (1997) Nature , vol.387 , pp. 523-527
    • Misteli, T.1    Caceres, J.F.2    Spector, D.L.3
  • 14
    • 0030959371 scopus 로고    scopus 로고
    • Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription
    • Neugebauer K.M., Roth M.B. Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. Genes Dev. 1997, 11:1148-1159.
    • (1997) Genes Dev. , vol.11 , pp. 1148-1159
    • Neugebauer, K.M.1    Roth, M.B.2
  • 15
    • 0029952583 scopus 로고    scopus 로고
    • Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription
    • Huang S., Spector D.L. Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J. Cell Biol. 1996, 133:719-732.
    • (1996) J. Cell Biol. , vol.133 , pp. 719-732
    • Huang, S.1    Spector, D.L.2
  • 16
    • 0028600629 scopus 로고
    • Localization of pre-mRNA splicing in mammalian nuclei
    • Zhang G., Taneja K.L., Singer R.H., Green M.R. Localization of pre-mRNA splicing in mammalian nuclei. Nature 1994, 372:809-812.
    • (1994) Nature , vol.372 , pp. 809-812
    • Zhang, G.1    Taneja, K.L.2    Singer, R.H.3    Green, M.R.4
  • 17
    • 21244493903 scopus 로고    scopus 로고
    • Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex
    • Gornemann J., Kotovic K.M., Hujer K., Neugebauer K.M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 2005, 19:53-63.
    • (2005) Mol. Cell , vol.19 , pp. 53-63
    • Gornemann, J.1    Kotovic, K.M.2    Hujer, K.3    Neugebauer, K.M.4
  • 18
    • 21244469725 scopus 로고    scopus 로고
    • Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast
    • Lacadie S.A., Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast. Mol. Cell 2005, 19:65-75.
    • (2005) Mol. Cell , vol.19 , pp. 65-75
    • Lacadie, S.A.1    Rosbash, M.2
  • 19
    • 33746630487 scopus 로고    scopus 로고
    • In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants
    • Lacadie S.A., Tardiff D.F., Kadener S., Rosbash M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev. 2006, 20:2055-2066.
    • (2006) Genes Dev. , vol.20 , pp. 2055-2066
    • Lacadie, S.A.1    Tardiff, D.F.2    Kadener, S.3    Rosbash, M.4
  • 20
    • 33748351186 scopus 로고    scopus 로고
    • Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells
    • Listerman I., Sapra A.K., Neugebauer K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 2006, 13:815-822.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 815-822
    • Listerman, I.1    Sapra, A.K.2    Neugebauer, K.M.3
  • 21
    • 56849100744 scopus 로고    scopus 로고
    • A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast
    • Kress T.L., Krogan N.J., Guthrie C. A single SR-like protein, Npl3, promotes pre-mRNA splicing in budding yeast. Mol. Cell 2008, 32:727-734.
    • (2008) Mol. Cell , vol.32 , pp. 727-734
    • Kress, T.L.1    Krogan, N.J.2    Guthrie, C.3
  • 22
    • 70349125488 scopus 로고    scopus 로고
    • Co-transcriptional splicing of constitutive and alternative exons
    • Pandya-Jones A., Black D.L. Co-transcriptional splicing of constitutive and alternative exons. RNA 2009, 15:1896-1908.
    • (2009) RNA , vol.15 , pp. 1896-1908
    • Pandya-Jones, A.1    Black, D.L.2
  • 23
    • 34250363024 scopus 로고    scopus 로고
    • SR proteins function in coupling RNAP II transcription to pre-mRNA splicing
    • Das R., Yu J., Zhang Z., Gygi M.P., Krainer A.R., Gygi S.P., Reed R. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 2007, 26:867-881.
    • (2007) Mol. Cell , vol.26 , pp. 867-881
    • Das, R.1    Yu, J.2    Zhang, Z.3    Gygi, M.P.4    Krainer, A.R.5    Gygi, S.P.6    Reed, R.7
  • 24
    • 78649289872 scopus 로고    scopus 로고
    • Global analysis of nascent RNA reveals transcriptional pausing in terminal exons
    • Carrillo Oesterreich F., Preibisch S., Neugebauer K.M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 2010, 40:571-581.
    • (2010) Mol. Cell , vol.40 , pp. 571-581
    • Carrillo Oesterreich, F.1    Preibisch, S.2    Neugebauer, K.M.3
  • 26
    • 33845643952 scopus 로고    scopus 로고
    • A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional
    • Tardiff D.F., Lacadie S.A., Rosbash M. A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. Mol. Cell 2006, 24:917-929.
    • (2006) Mol. Cell , vol.24 , pp. 917-929
    • Tardiff, D.F.1    Lacadie, S.A.2    Rosbash, M.3
  • 29
    • 0023424069 scopus 로고
    • Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation
    • Sisodia S.S., Sollner-Webb B., Cleveland D.W. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Mol. Cell. Biol. 1987, 7:3602-3612.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 3602-3612
    • Sisodia, S.S.1    Sollner-Webb, B.2    Cleveland, D.W.3
  • 30
    • 0023737652 scopus 로고
    • Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II
    • Bartolomei M.S., Halden N.F., Cullen C.R., Corden J.L. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 1988, 8:330-339.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 330-339
    • Bartolomei, M.S.1    Halden, N.F.2    Cullen, C.R.3    Corden, J.L.4
  • 32
    • 33751090746 scopus 로고    scopus 로고
    • Phosphorylation and functions of the RNA polymerase II CTD
    • Phatnani H.P., Greenleaf A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 2006, 20:2922-2936.
    • (2006) Genes Dev. , vol.20 , pp. 2922-2936
    • Phatnani, H.P.1    Greenleaf, A.L.2
  • 33
    • 0034307008 scopus 로고    scopus 로고
    • Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
    • Komarnitsky P., Cho E.J., Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 2000, 14:2452-2460.
    • (2000) Genes Dev. , vol.14 , pp. 2452-2460
    • Komarnitsky, P.1    Cho, E.J.2    Buratowski, S.3
  • 35
    • 70350389837 scopus 로고    scopus 로고
    • Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7
    • Kim M., Suh H., Cho E.J., Buratowski S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 2009, 284:26421-26426.
    • (2009) J. Biol. Chem. , vol.284 , pp. 26421-26426
    • Kim, M.1    Suh, H.2    Cho, E.J.3    Buratowski, S.4
  • 36
    • 70350442978 scopus 로고    scopus 로고
    • TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II
    • Glover-Cutter K., Larochelle S., Erickson B., Zhang C., Shokat K., Fisher R.P., Bentley D.L. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 2009, 29:5455-5464.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5455-5464
    • Glover-Cutter, K.1    Larochelle, S.2    Erickson, B.3    Zhang, C.4    Shokat, K.5    Fisher, R.P.6    Bentley, D.L.7
  • 38
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 2009, 36:541-546.
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 39
    • 70350005395 scopus 로고    scopus 로고
    • "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions
    • Perales R., Bentley D. "Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions. Mol. Cell 2009, 36:178-191.
    • (2009) Mol. Cell , vol.36 , pp. 178-191
    • Perales, R.1    Bentley, D.2
  • 40
    • 34347273423 scopus 로고    scopus 로고
    • Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator
    • Max T., Sogaard M., Svejstrup J.Q. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 2007, 282:14113-14120.
    • (2007) J. Biol. Chem. , vol.282 , pp. 14113-14120
    • Max, T.1    Sogaard, M.2    Svejstrup, J.Q.3
  • 41
    • 0027166316 scopus 로고
    • In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes
    • Rasmussen E.B., Lis J.T. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:7923-7927.
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 7923-7927
    • Rasmussen, E.B.1    Lis, J.T.2
  • 42
    • 0021760469 scopus 로고
    • Transcription of methylated eukaryotic viral genes in a soluble in vitro system
    • Jove R., Sperber D.E., Manley J.L. Transcription of methylated eukaryotic viral genes in a soluble in vitro system. Nucleic Acids Res. 1984, 12:4715-4730.
    • (1984) Nucleic Acids Res. , vol.12 , pp. 4715-4730
    • Jove, R.1    Sperber, D.E.2    Manley, J.L.3
  • 43
    • 79957496447 scopus 로고    scopus 로고
    • Keeping mRNPs in check during assembly and nuclear export
    • Tutucci E., Stutz F. Keeping mRNPs in check during assembly and nuclear export. Nat. Rev. Mol. Cell Biol. 2011, 12:377-384.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 377-384
    • Tutucci, E.1    Stutz, F.2
  • 44
    • 0031453408 scopus 로고    scopus 로고
    • MRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain
    • Cho E.J., Takagi T., Moore C.R., Buratowski S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 1997, 11:3319-3326.
    • (1997) Genes Dev. , vol.11 , pp. 3319-3326
    • Cho, E.J.1    Takagi, T.2    Moore, C.R.3    Buratowski, S.4
  • 45
    • 0034307172 scopus 로고    scopus 로고
    • Dynamic association of capping enzymes with transcribing RNA polymerase II
    • Schroeder S.C., Schwer B., Shuman S., Bentley D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 2000, 14:2435-2440.
    • (2000) Genes Dev. , vol.14 , pp. 2435-2440
    • Schroeder, S.C.1    Schwer, B.2    Shuman, S.3    Bentley, D.4
  • 46
    • 0033515521 scopus 로고    scopus 로고
    • NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation
    • Yamaguchi Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 1999, 97:41-51.
    • (1999) Cell , vol.97 , pp. 41-51
    • Yamaguchi, Y.1    Takagi, T.2    Wada, T.3    Yano, K.4    Furuya, A.5    Sugimoto, S.6    Hasegawa, J.7    Handa, H.8
  • 48
    • 72549083757 scopus 로고    scopus 로고
    • DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation
    • Chen Y., Yamaguchi Y., Tsugeno Y., Yamamoto J., Yamada T., Nakamura M., Hisatake K., Handa H. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev. 2009, 23:2765-2777.
    • (2009) Genes Dev. , vol.23 , pp. 2765-2777
    • Chen, Y.1    Yamaguchi, Y.2    Tsugeno, Y.3    Yamamoto, J.4    Yamada, T.5    Nakamura, M.6    Hisatake, K.7    Handa, H.8
  • 49
    • 77953773890 scopus 로고    scopus 로고
    • P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms
    • Lenasi T., Barboric M. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms. RNA Biol. 2010, 7:145-150.
    • (2010) RNA Biol. , vol.7 , pp. 145-150
    • Lenasi, T.1    Barboric, M.2
  • 51
    • 0029822049 scopus 로고    scopus 로고
    • The nuclear matrix protein p255 is a highly phosphorylated form of RNA polymerase II largest subunit which associates with spliceosomes
    • Vincent M., Lauriault P., Dubois M.F., Lavoie S., Bensaude O., Chabot B. The nuclear matrix protein p255 is a highly phosphorylated form of RNA polymerase II largest subunit which associates with spliceosomes. Nucleic Acids Res. 1996, 24:4649-4652.
    • (1996) Nucleic Acids Res. , vol.24 , pp. 4649-4652
    • Vincent, M.1    Lauriault, P.2    Dubois, M.F.3    Lavoie, S.4    Bensaude, O.5    Chabot, B.6
  • 52
    • 0037088691 scopus 로고    scopus 로고
    • A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly
    • Robert F., Blanchette M., Maes O., Chabot B., Coulombe B. A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly. J. Biol. Chem. 2002, 277:9302-9306.
    • (2002) J. Biol. Chem. , vol.277 , pp. 9302-9306
    • Robert, F.1    Blanchette, M.2    Maes, O.3    Chabot, B.4    Coulombe, B.5
  • 54
    • 0036242097 scopus 로고    scopus 로고
    • Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis
    • Jurica M.S., Licklider L.J., Gygi S.R., Grigorieff N., Moore M.J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 2002, 8:426-439.
    • (2002) RNA , vol.8 , pp. 426-439
    • Jurica, M.S.1    Licklider, L.J.2    Gygi, S.R.3    Grigorieff, N.4    Moore, M.J.5
  • 55
    • 0037073946 scopus 로고    scopus 로고
    • Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome
    • Makarov E.M., Makarova O.V., Urlaub H., Gentzel M., Will C.L., Wilm M., Luhrmann R. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 2002, 298:2205-2208.
    • (2002) Science , vol.298 , pp. 2205-2208
    • Makarov, E.M.1    Makarova, O.V.2    Urlaub, H.3    Gentzel, M.4    Will, C.L.5    Wilm, M.6    Luhrmann, R.7
  • 56
    • 0036674269 scopus 로고    scopus 로고
    • Large-scale proteomic analysis of the human spliceosome
    • Rappsilber J., Ryder U., Lamond A.I., Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 2002, 12:1231-1245.
    • (2002) Genome Res. , vol.12 , pp. 1231-1245
    • Rappsilber, J.1    Ryder, U.2    Lamond, A.I.3    Mann, M.4
  • 57
    • 64749097017 scopus 로고    scopus 로고
    • The carboxyl-terminal domain of RNA polymerase II is Not sufficient to enhance the efficiency of pre-mRNA capping or splicing in the context of a different polymerase
    • Natalizio B.J., Robson-Dixon N.D., Garcia-Blanco M.A. The carboxyl-terminal domain of RNA polymerase II is Not sufficient to enhance the efficiency of pre-mRNA capping or splicing in the context of a different polymerase. J. Biol. Chem. 2009, 284:8692-8702.
    • (2009) J. Biol. Chem. , vol.284 , pp. 8692-8702
    • Natalizio, B.J.1    Robson-Dixon, N.D.2    Garcia-Blanco, M.A.3
  • 58
    • 0033153543 scopus 로고    scopus 로고
    • RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo
    • Misteli T., Spector D.L. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 1999, 3:697-705.
    • (1999) Mol. Cell , vol.3 , pp. 697-705
    • Misteli, T.1    Spector, D.L.2
  • 59
    • 33750596100 scopus 로고    scopus 로고
    • RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20
    • de la Mata M., Kornblihtt A.R. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat. Struct. Mol. Biol. 2006, 13:973-980.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 973-980
    • de la Mata, M.1    Kornblihtt, A.R.2
  • 62
    • 0032480229 scopus 로고    scopus 로고
    • RNA polymerase II is an essential mRNA polyadenylation factor
    • Hirose Y., Manley J.L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 1998, 395:93-96.
    • (1998) Nature , vol.395 , pp. 93-96
    • Hirose, Y.1    Manley, J.L.2
  • 64
    • 3142615882 scopus 로고    scopus 로고
    • Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors
    • Meinhart A., Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors. Nature 2004, 430:223-226.
    • (2004) Nature , vol.430 , pp. 223-226
    • Meinhart, A.1    Cramer, P.2
  • 65
    • 1542334001 scopus 로고    scopus 로고
    • Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing
    • Ahn S.H., Kim M., Buratowski S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol. Cell 2004, 13:67-76.
    • (2004) Mol. Cell , vol.13 , pp. 67-76
    • Ahn, S.H.1    Kim, M.2    Buratowski, S.3
  • 67
    • 79251591946 scopus 로고    scopus 로고
    • Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes
    • Larson M.H., Landick R., Block S.M. Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol. Cell 2011, 41:249-262.
    • (2011) Mol. Cell , vol.41 , pp. 249-262
    • Larson, M.H.1    Landick, R.2    Block, S.M.3
  • 68
    • 0025877255 scopus 로고
    • Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing
    • Izban M.G., Luse D.S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 1991, 5:683-696.
    • (1991) Genes Dev. , vol.5 , pp. 683-696
    • Izban, M.G.1    Luse, D.S.2
  • 69
    • 0032498273 scopus 로고    scopus 로고
    • FACT, a factor that facilitates transcript elongation through nucleosomes
    • Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 1998, 92:105-116.
    • (1998) Cell , vol.92 , pp. 105-116
    • Orphanides, G.1    LeRoy, G.2    Chang, C.H.3    Luse, D.S.4    Reinberg, D.5
  • 70
    • 68149120313 scopus 로고    scopus 로고
    • Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II
    • Hodges C., Bintu L., Lubkowska L., Kashlev M., Bustamante C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 2009, 325:626-628.
    • (2009) Science , vol.325 , pp. 626-628
    • Hodges, C.1    Bintu, L.2    Lubkowska, L.3    Kashlev, M.4    Bustamante, C.5
  • 72
    • 9144274420 scopus 로고    scopus 로고
    • Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo
    • Kristjuhan A., Svejstrup J.Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 2004, 23:4243-4252.
    • (2004) EMBO J. , vol.23 , pp. 4243-4252
    • Kristjuhan, A.1    Svejstrup, J.Q.2
  • 73
    • 8644287437 scopus 로고    scopus 로고
    • Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II
    • Schwabish M.A., Struhl K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 2004, 24:10111-10117.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 10111-10117
    • Schwabish, M.A.1    Struhl, K.2
  • 75
    • 77950998789 scopus 로고    scopus 로고
    • Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability
    • Sigurdsson S., Dirac-Svejstrup A.B., Svejstrup J.Q. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol. Cell 2010, 38:202-210.
    • (2010) Mol. Cell , vol.38 , pp. 202-210
    • Sigurdsson, S.1    Dirac-Svejstrup, A.B.2    Svejstrup, J.Q.3
  • 76
    • 0026648570 scopus 로고
    • The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'-5' direction in the presence of elongation factor SII
    • Izban M.G., Luse D.S. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'-5' direction in the presence of elongation factor SII. Genes Dev. 1992, 6:1342-1356.
    • (1992) Genes Dev. , vol.6 , pp. 1342-1356
    • Izban, M.G.1    Luse, D.S.2
  • 77
    • 0026697999 scopus 로고
    • Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II
    • Reines D. Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. J. Biol. Chem. 1992, 267:3795-3800.
    • (1992) J. Biol. Chem. , vol.267 , pp. 3795-3800
    • Reines, D.1
  • 78
    • 33646066806 scopus 로고    scopus 로고
    • Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates
    • Guermah M., Palhan V.B., Tackett A.J., Chait B.T., Roeder R.G. Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Cell 2006, 125:275-286.
    • (2006) Cell , vol.125 , pp. 275-286
    • Guermah, M.1    Palhan, V.B.2    Tackett, A.J.3    Chait, B.T.4    Roeder, R.G.5
  • 79
    • 0026629273 scopus 로고
    • Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates
    • Izban M.G., Luse D.S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 1992, 267:13647-13655.
    • (1992) J. Biol. Chem. , vol.267 , pp. 13647-13655
    • Izban, M.G.1    Luse, D.S.2
  • 81
    • 79952364016 scopus 로고    scopus 로고
    • Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons
    • Saint-Andre V., Batsche E., Rachez C., Muchardt C. Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat. Struct. Mol. Biol. 2011, 18:337-344.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 337-344
    • Saint-Andre, V.1    Batsche, E.2    Rachez, C.3    Muchardt, C.4
  • 83
    • 33750453345 scopus 로고    scopus 로고
    • RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation
    • Carey M., Li B., Workman J.L. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol. Cell 2006, 24:481-487.
    • (2006) Mol. Cell , vol.24 , pp. 481-487
    • Carey, M.1    Li, B.2    Workman, J.L.3
  • 84
    • 0345698603 scopus 로고    scopus 로고
    • Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
    • Simic R., Lindstrom D.L., Tran H.G., Roinick K.L., Costa P.J., Johnson A.D., Hartzog G.A., Arndt K.M. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 2003, 22:1846-1856.
    • (2003) EMBO J. , vol.22 , pp. 1846-1856
    • Simic, R.1    Lindstrom, D.L.2    Tran, H.G.3    Roinick, K.L.4    Costa, P.J.5    Johnson, A.D.6    Hartzog, G.A.7    Arndt, K.M.8
  • 86
    • 33846663256 scopus 로고    scopus 로고
    • Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication
    • Jamai A., Imoberdorf R.M., Strubin M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 2007, 25:345-355.
    • (2007) Mol. Cell , vol.25 , pp. 345-355
    • Jamai, A.1    Imoberdorf, R.M.2    Strubin, M.3
  • 87
    • 15444376394 scopus 로고    scopus 로고
    • Replication-independent core histone dynamics at transcriptionally active loci in vivo
    • Thiriet C., Hayes J.J. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev. 2005, 19:677-682.
    • (2005) Genes Dev. , vol.19 , pp. 677-682
    • Thiriet, C.1    Hayes, J.J.2
  • 88
    • 33746856074 scopus 로고    scopus 로고
    • De FACTo nucleosome dynamics
    • Reinberg D., Sims R.J. de FACTo nucleosome dynamics. J. Biol. Chem. 2006, 281:23297-23301.
    • (2006) J. Biol. Chem. , vol.281 , pp. 23297-23301
    • Reinberg, D.1    Sims, R.J.2
  • 91
    • 33646141366 scopus 로고    scopus 로고
    • Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II
    • Schwabish M.A., Struhl K. Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol. Cell 2006, 22:415-422.
    • (2006) Mol. Cell , vol.22 , pp. 415-422
    • Schwabish, M.A.1    Struhl, K.2
  • 92
    • 0041828953 scopus 로고    scopus 로고
    • Transcription elongation factors repress transcription initiation from cryptic sites
    • Kaplan C.D., Laprade L., Winston F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 2003, 301:1096-1099.
    • (2003) Science , vol.301 , pp. 1096-1099
    • Kaplan, C.D.1    Laprade, L.2    Winston, F.3
  • 93
    • 0242579933 scopus 로고    scopus 로고
    • The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
    • Mason P.B., Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol. Cell. Biol. 2003, 23:8323-8333.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8323-8333
    • Mason, P.B.1    Struhl, K.2
  • 97
    • 2442425954 scopus 로고    scopus 로고
    • Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation
    • Gilbert C., Kristjuhan A., Winkler G.S., Svejstrup J.Q. Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol. Cell 2004, 14:457-464.
    • (2004) Mol. Cell , vol.14 , pp. 457-464
    • Gilbert, C.1    Kristjuhan, A.2    Winkler, G.S.3    Svejstrup, J.Q.4
  • 98
    • 0037022226 scopus 로고    scopus 로고
    • Human Elongator facilitates RNA polymerase II transcription through chromatin
    • Kim J.H., Lane W.S., Reinberg D. Human Elongator facilitates RNA polymerase II transcription through chromatin. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:1241-1246.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 1241-1246
    • Kim, J.H.1    Lane, W.S.2    Reinberg, D.3
  • 99
    • 9144246231 scopus 로고    scopus 로고
    • Members of the SAGA and mediator complexes are partners of the transcription elongation factor TFIIS
    • Wery M., Shematorova E., Van Driessche B., Vandenhaute J., Thuriaux P., Van Mullem V. Members of the SAGA and mediator complexes are partners of the transcription elongation factor TFIIS. EMBO J. 2004, 23:4232-4242.
    • (2004) EMBO J. , vol.23 , pp. 4232-4242
    • Wery, M.1    Shematorova, E.2    Van Driessche, B.3    Vandenhaute, J.4    Thuriaux, P.5    Van Mullem, V.6
  • 100
    • 32544438726 scopus 로고    scopus 로고
    • TFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele
    • Milgrom E., West R.W., Gao C., Shen W.C. TFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele. Genetics 2005, 171:959-973.
    • (2005) Genetics , vol.171 , pp. 959-973
    • Milgrom, E.1    West, R.W.2    Gao, C.3    Shen, W.C.4
  • 103
    • 0037512273 scopus 로고    scopus 로고
    • The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II
    • Li B., Howe L., Anderson S., Yates J.R., Workman J.L. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 2003, 278:8897-8903.
    • (2003) J. Biol. Chem. , vol.278 , pp. 8897-8903
    • Li, B.1    Howe, L.2    Anderson, S.3    Yates, J.R.4    Workman, J.L.5
  • 106
    • 34249099730 scopus 로고    scopus 로고
    • Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin
    • Li B., Gogol M., Carey M., Lee D., Seidel C., Workman J.L. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 2007, 316:1050-1054.
    • (2007) Science , vol.316 , pp. 1050-1054
    • Li, B.1    Gogol, M.2    Carey, M.3    Lee, D.4    Seidel, C.5    Workman, J.L.6
  • 108
    • 0344022572 scopus 로고    scopus 로고
    • Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity
    • Ng H.H., Robert F., Young R.A., Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 2003, 11:709-719.
    • (2003) Mol. Cell , vol.11 , pp. 709-719
    • Ng, H.H.1    Robert, F.2    Young, R.A.3    Struhl, K.4
  • 113
    • 28444463638 scopus 로고    scopus 로고
    • The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions
    • Kim J., Hake S.B., Roeder R.G. The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol. Cell 2005, 20:759-770.
    • (2005) Mol. Cell , vol.20 , pp. 759-770
    • Kim, J.1    Hake, S.B.2    Roeder, R.G.3
  • 114
    • 27944454433 scopus 로고    scopus 로고
    • Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation
    • Zhu B., Zheng Y., Pham A.D., Mandal S.S., Erdjument-Bromage H., Tempst P., Reinberg D. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol. Cell 2005, 20:601-611.
    • (2005) Mol. Cell , vol.20 , pp. 601-611
    • Zhu, B.1    Zheng, Y.2    Pham, A.D.3    Mandal, S.S.4    Erdjument-Bromage, H.5    Tempst, P.6    Reinberg, D.7
  • 119
    • 79955407832 scopus 로고    scopus 로고
    • Real-time observation of transcription initiation and elongation on an endogenous yeast gene
    • Larson D.R., Zenklusen D., Wu B., Chao J.A., Singer R.H. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 2011, 332:475-478.
    • (2011) Science , vol.332 , pp. 475-478
    • Larson, D.R.1    Zenklusen, D.2    Wu, B.3    Chao, J.A.4    Singer, R.H.5
  • 120
    • 77955174763 scopus 로고    scopus 로고
    • Single-allele analysis of transcription kinetics in living mammalian cells
    • Yunger S., Rosenfeld L., Garini Y., Shav-Tal Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nat. Methods 2010, 7:631-633.
    • (2010) Nat. Methods , vol.7 , pp. 631-633
    • Yunger, S.1    Rosenfeld, L.2    Garini, Y.3    Shav-Tal, Y.4
  • 121
    • 33646881078 scopus 로고    scopus 로고
    • The assembly and maintenance of heterochromatin initiated by transgene repeats are independent of the RNA interference pathway in mammalian cells
    • Wang F., Koyama N., Nishida H., Haraguchi T., Reith W., Tsukamoto T. The assembly and maintenance of heterochromatin initiated by transgene repeats are independent of the RNA interference pathway in mammalian cells. Mol. Cell. Biol. 2006, 26:4028-4040.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 4028-4040
    • Wang, F.1    Koyama, N.2    Nishida, H.3    Haraguchi, T.4    Reith, W.5    Tsukamoto, T.6
  • 124
    • 70350754211 scopus 로고    scopus 로고
    • Rates of in situ transcription and splicing in large human genes
    • Singh J., Padgett R.A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 2009, 16:1128-1133.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1128-1133
    • Singh, J.1    Padgett, R.A.2
  • 126
    • 79952266577 scopus 로고    scopus 로고
    • Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation
    • Ip J.Y., Schmidt D., Pan Q., Ramani A.K., Fraser A.G., Odom D.T., Blencowe B.J. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 2011, 21:390-401.
    • (2011) Genome Res. , vol.21 , pp. 390-401
    • Ip, J.Y.1    Schmidt, D.2    Pan, Q.3    Ramani, A.K.4    Fraser, A.G.5    Odom, D.T.6    Blencowe, B.J.7
  • 128
    • 0030761276 scopus 로고    scopus 로고
    • Functional association between promoter structure and transcript alternative splicing
    • Cramer P., Pesce C.G., Baralle F.E., Kornblihtt A.R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:11456-11460.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 11456-11460
    • Cramer, P.1    Pesce, C.G.2    Baralle, F.E.3    Kornblihtt, A.R.4
  • 129
    • 0033180615 scopus 로고    scopus 로고
    • Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer
    • Cramer P., Caceres J.F., Cazalla D., Kadener S., Muro A.F., Baralle F.E., Kornblihtt A.R. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 1999, 4:251-258.
    • (1999) Mol. Cell , vol.4 , pp. 251-258
    • Cramer, P.1    Caceres, J.F.2    Cazalla, D.3    Kadener, S.4    Muro, A.F.5    Baralle, F.E.6    Kornblihtt, A.R.7
  • 130
    • 49149102734 scopus 로고    scopus 로고
    • Alternative promoters influence alternative splicing at the genomic level
    • Xin D., Hu L., Kong X. Alternative promoters influence alternative splicing at the genomic level. PLoS One 2008, 3:e2377.
    • (2008) PLoS One , vol.3
    • Xin, D.1    Hu, L.2    Kong, X.3
  • 131
    • 0037062415 scopus 로고    scopus 로고
    • Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation
    • Kadener S., Fededa J.P., Rosbash M., Kornblihtt A.R. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:8185-8190.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 8185-8190
    • Kadener, S.1    Fededa, J.P.2    Rosbash, M.3    Kornblihtt, A.R.4
  • 132
    • 0037044769 scopus 로고    scopus 로고
    • Transcriptional activators differ in their abilities to control alternative splicing
    • Nogues G., Kadener S., Cramer P., Bentley D., Kornblihtt A.R. Transcriptional activators differ in their abilities to control alternative splicing. J. Biol. Chem. 2002, 277:43110-43114.
    • (2002) J. Biol. Chem. , vol.277 , pp. 43110-43114
    • Nogues, G.1    Kadener, S.2    Cramer, P.3    Bentley, D.4    Kornblihtt, A.R.5
  • 133
    • 0041305816 scopus 로고    scopus 로고
    • Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae
    • Howe K.J., Kane C.M., Ares M. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 2003, 9:993-1006.
    • (2003) RNA , vol.9 , pp. 993-1006
    • Howe, K.J.1    Kane, C.M.2    Ares, M.3
  • 136
    • 33746641324 scopus 로고    scopus 로고
    • Nucleosome displacement in transcription
    • Workman J.L. Nucleosome displacement in transcription. Genes Dev. 2006, 20:2009-2017.
    • (2006) Genes Dev. , vol.20 , pp. 2009-2017
    • Workman, J.L.1
  • 138
    • 0348122177 scopus 로고    scopus 로고
    • Prediction and statistical analysis of alternatively spliced exons
    • Thanaraj T.A., Stamm S. Prediction and statistical analysis of alternatively spliced exons. Prog. Mol. Subcell. Biol. 2003, 31:1-31.
    • (2003) Prog. Mol. Subcell. Biol. , vol.31 , pp. 1-31
    • Thanaraj, T.A.1    Stamm, S.2
  • 140
    • 70349333201 scopus 로고    scopus 로고
    • Nucleosomes are well positioned in exons and carry characteristic histone modifications
    • Andersson R., Enroth S., Rada-Iglesias A., Wadelius C., Komorowski J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 2009, 19:1732-1741.
    • (2009) Genome Res. , vol.19 , pp. 1732-1741
    • Andersson, R.1    Enroth, S.2    Rada-Iglesias, A.3    Wadelius, C.4    Komorowski, J.5
  • 141
    • 70350235050 scopus 로고    scopus 로고
    • Nucleosomes are preferentially positioned at exons in somatic and sperm cells
    • Nahkuri S., Taft R.J., Mattick J.S. Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle 2009, 8:3420-3424.
    • (2009) Cell Cycle , vol.8 , pp. 3420-3424
    • Nahkuri, S.1    Taft, R.J.2    Mattick, J.S.3
  • 142
    • 69949132191 scopus 로고    scopus 로고
    • Chromatin organization marks exon-intron structure
    • Schwartz S., Meshorer E., Ast G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 2009, 16:990-995.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 990-995
    • Schwartz, S.1    Meshorer, E.2    Ast, G.3
  • 143
    • 70350013550 scopus 로고    scopus 로고
    • Biased chromatin signatures around polyadenylation sites and exons
    • Spies N., Nielsen C.B., Padgett R.A., Burge C.B. Biased chromatin signatures around polyadenylation sites and exons. Mol. Cell 2009, 36:245-254.
    • (2009) Mol. Cell , vol.36 , pp. 245-254
    • Spies, N.1    Nielsen, C.B.2    Padgett, R.A.3    Burge, C.B.4
  • 144
    • 33645372560 scopus 로고    scopus 로고
    • Puzzles of the human genome: why do we need our introns?
    • Fedorova L., Fedorov A. Puzzles of the human genome: why do we need our introns?. Curr. Genomics 2005, 6:589-595.
    • (2005) Curr. Genomics , vol.6 , pp. 589-595
    • Fedorova, L.1    Fedorov, A.2
  • 147
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein T., Allis C.D. Translating the histone code. Science 2001, 293:1074-1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 148
    • 79957543093 scopus 로고    scopus 로고
    • More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation
    • Luco R.F., Misteli T. More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr. Opin. Genet. Dev. 2011, 21:366-372.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 366-372
    • Luco, R.F.1    Misteli, T.2
  • 150
    • 78649836342 scopus 로고    scopus 로고
    • Reciprocal intronic and exonic histone modification regions in humans
    • Huff J.T., Plocik A.M., Guthrie C., Yamamoto K.R. Reciprocal intronic and exonic histone modification regions in humans. Nat. Struct. Mol. Biol. 2010, 17:1495-1499.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1495-1499
    • Huff, J.T.1    Plocik, A.M.2    Guthrie, C.3    Yamamoto, K.R.4
  • 151
    • 63149192174 scopus 로고    scopus 로고
    • Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing
    • Schor I.E., Rascovan N., Pelisch F., Allo M., Kornblihtt A.R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4325-4330.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4325-4330
    • Schor, I.E.1    Rascovan, N.2    Pelisch, F.3    Allo, M.4    Kornblihtt, A.R.5
  • 154
    • 30044441988 scopus 로고    scopus 로고
    • The human SWI/SNF subunit Brm is a regulator of alternative splicing
    • Batsche E., Yaniv M., Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 2006, 13:22-29.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 22-29
    • Batsche, E.1    Yaniv, M.2    Muchardt, C.3
  • 155
    • 67149138094 scopus 로고    scopus 로고
    • SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing
    • Tyagi A., Ryme J., Brodin D., Ostlund Farrants A.K., Visa N. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet. 2009, 5:e1000470.
    • (2009) PLoS Genet. , vol.5
    • Tyagi, A.1    Ryme, J.2    Brodin, D.3    Ostlund Farrants, A.K.4    Visa, N.5
  • 158
    • 7544231794 scopus 로고    scopus 로고
    • Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells
    • Lorincz M.C., Dickerson D.R., Schmitt M., Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol. 2004, 11:1068-1075.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 1068-1075
    • Lorincz, M.C.1    Dickerson, D.R.2    Schmitt, M.3    Groudine, M.4
  • 160
    • 78649955848 scopus 로고    scopus 로고
    • The honey bee epigenomes: differential methylation of brain DNA in queens and workers
    • Lyko F., Foret S., Kucharski R., Wolf S., Falckenhayn C., Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 2010, 8:e1000506.
    • (2010) PLoS Biol. , vol.8
    • Lyko, F.1    Foret, S.2    Kucharski, R.3    Wolf, S.4    Falckenhayn, C.5    Maleszka, R.6
  • 161
    • 0034713275 scopus 로고    scopus 로고
    • CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus
    • Hark A.T., Schoenherr C.J., Katz D.J., Ingram R.S., Levorse J.M., Tilghman S.M. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000, 405:486-489.
    • (2000) Nature , vol.405 , pp. 486-489
    • Hark, A.T.1    Schoenherr, C.J.2    Katz, D.J.3    Ingram, R.S.4    Levorse, J.M.5    Tilghman, S.M.6
  • 162
    • 67549119096 scopus 로고    scopus 로고
    • CTCF: master weaver of the genome
    • Phillips J.E., Corces V.G. CTCF: master weaver of the genome. Cell 2009, 137:1194-1211.
    • (2009) Cell , vol.137 , pp. 1194-1211
    • Phillips, J.E.1    Corces, V.G.2
  • 163
    • 48249153426 scopus 로고    scopus 로고
    • The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome
    • Fu Y., Sinha M., Peterson C.L., Weng Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet. 2008, 4:e1000138.
    • (2008) PLoS Genet. , vol.4
    • Fu, Y.1    Sinha, M.2    Peterson, C.L.3    Weng, Z.4
  • 164
    • 36249027156 scopus 로고    scopus 로고
    • Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing
    • Sims R.J., Millhouse S., Chen C.F., Lewis B.A., Erdjument-Bromage H., Tempst P., Manley J.L., Reinberg D. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 2007, 28:665-676.
    • (2007) Mol. Cell , vol.28 , pp. 665-676
    • Sims, R.J.1    Millhouse, S.2    Chen, C.F.3    Lewis, B.A.4    Erdjument-Bromage, H.5    Tempst, P.6    Manley, J.L.7    Reinberg, D.8
  • 165
    • 73349116881 scopus 로고    scopus 로고
    • Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly
    • Gunderson F.Q., Johnson T.L. Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet. 2009, 5:e1000682.
    • (2009) PLoS Genet. , vol.5
    • Gunderson, F.Q.1    Johnson, T.L.2
  • 166
    • 60549110477 scopus 로고    scopus 로고
    • Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation
    • Loomis R.J., Naoe Y., Parker J.B., Savic V., Bozovsky M.R., Macfarlan T., Manley J.L., Chakravarti D. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol. Cell 2009, 33:450-461.
    • (2009) Mol. Cell , vol.33 , pp. 450-461
    • Loomis, R.J.1    Naoe, Y.2    Parker, J.B.3    Savic, V.4    Bozovsky, M.R.5    Macfarlan, T.6    Manley, J.L.7    Chakravarti, D.8
  • 168
    • 13244253805 scopus 로고    scopus 로고
    • Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERalpha and CAPERbeta
    • Dowhan D.H., Hong E.P., Auboeuf D., Dennis A.P., Wilson M.M., Berget S.M., O'Malley B.W. Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERalpha and CAPERbeta. Mol. Cell 2005, 17:429-439.
    • (2005) Mol. Cell , vol.17 , pp. 429-439
    • Dowhan, D.H.1    Hong, E.P.2    Auboeuf, D.3    Dennis, A.P.4    Wilson, M.M.5    Berget, S.M.6    O'Malley, B.W.7
  • 170
    • 0035924345 scopus 로고    scopus 로고
    • Stimulatory effect of splicing factors on transcriptional elongation
    • Fong Y.W., Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 2001, 414:929-933.
    • (2001) Nature , vol.414 , pp. 929-933
    • Fong, Y.W.1    Zhou, Q.2
  • 174
    • 4344705410 scopus 로고    scopus 로고
    • Small interfering RNA-induced transcriptional gene silencing in human cells
    • Morris K.V., Chan S.W., Jacobsen S.E., Looney D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004, 305:1289-1292.
    • (2004) Science , vol.305 , pp. 1289-1292
    • Morris, K.V.1    Chan, S.W.2    Jacobsen, S.E.3    Looney, D.J.4
  • 176
    • 33748368912 scopus 로고    scopus 로고
    • Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells
    • Kim D.H., Villeneuve L.M., Morris K.V., Rossi J.J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 2006, 13:793-797.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 793-797
    • Kim, D.H.1    Villeneuve, L.M.2    Morris, K.V.3    Rossi, J.J.4
  • 178
    • 47249098330 scopus 로고    scopus 로고
    • Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene
    • Zhang M.X., Zhang C., Shen Y.H., Wang J., Li X.N., Zhang Y., Coselli J., Wang X.L. Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene. J. Biol. Chem. 2008, 283:14685-14693.
    • (2008) J. Biol. Chem. , vol.283 , pp. 14685-14693
    • Zhang, M.X.1    Zhang, C.2    Shen, Y.H.3    Wang, J.4    Li, X.N.5    Zhang, Y.6    Coselli, J.7    Wang, X.L.8
  • 179
    • 49749133953 scopus 로고    scopus 로고
    • Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs
    • Gonzalez S., Pisano D.G., Serrano M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 2008, 7:2601-2608.
    • (2008) Cell Cycle , vol.7 , pp. 2601-2608
    • Gonzalez, S.1    Pisano, D.G.2    Serrano, M.3
  • 181
    • 77953961505 scopus 로고    scopus 로고
    • Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription
    • Guang S., Bochner A.F., Burkhart K.B., Burton N., Pavelec D.M., Kennedy S. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 2010, 465:1097-1101.
    • (2010) Nature , vol.465 , pp. 1097-1101
    • Guang, S.1    Bochner, A.F.2    Burkhart, K.B.3    Burton, N.4    Pavelec, D.M.5    Kennedy, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.