메뉴 건너뛰기




Volumn 74, Issue , 2012, Pages 377-401

Autophagy in pulmonary diseases

Author keywords

Apoptosis; Autophagosome; Cell proliferation; Chronic obstructive pulmonary disease; Cigarette smoke; Hypoxia; Inflammation; Pulmonary hypertension

Indexed keywords

BAFILOMYCIN A1; BECLIN 1; CASPASE RECRUITMENT DOMAIN PROTEIN 15; HYPOXIA INDUCIBLE FACTOR 1ALPHA; HYPOXIA INDUCIBLE FACTOR 1BETA; MAMMALIAN TARGET OF RAPAMYCIN; PHOSPHATIDYLINOSITOL 3 KINASE; PROCOLLAGEN PROLINE 2 OXOGLUTARATE 4 DIOXYGENASE; PROTEIN KINASE B; REGULATOR PROTEIN; TRANSMEMBRANE CONDUCTANCE REGULATOR; VON HIPPEL LINDAU PROTEIN;

EID: 84857335732     PISSN: 00664278     EISSN: 15451585     Source Type: Book Series    
DOI: 10.1146/annurev-physiol-020911-153348     Document Type: Article
Times cited : (91)

References (149)
  • 3
    • 62949091373 scopus 로고    scopus 로고
    • Autophagy: A lysosomal degradation pathway with a central role in health and disease
    • Eskelinen EL, Saftig P. 2009. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta 1793:664-73
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 664-73
    • Eskelinen, E.L.1    Saftig, P.2
  • 4
    • 35448981935 scopus 로고    scopus 로고
    • Autophagy: From phenomenology to molecular understanding in less than a decade
    • DOI 10.1038/nrm2245, PII NRM2245
    • Klionsky DJ. 2007. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8:931-37 (Pubitemid 47622558)
    • (2007) Nature Reviews Molecular Cell Biology , vol.8 , Issue.11 , pp. 931-937
    • Klionsky, D.J.1
  • 5
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344-48
    • (2010) Science , vol.330 , pp. 1344-48
    • Rabinowitz, J.D.1    White, E.2
  • 6
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • DOI 10.1038/nature06639, PII NATURE06639
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. 2008. Autophagy fights disease through cellular self-digestion. Nature 451:1069-75 (Pubitemid 351317450)
    • (2008) Nature , vol.451 , Issue.7182 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 7
    • 79957883170 scopus 로고    scopus 로고
    • The multiple roles of autophagy in cancer
    • Rosenfeldt MT, Ryan KM. 2011. The multiple roles of autophagy in cancer. Carcinogenesis 32:955-63
    • (2011) Carcinogenesis , vol.32 , pp. 955-63
    • Rosenfeldt, M.T.1    Ryan, K.M.2
  • 8
    • 68349161234 scopus 로고    scopus 로고
    • Autophagy in neurodegeneration: Two sides of the same coin
    • Lee JA. 2009. Autophagy in neurodegeneration: two sides of the same coin. BMB Rep. 42:324-30
    • (2009) BMB Rep. , vol.42 , pp. 324-30
    • Lee, J.A.1
  • 9
    • 61949233502 scopus 로고    scopus 로고
    • Autophagy in atherosclerosis: A cell survival and death phenomenon with therapeutic potential
    • Martinet W, De Meyer GR. 2009. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ. Res. 104:304-17
    • (2009) Circ. Res. , vol.104 , pp. 304-17
    • Martinet, W.1    De Meyer, G.R.2
  • 10
    • 77951915586 scopus 로고    scopus 로고
    • Autophagy during cardiac stress: Joys and frustrations of autophagy
    • Gottlieb RA, Mentzer RM. 2010. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu. Rev. Physiol. 72:45-59
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 45-59
    • Gottlieb, R.A.1    Mentzer, R.M.2
  • 11
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469:323-35
    • (2011) Nature , vol.469 , pp. 323-35
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 12
    • 77954754620 scopus 로고    scopus 로고
    • Autophagy and Crohns disease: At the crossroads of infection, inflammation, immunity, and cancer
    • Brest P, Corcelle EA, Cesaro A, Chargui A, Belaïd A, et al. 2010. Autophagy and Crohns disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr. Mol. Med. 10:486-502
    • (2010) Curr. Mol. Med. , vol.10 , pp. 486-502
    • Brest, P.1    Corcelle, E.A.2    Cesaro, A.3    Chargui, A.4    Belaïd, A.5
  • 14
    • 78349308821 scopus 로고    scopus 로고
    • Negative regulation of autophagy
    • Liang C. 2010. Negative regulation of autophagy. Cell Death Differ. 17:1807-15
    • (2010) Cell Death Differ , vol.17 , pp. 1807-1815
    • Liang, C.1
  • 15
    • 79952217657 scopus 로고    scopus 로고
    • Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension
    • Lee SJ, Smith A, Guo L, Alastalo T-P, Li M, et al. 2011. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am. J. Resp. Crit. Care Med. 183:649-58
    • (2011) Am. J. Resp. Crit. Care Med. , vol.183 , pp. 649-58
    • Lee, S.J.1    Smith, A.2    Guo, L.3    Alastalo, T.-P.4    Li, M.5
  • 16
    • 53749087325 scopus 로고    scopus 로고
    • Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease
    • Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, et al. 2008. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE 3(10):e3316
    • (2008) PLoS ONE , vol.3 , Issue.10
    • Zh, C.1    Kim, H.P.2    Sciurba, F.C.3    Lee, S.J.4    Feghali-Bostwick, C.5
  • 17
    • 78650434097 scopus 로고    scopus 로고
    • Autophagy protein LC3B activates extrinsic apoptosis during cigarette-smoke induced emphysema
    • Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, et al. 2010. Autophagy protein LC3B activates extrinsic apoptosis during cigarette-smoke induced emphysema. Proc. Natl. Acad. Sci. USA 107:18880-85
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 18880-85
    • Zh, C.1    Lam, H.C.2    Jin, Y.3    Kim, H.P.4    Cao, J.5
  • 18
    • 78149476302 scopus 로고    scopus 로고
    • Identification of an autophagy defect in smokers alveolar macrophages
    • Monick MM, Powers LS, Walters K, Lovan N, Zhang M, et al. 2010. Identification of an autophagy defect in smokers alveolar macrophages. J. Immunol. 185:5425-35
    • (2010) J. Immunol. , vol.185 , pp. 5425-35
    • Monick, M.M.1    Powers, L.S.2    Walters, K.3    Lovan, N.4    Zhang, M.5
  • 19
    • 77958019874 scopus 로고    scopus 로고
    • Autophagy in cigarette smoke-induced chronic obstructive pulmonary disease
    • Ryter SW, Lee SJ, ChoiAM. 2010. Autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 4:573-84
    • (2010) Expert Rev. Respir. Med. , vol.4 , pp. 573-84
    • Ryter, S.W.1    Lee, S.J.2    Choi, A.M.3
  • 20
    • 77956396747 scopus 로고    scopus 로고
    • Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition
    • Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, et al. 2010. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell Biol. 12:863-75
    • (2010) Nat. Cell Biol. , vol.12 , pp. 863-75
    • Luciani, A.1    Villella, V.R.2    Esposito, S.3    Brunetti-Pierri, N.4    Medina, D.5
  • 22
    • 0003066619 scopus 로고
    • Toxic response of the respiratory system
    • ed. K Klaassen, MOAmdur, J Doull New York, NY MacMillan. 3rd ed.
    • Menzel DB, AmdurMO. 1986. Toxic response of the respiratory system. In Casarett andDoulls Toxicology: The Basic Science of Poisons, ed. K Klaassen, MOAmdur, J Doull, pp. 330-58. New York, NY:MacMillan. 3rd ed.
    • (1986) Casarett AndDoulls Toxicology: The Basic Science of Poisons , pp. 330-58
    • Menzel, D.B.1    Amdur, M.O.2
  • 23
    • 69449098185 scopus 로고    scopus 로고
    • Heme oxygenase-1/carbon monoxide: From metabolism to molecular therapy
    • Ryter SW, Choi AM. 2009. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am. J. Respir. Cell Mol. Biol. 41:251-60
    • (2009) Am. J. Respir. Cell Mol. Biol. , vol.41 , pp. 251-60
    • Ryter, S.W.1    Choi, A.M.2
  • 24
    • 79957900741 scopus 로고    scopus 로고
    • Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease
    • Yao H, Rahman I. 2011. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol. Appl. Pharmacol. 254:72-85
    • (2011) Toxicol. Appl. Pharmacol. , vol.254 , pp. 72-85
    • Yao, H.1    Rahman, I.2
  • 26
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Marĩno G, Levine B. 2010. Autophagy and the integrated stress response. Mol. Cell. 40:280-93
    • (2010) Mol. Cell. , vol.40 , pp. 280-93
    • Kroemer, G.1    Marĩno, G.2    Levine, B.3
  • 27
    • 77956414236 scopus 로고    scopus 로고
    • The origin of the autophagosomal membrane
    • Tooze SA, Yoshimori T. 2010. The origin of the autophagosomal membrane. Nat. Cell Biol. 12:831-35
    • (2010) Nat. Cell Biol. , vol.12 , pp. 831-35
    • Tooze, S.A.1    Yoshimori, T.2
  • 28
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yang Z, Klionsky DJ. 2010. Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22:124-31
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 124-31
    • Yang, Z.1    Klionsky, D.J.2
  • 30
    • 33847397874 scopus 로고    scopus 로고
    • Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
    • DOI 10.1038/ncb1547, PII NCB1547
    • VanderHaar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. 2007. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9:316-23 (Pubitemid 46344611)
    • (2007) Nature Cell Biology , vol.9 , Issue.3 , pp. 316-323
    • Haar, E.V.1    Lee, S.2    Bandhakavi, S.3    Griffin, T.J.4    Kim, D.-H.5
  • 32
    • 34548482499 scopus 로고    scopus 로고
    • SiRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
    • DOI 10.1074/jbc.M703663200
    • Chan EY, Kir S, Tooze SA. 2007. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282:25464-74 (Pubitemid 47372826)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.35 , pp. 25464-25474
    • Chan, E.Y.W.1    Kir, S.2    Tooze, S.A.3
  • 33
    • 66449083078 scopus 로고    scopus 로고
    • ULK1ATG13FIP200 complexmediates mTOR signaling and is essential for autophagy
    • Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. 2009. ULK1ATG13FIP200 complexmediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284:12297-305
    • (2009) J. Biol. Chem. , vol.284 , pp. 12297-305
    • Ganley, I.G.1    Lam, D.H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 34
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992-2003
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5
  • 35
    • 70349644856 scopus 로고    scopus 로고
    • Atg101, a novel mammalian autophagy protein interacting with Atg13
    • Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, et al. 2009. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973-79
    • (2009) Autophagy , vol.5 , pp. 973-79
    • Hosokawa, N.1    Sasaki, T.2    Iemura, S.3    Natsume, T.4    Hara, T.5
  • 36
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981-91
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-91
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3    Kishi, C.4    Takamura, A.5
  • 37
    • 78149476877 scopus 로고    scopus 로고
    • The association of AMPK with ULK1 regulates autophagy
    • Lee JW, Park S, Takahashi Y, Wang HG. 2010. The association of AMPK with ULK1 regulates autophagy. PLoS ONE 5:e15394
    • (2010) PLoS ONE , vol.5
    • Lee, J.W.1    Park, S.2    Takahashi, Y.3    Wang, H.G.4
  • 38
    • 79953211917 scopus 로고    scopus 로고
    • Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
    • Shang L, Chen S, Du F, Li S, Zhao L, Wang X. 2011. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA 108:4788-93
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 4788-93
    • Shang, L.1    Chen, S.2    Du, F.3    Li, S.4    Zhao, L.5    Wang, X.6
  • 39
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13:132-41
    • (2011) Nat. Cell Biol. , vol.13 , pp. 132-41
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 40
    • 58149473473 scopus 로고    scopus 로고
    • Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independentmechanism
    • Chan EY, Longatti A, McKnight NC, Tooze SA. 2009. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independentmechanism. Mol. Cell. Biol. 29:157-71
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 157-71
    • Chan, E.Y.1    Longatti, A.2    McKnight, N.C.3    Tooze, S.A.4
  • 41
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • MizushimaN. 2010. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22:132-39
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 132-39
    • Mizushima, N.1
  • 42
    • 65249155441 scopus 로고    scopus 로고
    • An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation
    • Chang YY, Neufeld T. 2009. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell 20:2004-14
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2004-14
    • Chang, Y.Y.1    Neufeld, T.2
  • 45
    • 33745751085 scopus 로고    scopus 로고
    • Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG
    • Liang C, Feng P, Ku B, Dotan I, Canaani D, et al. 2006. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 8:688-99
    • (2006) Nat. Cell Biol. , vol.8 , pp. 688-99
    • Liang, C.1    Feng, P.2    Ku, B.3    Dotan, I.4    Canaani, D.5
  • 46
    • 59249089394 scopus 로고    scopus 로고
    • Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
    • Itakura E, Kishi C, Inoue K, Mizushima N. 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19:5360-72
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5360-72
    • Itakura, E.1    Kishi, C.2    Inoue, K.3    Mizushima, N.4
  • 47
    • 66349103167 scopus 로고    scopus 로고
    • Atg14 and UVRAG: Mutually exclusive subunits of mammalian Beclin 1-PI3K complexes
    • Itakura E, Mizushima N. 2009. Atg14 and UVRAG: mutually exclusive subunits of mammalian Beclin 1-PI3K complexes. Autophagy 5:534-36
    • (2009) Autophagy , vol.5 , pp. 534-36
    • Itakura, E.1    Mizushima, N.2
  • 48
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, et al. 2009. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11:468-76
    • (2009) Nat. Cell Biol. , vol.11 , pp. 468-76
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5
  • 49
    • 64049086758 scopus 로고    scopus 로고
    • Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
    • Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, et al. 2009. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11:385-96
    • (2009) Nat. Cell Biol. , vol.11 , pp. 385-96
    • Matsunaga, K.1    Saitoh, T.2    Tabata, K.3    Omori, H.4    Satoh, T.5
  • 53
    • 11244289333 scopus 로고    scopus 로고
    • WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy
    • DOI 10.1038/sj.onc.1208331
    • Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. 2004. WIPI-1α(WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314-25 (Pubitemid 40069664)
    • (2004) Oncogene , vol.23 , Issue.58 , pp. 9314-9325
    • Proikas-Cezanne, T.1    Waddell, S.2    Gaugel, A.3    Frickey, T.4    Lupas, A.5    Nordheim, A.6
  • 54
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbé S, et al. 2010. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4):506-22
    • (2010) Autophagy , vol.6 , Issue.4 , pp. 506-22
    • Polson, H.E.1    De Lartigue, J.2    Rigden, D.J.3    Reedijk, M.4    Urbé, S.5
  • 55
    • 0035286734 scopus 로고    scopus 로고
    • Molecular dissection of autophagy: Two ubiquitin-like systems
    • DOI 10.1038/35056522
    • Ohsumi Y. 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2:211-16 (Pubitemid 33675746)
    • (2001) Nature Reviews Molecular Cell Biology , vol.2 , Issue.3 , pp. 211-216
    • Ohsumi, Y.1
  • 58
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720-28
    • (2000) EMBO J. , vol.19 , pp. 5720-28
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3    Yamamoto, A.4    Kirisako, T.5
  • 60
    • 38049098543 scopus 로고    scopus 로고
    • The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, et al. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282:37298-302
    • (2007) J. Biol. Chem. , vol.282 , pp. 37298-302
    • Hanada, T.1    Noda, N.N.2    Satomi, Y.3    Ichimura, Y.4    Fujioka, Y.5
  • 61
    • 3242877218 scopus 로고    scopus 로고
    • Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
    • DOI 10.1242/jcs.01114
    • Gutierrez MG, Munafo DB, Beron W, Colombo MI. 2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117:2687-97 (Pubitemid 38997252)
    • (2004) Journal of Cell Science , vol.117 , Issue.13 , pp. 2687-2697
    • Gutierrez, M.G.1    Munafo, D.B.2    Beron, W.3    Colombo, M.I.4
  • 65
    • 35848967804 scopus 로고    scopus 로고
    • How to interpret LC3 immunoblotting
    • Mizushima N, Yoshimori T. 2007. How to interpret LC3 immunoblotting. Autophagy 3:542-45 (Pubitemid 350060049)
    • (2007) Autophagy , vol.3 , Issue.6 , pp. 542-545
    • Mizushima, N.1    Yoshimori, T.2
  • 66
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • Mizushima N, Yoshimori T, Levine B. 2010. Methods in mammalian autophagy research. Cell 140:313-26
    • (2010) Cell , vol.140 , pp. 313-26
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 67
    • 77953530939 scopus 로고    scopus 로고
    • Investigating autophagy: Quantitative morphometric analysis using electron microscopy
    • Swanlund JM, Kregel KC, Oberley TD. 2010. Investigating autophagy: quantitative morphometric analysis using electron microscopy. Autophagy 6:270-27
    • (2010) Autophagy , vol.6 , pp. 270-27
    • Swanlund, J.M.1    Kregel, K.C.2    Oberley, T.D.3
  • 69
    • 33746108329 scopus 로고    scopus 로고
    • Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
    • Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. 2005. Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84-91
    • (2005) Autophagy , vol.1 , pp. 84-91
    • Tanida, I.1    Minematsu-Ikeguchi, N.2    Ueno, T.3    Kominami, E.4
  • 71
    • 0032555641 scopus 로고    scopus 로고
    • Isolation and characterization of rat liver amphisomes: Evidence for fusion of autophagosomes with both early and late endosomes
    • DOI 10.1074/jbc.273.34.21883
    • Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO. 1998. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem. 273:21883-92 (Pubitemid 28405366)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.34 , pp. 21883-21892
    • Berg, T.O.1    Fengsrud, M.2    Stromhaug, P.E.3    Berg, T.4    Seglen, P.O.5
  • 72
    • 0019900928 scopus 로고
    • Appearance of autolysosomes in rat liver after leupeptin treatment
    • Furuno K, Ishikawa T, Kato K. 1982. Appearance of autolysosomes in rat liver after leupeptin treatment. J. Biochem. 91:1485-94 (Pubitemid 12010321)
    • (1982) Journal of Biochemistry , vol.91 , Issue.5 , pp. 1485-1494
    • Furunto, K.1    Ishikawa, T.2    Kato, K.3
  • 73
    • 79957886201 scopus 로고    scopus 로고
    • Characterization ofmacroautophagic flux in vivo using a leupeptin-based assay
    • Haspel J, Rahamthulla SS, Ifedigbo E, Nakahira K, Dolinay T, et al. 2011. Characterization ofmacroautophagic flux in vivo using a leupeptin-based assay. Autophagy 7:629-42
    • (2011) Autophagy , vol.7 , pp. 629-42
    • Haspel, J.1    Rahamthulla, S.S.2    Ifedigbo, E.3    Nakahira, K.4    Dolinay, T.5
  • 74
    • 59249105119 scopus 로고    scopus 로고
    • Flow cytometric analysis of autophagy in living mammalian cells
    • Shvets E, Elazar Z. 2009. Flow cytometric analysis of autophagy in living mammalian cells. Methods Enzymol. 452:131-41
    • (2009) Methods Enzymol. , vol.452 , pp. 131-41
    • Shvets, E.1    Elazar, Z.2
  • 75
    • 70349634805 scopus 로고    scopus 로고
    • Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux
    • Farkas T, Hoyer-Hansen M, Jaattela M. 2009. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy 5:1018-25
    • (2009) Autophagy , vol.5 , pp. 1018-25
    • Farkas, T.1    Hoyer-Hansen, M.2    Jaattela, M.3
  • 77
    • 34548077575 scopus 로고    scopus 로고
    • Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
    • Kimura S, Noda T, Yoshimori T. 2007. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452-60 (Pubitemid 47293726)
    • (2007) Autophagy , vol.3 , Issue.5 , pp. 452-460
    • Kimura, S.1    Noda, T.2    Yoshimori, T.3
  • 80
    • 59249109653 scopus 로고    scopus 로고
    • TheGST-BHMTassay and related assays for autophagy
    • Dennis PB, Mercer CA. 2009. TheGST-BHMTassay and related assays for autophagy. Methods Enzymol. 452:97-118
    • (2009) Methods Enzymol. , vol.452 , pp. 97-118
    • Dennis, P.B.1    Mercer, C.A.2
  • 81
    • 66349135140 scopus 로고    scopus 로고
    • Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters
    • Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, et al. 2009. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 5:511-19
    • (2009) Autophagy , vol.5 , pp. 511-19
    • Ju, J.S.1    Miller, S.E.2    Jackson, E.3    Cadwell, K.4    Piwnica-Worms, D.5
  • 82
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T, Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279-96
    • (2011) Autophagy , vol.7 , Issue.3 , pp. 279-96
    • Johansen, T.1    Lamark, T.2
  • 83
    • 34249934085 scopus 로고    scopus 로고
    • Selective degradation of mitochondria by mitophagy
    • DOI 10.1016/j.abb.2007.03.034, PII S0003986107001622, Highlight Issue: Pro- and antiapoptotic Signalling
    • Kim I, Rodriguez-Enriquez S, Lemasters JJ. 2007. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 462:245-53 (Pubitemid 46876640)
    • (2007) Archives of Biochemistry and Biophysics , vol.462 , Issue.2 , pp. 245-253
    • Kim, I.1    Rodriguez-Enriquez, S.2    Lemasters, J.J.3
  • 84
    • 12944308330 scopus 로고    scopus 로고
    • Eating oneself and uninvited guests: Autophagy-related pathways in cellular defense
    • DOI 10.1016/j.cell.2005.01.005, PII S0092867405000437
    • Levine B. 2005. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159-62 (Pubitemid 40174758)
    • (2005) Cell , vol.120 , Issue.2 , pp. 159-162
    • Levine, B.1
  • 85
    • 79951578639 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration
    • Koga H, Cuervo AM. 2011. Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol. Disease 43:29-37
    • (2011) Neurobiol. Disease , vol.43 , pp. 29-37
    • Koga, H.1    Cuervo, A.M.2
  • 86
    • 78651417707 scopus 로고    scopus 로고
    • Shedding light on mammalian microautophagy
    • Shpilka T, Elazar Z. 2011. Shedding light on mammalian microautophagy. Dev. Cell. 20:1-2
    • (2011) Dev. Cell. , vol.20 , pp. 1-2
    • Shpilka, T.1    Elazar, Z.2
  • 87
    • 65249108735 scopus 로고    scopus 로고
    • Autophagy genes in immunity
    • Virgin HW, Levine B. 2009. Autophagy genes in immunity. Nat. Immunol. 10:461-70
    • (2009) Nat. Immunol. , vol.10 , pp. 461-70
    • Virgin, H.W.1    Levine, B.2
  • 88
    • 30144441692 scopus 로고    scopus 로고
    • Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology
    • Semenza GL. 2005. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest 128:S592-94
    • (2005) Chest , vol.128
    • Semenza, G.L.1
  • 89
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, et al. 2008. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283:10892-903
    • (2008) J. Biol. Chem. , vol.283 , pp. 10892-903
    • Zhang, H.1    Bosch-Marce, M.2    Shimoda, L.A.3    Tan, Y.S.4    Baek, J.H.5
  • 90
    • 66349121718 scopus 로고    scopus 로고
    • Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
    • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, et al. 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29:2570-81
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 2570-81
    • Bellot, G.1    Garcia-Medina, R.2    Gounon, P.3    Chiche, J.4    Roux, D.5
  • 91
    • 38949119423 scopus 로고    scopus 로고
    • Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3
    • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, et al. 2008. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4:195-204 (Pubitemid 351231183)
    • (2008) Autophagy , vol.4 , Issue.2 , pp. 195-204
    • Azad, M.B.1    Chen, Y.2    Henson, E.S.3    Cizeau, J.4    McMillan-Ward, E.5    Israels, S.J.6    Gibson, S.B.7
  • 93
    • 79961102995 scopus 로고    scopus 로고
    • Beclin 1 deficiency is associated with increased hypoxiainduced angiogenesis
    • Lee SJ, Kim HP, Jin Y, Choi AM, Ryter S. 2011. Beclin 1 deficiency is associated with increased hypoxiainduced angiogenesis. Autophagy 7:829-39
    • (2011) Autophagy , vol.7 , pp. 829-39
    • Lee, S.J.1    Kim, H.P.2    Jin, Y.3    Choi, A.M.4    Ryter, S.5
  • 94
    • 77950901310 scopus 로고    scopus 로고
    • Vascular responses to hypoxia and ischemia
    • Semenza GL. 2010. Vascular responses to hypoxia and ischemia. Arterioscler. Thromb. Vasc. Biol. 30:648-52
    • (2010) Arterioscler. Thromb. Vasc. Biol. , vol.30 , pp. 648-52
    • Semenza, G.L.1
  • 95
    • 65649120436 scopus 로고    scopus 로고
    • Functional significance and morphological characterization of starvation-induced autophagy in the adult heart
    • Kanamori H, Takemura G, Maruyama R, Goto K, Tsujimoto A, et al. 2009. Functional significance and morphological characterization of starvation-induced autophagy in the adult heart. Am. J. Pathol. 174:1705-14
    • (2009) Am. J. Pathol. , vol.174 , pp. 1705-14
    • Kanamori, H.1    Takemura, G.2    Maruyama, R.3    Goto, K.4    Tsujimoto, A.5
  • 97
    • 57649149333 scopus 로고    scopus 로고
    • Classification of cell death: Recommendations of the nomenclature committee on cell death
    • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, et al. 2009. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 16:3-11
    • (2009) Cell Death Differ. , vol.16 , pp. 3-11
    • Kroemer, G.1    Galluzzi, L.2    Vandenabeele, P.3    Abrams, J.4    Alnemri, E.S.5
  • 99
    • 77953699668 scopus 로고    scopus 로고
    • Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer
    • Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. 2010. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 6:322-29
    • (2010) Autophagy , vol.6 , pp. 322-29
    • Dalby, K.N.1    Tekedereli, I.2    Lopez-Berestein, G.3    Ozpolat, B.4
  • 101
  • 102
    • 56749170677 scopus 로고    scopus 로고
    • Autophagic cell death: The story of a misnomer
    • Kroemer G, Levine B. 2008. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9:1004-10
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 1004-10
    • Kroemer, G.1    Levine, B.2
  • 104
    • 41949125675 scopus 로고    scopus 로고
    • Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus
    • Wang Y, Singh R, Massey AC, Kane SS, Kaushik S, et al. 2008. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus. J. Biol. Chem. 283:4766-77
    • (2008) J. Biol. Chem. , vol.283 , pp. 4766-77
    • Wang, Y.1    Singh, R.2    Massey, A.C.3    Kane, S.S.4    Kaushik, S.5
  • 105
    • 33745845126 scopus 로고    scopus 로고
    • Autophagy contributes to caspase-independent macrophage cell death
    • DOI 10.1074/jbc.M513377200
    • Xu Y, Kim SO, Li Y, Han J. 2006. Autophagy contributes to caspase-independent macrophage cell death. J. Biol. Chem. 281:19179-87 (Pubitemid 44035422)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.28 , pp. 19179-19187
    • Xu, Y.1    Sung, O.K.2    Li, Y.3    Han, J.4
  • 106
    • 33645521571 scopus 로고    scopus 로고
    • Autophagic programmed cell death by selective catalase degradation
    • Yu L, Wan F, Dutta S, Liu Z, Freundt E, et al. 2006. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. USA 103:4952-57
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 4952-57
    • Yu, L.1    Wan, F.2    Dutta, S.3    Liu, Z.4    Freundt, E.5
  • 107
    • 34548034107 scopus 로고    scopus 로고
    • A calpain-like protease inhibits autophagic cell death
    • Madden DT, Egger L, Bredesen DE. 2007. A calpain-like protease inhibits autophagic cell death. Autophagy 3:519-22 (Pubitemid 47293745)
    • (2007) Autophagy , vol.3 , Issue.5 , pp. 519-522
    • Madden, D.T.1    Egger, L.2    Bredesen, D.E.3
  • 110
    • 34548188741 scopus 로고    scopus 로고
    • Self-eating and self-killing: Crosstalk between autophagy and apoptosis
    • DOI 10.1038/nrm2239, PII NRM2239
    • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. 2007. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8:741-52 (Pubitemid 47312826)
    • (2007) Nature Reviews Molecular Cell Biology , vol.8 , Issue.9 , pp. 741-752
    • Maiuri, M.C.1    Zalckvar, E.2    Kimchi, A.3    Kroemer, G.4
  • 111
    • 76349114046 scopus 로고    scopus 로고
    • Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1
    • Chang NC, Nguyen M, Germain M, Shore GC. 2010. Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J. 29:606-18
    • (2010) EMBO J. , vol.29 , pp. 606-18
    • Chang, N.C.1    Nguyen, M.2    Germain, M.3    Shore, G.C.4
  • 112
    • 20144381544 scopus 로고    scopus 로고
    • Essential roles of Atg5 and FADD in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death
    • Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, et al. 2005. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J. Biol. Chem. 280:20722-29
    • (2005) J. Biol. Chem. , vol.280 , pp. 20722-29
    • Pyo, J.O.1    Jang, M.H.2    Kwon, Y.K.3    Lee, H.J.4    Jun, J.I.5
  • 114
    • 78649636176 scopus 로고    scopus 로고
    • Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria
    • Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, et al. 2010. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Disease 1:e18
    • (2010) Cell Death Disease , vol.1
    • Wirawan, E.1    Vande Walle, L.2    Kersse, K.3    Cornelis, S.4    Claerhout, S.5
  • 115
    • 79956144655 scopus 로고    scopus 로고
    • Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase-8-mediated cleavage of Beclin-1
    • Li H, Wang P, Sun Q, Ding WX, Yin XM, et al. 2011. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase-8-mediated cleavage of Beclin-1. Cancer Res. 71:3625-34
    • (2011) Cancer Res. , vol.71 , pp. 3625-34
    • Li, H.1    Wang, P.2    Sun, Q.3    Ding, W.X.4    Yin, X.M.5
  • 116
    • 2642553881 scopus 로고    scopus 로고
    • Regulation of an ATG7-beclin 1 program of autophaglic cell death by caspase-8
    • DOI 10.1126/science.1096645
    • Yu L, Alva A, Su H, Dutt P, Freundt E, et al. 2004. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500-2 (Pubitemid 38720930)
    • (2004) Science , vol.304 , Issue.5676 , pp. 1500-1502
    • Yu, L.1    Alva, A.2    Su, H.3    Dutt, P.4    Freundt, E.5    Welsh, S.6    Baehrecke, E.H.7    Lenardo, M.J.8
  • 117
    • 77950861972 scopus 로고    scopus 로고
    • Involvement of JNKin the regulation of autophagic cell death
    • Shimizu S, Konishi A, Nishida Y, Mizuta T, Nishina H, et al. 2010. Involvement of JNKin the regulation of autophagic cell death. Oncogene 29:2070-82
    • (2010) Oncogene , vol.29 , pp. 2070-82
    • Shimizu, S.1    Konishi, A.2    Nishida, Y.3    Mizuta, T.4    Nishina, H.5
  • 118
    • 53549089861 scopus 로고    scopus 로고
    • Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation
    • Wei Y, Sinha S, Levine B. 2008. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949-51
    • (2008) Autophagy , vol.4 , pp. 949-51
    • Wei, Y.1    Sinha, S.2    Levine, B.3
  • 120
    • 0022272160 scopus 로고
    • Free-radical chemistry of cigarette smoke and its toxicological implications
    • Church DF, Pryor WA. 1985. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ. Health Perspect. 64:111-26 (Pubitemid 16135783)
    • (1985) Environmental Health Perspectives , vol.64 , pp. 111-126
    • Church, D.F.1    Pryor, W.A.2
  • 121
    • 53549090696 scopus 로고    scopus 로고
    • Autophagic proteins regulate cigarette smoke induced apoptosis: Protective role of heme oxygenase-1
    • Kim HP, Wang X, Chen Z-H, Lee SJ, Huang M-H, et al. 2008. Autophagic proteins regulate cigarette smoke induced apoptosis: protective role of heme oxygenase-1. Autophagy 4:887-95
    • (2008) Autophagy , vol.4 , pp. 887-95
    • Kim, H.P.1    Wang, X.2    Chen, Z.-H.3    Lee, S.J.4    Huang, M.-H.5
  • 122
    • 48349136889 scopus 로고    scopus 로고
    • Genome-wide association defines more than 30 distinct susceptibility loci for Crohns disease
    • Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, et al. 2008. Genome-wide association defines more than 30 distinct susceptibility loci for Crohns disease. Nat. Genet. 40:955-62
    • (2008) Nat. Genet. , vol.40 , pp. 955-62
    • Barrett, J.C.1    Hansoul, S.2    Nicolae, D.L.3    Cho, J.H.4    Duerr, R.H.5
  • 123
    • 70350650472 scopus 로고    scopus 로고
    • A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus
    • Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, et al. 2009. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41:1228-33
    • (2009) Nat. Genet. , vol.41 , pp. 1228-33
    • Gateva, V.1    Sandling, J.K.2    Hom, G.3    Taylor, K.E.4    Chung, S.A.5
  • 124
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1βproduction
    • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1βproduction. Nature 456:264-68
    • (2008) Nature , vol.456 , pp. 264-68
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3    Uematsu, S.4    Yang, B.G.5
  • 125
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
    • Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259-63
    • (2008) Nature , vol.456 , pp. 259-63
    • Cadwell, K.1    Liu, J.Y.2    Brown, S.L.3    Miyoshi, H.4    Loh, J.5
  • 126
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, et al. 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11:55-62
    • (2010) Nat. Immunol. , vol.11 , pp. 55-62
    • Travassos, L.H.1    Carneiro, L.A.2    Ramjeet, M.3    Hussey, S.4    Kim, Y.G.5
  • 128
    • 10944253145 scopus 로고    scopus 로고
    • Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
    • DOI 10.1016/j.cell.2004.11.038, PII S0092867404011067
    • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. 2004. Autophagy is a defense mechanism inhibitingBCGand Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753-66 (Pubitemid 40017683)
    • (2004) Cell , vol.119 , Issue.6 , pp. 753-766
    • Gutierrez, M.G.1    Master, S.S.2    Singh, S.B.3    Taylor, G.A.4    Colombo, M.I.5    Deretic, V.6
  • 129
    • 77950362382 scopus 로고    scopus 로고
    • The inflammasomes
    • Schroder K, Tschopp J. 2010. The inflammasomes. Cell 140:821-32
    • (2010) Cell , vol.140 , pp. 821-32
    • Schroder, K.1    Tschopp, J.2
  • 130
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222-30
    • (2011) Nat. Immunol. , vol.12 , pp. 222-30
    • Nakahira, K.1    Haspel, J.A.2    Rathinam, V.A.3    Lee, S.J.4    Dolinay, T.5
  • 131
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou R, Yazdi AS, Menu P, Tschopp J. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221-25
    • (2011) Nature , vol.469 , pp. 221-25
    • Zhou, R.1    Yazdi, A.S.2    Menu, P.3    Tschopp, J.4
  • 132
    • 73949083594 scopus 로고    scopus 로고
    • Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
    • Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, et al. 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA 106:20842-46
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 20842-46
    • Saitoh, T.1    Fujita, N.2    Hayashi, T.3    Takahara, K.4    Satoh, T.5
  • 133
    • 33947134377 scopus 로고    scopus 로고
    • Autophagy-dependent viral recognition by plasmacytoid dendritic cells
    • DOI 10.1126/science.1136880
    • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398-401 (Pubitemid 46399546)
    • (2007) Science , vol.315 , Issue.5817 , pp. 1398-1401
    • Lee, H.K.1    Lund, J.M.2    Ramanathan, B.3    Mizushima, N.4    Iwasaki, A.5
  • 134
    • 62449110463 scopus 로고    scopus 로고
    • Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
    • Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. 2009. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. USA 106:2770-75
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 2770-75
    • Tal, M.C.1    Sasai, M.2    Lee, H.K.3    Yordy, B.4    Shadel, G.S.5    Iwasaki, A.6
  • 135
    • 12844275079 scopus 로고    scopus 로고
    • Endogenous MHC class II processing of a viral nuclear antigen after autophagy
    • DOI 10.1126/science.1104904
    • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, et al. 2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593-96 (Pubitemid 40165684)
    • (2005) Science , vol.307 , Issue.5709 , pp. 593-596
    • Paludan, C.1    Schmid, D.2    Landthaler, M.3    Vockerodt, M.4    Kube, D.5    Tuschl, T.6    Munz, C.7
  • 138
    • 52149099867 scopus 로고    scopus 로고
    • Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
    • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. 2008. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396-400
    • (2008) Nature , vol.455 , pp. 396-400
    • Nedjic, J.1    Aichinger, M.2    Emmerich, J.3    Mizushima, N.4    Klein, L.5
  • 139
    • 77954187960 scopus 로고    scopus 로고
    • Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila
    • Tung SM, Unal C, Ley A, Pẽna C, Tunggal B, et al. 2010. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell. Microbiol. 12:765-80
    • (2010) Cell. Microbiol. , vol.12 , pp. 765-80
    • Tung, S.M.1    Unal, C.2    Ley, A.3    Pẽna, C.4    Tunggal, B.5
  • 140
    • 33745847796 scopus 로고    scopus 로고
    • Mouse infection by Legionella, a model to analyze autophagy
    • Dubuisson JF, Swanson MS. 2006. Mouse infection by Legionella, a model to analyze autophagy. Autophagy 2:179-82 (Pubitemid 44030881)
    • (2006) Autophagy , vol.2 , Issue.3 , pp. 179-182
    • Dubuisson, J.-F.1    Swanson, M.S.2
  • 141
    • 77649119986 scopus 로고    scopus 로고
    • TB: Screening for responses to a vile visitor
    • Behr M, Schurr E, Gros P. 2010. TB: screening for responses to a vile visitor. Cell 140:615-18
    • (2010) Cell , vol.140 , pp. 615-18
    • Behr, M.1    Schurr, E.2    Gros, P.3
  • 142
    • 75649145030 scopus 로고    scopus 로고
    • Autophagy in immunity against mycobacterium tuberculosis: A model system to dissect immunological roles of autophagy
    • Deretic V, Delgado M, Vergne I, Master S, De Haro S, et al. 2009. Autophagy in immunity against mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr. Top. Microbiol. Immunol. 335:169-88
    • (2009) Curr. Top. Microbiol. Immunol. , vol.335 , pp. 169-88
    • Deretic, V.1    Delgado, M.2    Vergne, I.3    Master, S.4    De Haro, S.5
  • 143
    • 65649151403 scopus 로고    scopus 로고
    • Sepsis induces extensive autophagic vacuolization in hepatocytes: A clinical and laboratory-based study
    • Watanabe E, Muenzer JT, Hawkins WG, Davis CG, Dixon DJ. 2009. Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study. Lab. Investig. 89:549-61
    • (2009) Lab. Investig. , vol.89 , pp. 549-61
    • Watanabe, E.1    Muenzer, J.T.2    Hawkins, W.G.3    Davis, C.G.4    Dixon, D.J.5
  • 144
    • 0028803850 scopus 로고
    • Pathophysiology of chronic obstructive pulmonary disease
    • Celli BR. 1995. Pathophysiology of chronic obstructive pulmonary disease. Chest Surg. Clin. N. Am. 5:623-34
    • (1995) Chest Surg. Clin. N. Am. , vol.5 , pp. 623-34
    • Celli, B.R.1
  • 145
    • 0031438648 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 is a fibronectin mRNA- binding protein linked to mrna translation in lamb vascular smooth muscle cells
    • Zhou B, Boudreau N, Coulber C, Hammarback J, Rabinovitch M. 1997. Microtubule-associated protein 1 light chain 3 is a fibronectin mRNA-binding protein linked to mRNA translation in lamb vascular smooth muscle cells. J. Clin. Investig. 100:3070-82 (Pubitemid 28022845)
    • (1997) Journal of Clinical Investigation , vol.100 , Issue.12 , pp. 3070-3082
    • Zhou, B.1    Boudreau, N.2    Coulber, C.3    Hammarback, J.4    Rabinovitch, M.5
  • 148
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:505-16
    • (2009) Mol. Cell , vol.33 , pp. 505-16
    • Kirkin, V.1    Lamark, T.2    Sou, Y.S.3    Bjørkøy, G.4    Nunn, J.L.5
  • 149
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211-21
    • (2010) J. Cell Biol. , vol.189 , pp. 211-21
    • Matsuda, N.1    Sato, S.2    Shiba, K.3    Okatsu, K.4    Saisho, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.