-
1
-
-
33745186676
-
RAG and HMGB1 proteins: purication and biochemical analysis of recombination signal complexes
-
Bergeron S, Anderson DK, Swanson PC. 2006. RAG and HMGB1 proteins: purication and biochemical analysis of recombination signal complexes. Methods Enzymol. 408:511-528.
-
(2006)
Methods Enzymol
, vol.408
, pp. 511-528
-
-
Bergeron, S.1
Anderson, D.K.2
Swanson, P.C.3
-
2
-
-
34548247115
-
Repeat organization and epigenetic regulation of the DH-Cμ domain of the immunoglobulin heavy-chain gene locus
-
Chakraborty T, et al. 2007. Repeat organization and epigenetic regulation of the DH-Cμ domain of the immunoglobulin heavy-chain gene locus. Mol. Cell 27:842-850.
-
(2007)
Mol. Cell
, vol.27
, pp. 842-850
-
-
Chakraborty, T.1
-
3
-
-
1542381073
-
Mechanisms for feedback inhibition of the immunoglobulin heavy chain locus
-
Chowdhury D, Sen R. 2004. Mechanisms for feedback inhibition of the immunoglobulin heavy chain locus. Curr. Opin. Immunol. 16:235-240.
-
(2004)
Curr. Opin. Immunol.
, vol.16
, pp. 235-240
-
-
Chowdhury, D.1
Sen, R.2
-
4
-
-
3242878308
-
Regulation of immunoglobulin heavy-chain gene rearrangements
-
Chowdhury D, Sen R. 2004. Regulation of immunoglobulin heavy-chain gene rearrangements. Immunol. Rev. 200:182-196.
-
(2004)
Immunol. Rev.
, vol.200
, pp. 182-196
-
-
Chowdhury, D.1
Sen, R.2
-
5
-
-
0035890244
-
Stepwise activation of the immunoglobulin mu heavy chain gene locus
-
Chowdhury D, Sen R. 2001. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J. 20:6394-6403.
-
(2001)
EMBO J
, vol.20
, pp. 6394-6403
-
-
Chowdhury, D.1
Sen, R.2
-
6
-
-
0037458557
-
RAG1-DNA binding in V(D)J recombination Specicity and DNA-induced conformational changes revealed by uo-rescence and CD spectroscopy
-
Ciubotaru M, et al. 2003. RAG1-DNA binding in V(D)J recombination. Specicity and DNA-induced conformational changes revealed by uo-rescence and CD spectroscopy. J. Biol. Chem. 278:5584-5596.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 5584-5596
-
-
Ciubotaru, M.1
-
8
-
-
0029814965
-
DNA sequence and struc-ture requirements for cleavage of V(D)J recombination signal sequences
-
Cuomo CA, Mundy CL, Oettinger MA. 1996. DNA sequence and struc-ture requirements for cleavage of V(D)J recombination signal sequences. Mol. Cell. Biol. 16:5683-5690.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 5683-5690
-
-
Cuomo, C.A.1
Mundy, C.L.2
Oettinger, M.A.3
-
9
-
-
30044450912
-
Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis
-
Curry JD, Geier JK, Schlissel MS. 2005. Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis. Nat. Immunol. 6:1272-1279.
-
(2005)
Nat. Immunol.
, vol.6
, pp. 1272-1279
-
-
Curry, J.D.1
Geier, J.K.2
Schlissel, M.S.3
-
10
-
-
54549122686
-
RAG2s non-core domain contributes to the ordered regulation of V(D)J recombination
-
Curry JD, Schlissel MS. 2008. RAG2's non-core domain contributes to the ordered regulation of V(D)J recombination. Nucleic Acids Res. 36: 5750-5762.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 5750-5762
-
-
Curry, J.D.1
Schlissel, M.S.2
-
11
-
-
79952255995
-
The RAG2 C terminus suppresses genomic insta-bility and lymphomagenesis
-
Deriano L, et al. 2011. The RAG2 C terminus suppresses genomic insta-bility and lymphomagenesis. Nature 471:119-123.
-
(2011)
Nature
, vol.471
, pp. 119-123
-
-
Deriano, L.1
-
12
-
-
0037447338
-
The C-terminal portion of RAG2 protects against transposition in vitro
-
Elkin SK, Matthews AG, Oettinger MA. 2003. The C-terminal portion of RAG2 protects against transposition in vitro. EMBO J. 8:1931-1938.
-
(2003)
EMBO J
, vol.8
, pp. 1931-1938
-
-
Elkin, S.K.1
Matthews, A.G.2
Oettinger, M.A.3
-
13
-
-
0035997348
-
V(D)J recombination: RAG proteins, repair factors, and regulation
-
Gellert M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71:101-132.
-
(2002)
Annu. Rev. Biochem.
, vol.71
, pp. 101-132
-
-
Gellert, M.1
-
14
-
-
67651124919
-
Initial stages of V(D)J recombination: the orga-nization of RAG1/2 and RSS DNA in the postcleavage complex
-
Grundy GJ, et al. 2009. Initial stages of V(D)J recombination: the orga-nization of RAG1/2 and RSS DNA in the postcleavage complex.Mol. Cell 35:217-227.
-
(2009)
Mol. Cell
, vol.35
, pp. 217-227
-
-
Grundy, G.J.1
-
15
-
-
78651089760
-
Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination
-
Grundy GJ, Yang W, Gellert M. 2010. Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination. Proc. Natl. Acad. Sci. U. S. A. 107:22487-22492.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 22487-22492
-
-
Grundy, G.J.1
Yang, W.2
Gellert, M.3
-
16
-
-
0024691453
-
V(D)J recombination: a functional denition of the joining signals
-
Hesse JE, Lieber MR, Mizuuchi K, Gellert M. 1989. V(D)J recombination: a functional denition of the joining signals. Genes Dev. 3:1053-1067.
-
(1989)
Genes Dev
, vol.3
, pp. 1053-1067
-
-
Hesse, J.E.1
Lieber, M.R.2
Mizuuchi, K.3
Gellert, M.4
-
17
-
-
0037229028
-
Pax5 is required for recombination of tran-scribed, acetylated 5′ IgH V gene segments
-
Hesslein DG, et al. 2003. Pax5 is required for recombination of tran-scribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17:37-42.
-
(2003)
Genes Dev
, vol.17
, pp. 37-42
-
-
Hesslein, D.G.1
-
18
-
-
77951893700
-
The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci
-
Ji Y, et al. 2010. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141:419-431.
-
(2010)
Cell
, vol.141
, pp. 419-431
-
-
Ji, Y.1
-
19
-
-
20444403003
-
Ubiquitylation of RAG-2 by Skp2-SCF links destruc-tion of the V(D)J recombinase to the cell cycle
-
Jiang H, et al. 2005. Ubiquitylation of RAG-2 by Skp2-SCF links destruc-tion of the V(D)J recombinase to the cell cycle. Mol. Cell 18:699-709.
-
(2005)
Mol. Cell
, vol.18
, pp. 699-709
-
-
Jiang, H.1
-
20
-
-
64649092651
-
The roles of the RAG1 and RAG2 "non-core" regions in V(D)J recombination and lymphocyte development
-
Jones JM, Simkus C. 2009. The roles of the RAG1 and RAG2 "non-core" regions in V(D)J recombination and lymphocyte development. Arch. Immunol. Ther. Exp. (Warsz.) 57:105-116.
-
(2009)
Arch. Immunol. Ther. Exp. (Warsz.)
, vol.57
, pp. 105-116
-
-
Jones, J.M.1
Simkus, C.2
-
22
-
-
0025836948
-
Site-specic recombination in the immune system
-
Lieber MR. 1991. Site-specic recombination in the immune system. FASEB J. 5:2934-2944.
-
(1991)
FASEB J
, vol.5
, pp. 2934-2944
-
-
Lieber, M.R.1
-
24
-
-
35349024178
-
A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efcient antigen-receptor-gene rearrangement
-
Liu Y, Subrahmanyam R, Chakraborty T, Sen R, Desiderio S. 2007. A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efcient antigen-receptor-gene rearrangement. Immunity 27:561-571.
-
(2007)
Immunity
, vol.27
, pp. 561-571
-
-
Liu, Y.1
Subrahmanyam, R.2
Chakraborty, T.3
Sen, R.4
Desiderio, S.5
-
25
-
-
37249041657
-
RAG2 PHD nger couples histone H3 lysine 4 trimethylation with V(D)J recombination
-
Matthews AG, et al. 2007. RAG2 PHD nger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450:1106-1110.
-
(2007)
Nature
, vol.450
, pp. 1106-1110
-
-
Matthews, A.G.1
-
26
-
-
79958040710
-
Moving DNA around: DNA transposition and retroviral integration
-
Montano SP, Rice PA. 2011. Moving DNA around: DNA transposition and retroviral integration. Curr. Opin. Struct. Biol. 21:370-378.
-
(2011)
Curr. Opin. Struct. Biol.
, vol.21
, pp. 370-378
-
-
Montano, S.P.1
Rice, P.A.2
-
27
-
-
34147197541
-
DNA methylation dictates histone H3K4 methylation
-
Okitsu CY, Hsieh CL. 2007. DNA methylation dictates histone H3K4 methylation. Mol. Cell. Biol. 27:2746-2757.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 2746-2757
-
-
Okitsu, C.Y.1
Hsieh, C.L.2
-
28
-
-
77953409483
-
Transcriptional activity affects the H3K4me3 level and distribution in the coding region
-
Okitsu CY, Hsieh JC, Hsieh CL. 2010. Transcriptional activity affects the H3K4me3 level and distribution in the coding region. Mol. Cell. Biol. 30:2933-2946.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 2933-2946
-
-
Okitsu, C.Y.1
Hsieh, J.C.2
Hsieh, C.L.3
-
29
-
-
0035800747
-
Analysis of the V(D)J recom-bination efciency at lymphoid chromosomal translocation breakpoints
-
Raghavan SC, Kirsch IR, Lieber MR. 2001. Analysis of the V(D)J recom-bination efciency at lymphoid chromosomal translocation breakpoints. J. Biol. Chem. 276:29126-29133.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 29126-29133
-
-
Raghavan, S.C.1
Kirsch, I.R.2
Lieber, M.R.3
-
30
-
-
37649026007
-
The plant homeodomain nger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2
-
Ramón-Maiques S, et al. 2007. The plant homeodomain nger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc. Natl. Acad. Sci. U. S. A. 104:18993-18998.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 18993-18998
-
-
Ramón-Maiques, S.1
-
31
-
-
0029891597
-
Distinct DNA sequence and structure requirements for the two steps of V(D)J recombi-nation signal cleavage
-
Ramsden DA,McBlane JF, van Gent DC, GellertM. 1996. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombi-nation signal cleavage. EMBO J. 15:3197-3206.
-
(1996)
EMBO J
, vol.15
, pp. 3197-3206
-
-
Ramsden, D.A.1
McBlane, J.F.2
van Gent, D.C.3
Gellert, M.4
-
32
-
-
0027491330
-
Characterization of broken DNA molecules associated with V(D)J recombination
-
Roth DB, Zhu C, Gellert M. 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. U. S. A. 90:10788-10792.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A.
, vol.90
, pp. 10788-10792
-
-
Roth, D.B.1
Zhu, C.2
Gellert, M.3
-
33
-
-
79953164038
-
Recombination centres and the orchestration of V(D)J recombination
-
Schatz DG, Ji Y. 2011. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11:251-263.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 251-263
-
-
Schatz, D.G.1
Ji, Y.2
-
34
-
-
80355122714
-
V(D)J recombination: mechanisms of initiation
-
Schatz DG, Swanson PC. 2011. V(D)J recombination: mechanisms of initiation. Annu. Rev. Genet. 45:167-202.
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 167-202
-
-
Schatz, D.G.1
Swanson, P.C.2
-
35
-
-
0027769386
-
Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated
-
Schlissel M, Constantinescu A, Morrow T, Peng A. 1993. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev. 7:2520-2532.
-
(1993)
Genes Dev
, vol.7
, pp. 2520-2532
-
-
Schlissel, M.1
Constantinescu, A.2
Morrow, T.3
Peng, A.4
-
36
-
-
66749124789
-
H3K4me3 stimulates V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations
-
Shimazaki N, Tsai AG, Lieber MR. 2009. H3K4me3 stimulates V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol. Cell 34:535-544.
-
(2009)
Mol. Cell
, vol.34
, pp. 535-544
-
-
Shimazaki, N.1
Tsai, A.G.2
Lieber, M.R.3
-
37
-
-
3242892354
-
The bounty of RAGs: recombination signal complexes and reaction outcomes
-
Swanson PC. 2004. The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunol. Rev. 200:90-114.
-
(2004)
Immunol. Rev.
, vol.200
, pp. 90-114
-
-
Swanson, P.C.1
-
38
-
-
0035168323
-
The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterication steps of V(D)J recombination
-
Swanson PC. 2001. The DDE motif in RAG-1 is contributed in trans to a single active site that catalyzes the nicking and transesterication steps of V(D)J recombination. Mol. Cell. Biol. 21:449-458.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 449-458
-
-
Swanson, P.C.1
-
39
-
-
0036839614
-
A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals
-
Swanson PC. 2002. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol. Cell. Biol. 22:7790-7801.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 7790-7801
-
-
Swanson, P.C.1
-
40
-
-
0032908830
-
RAG-2 promotes heptamer occupancy by RAG-1 in the assembly of a V(D)J initiation complex
-
Swanson PC, Desiderio S. 1999. RAG-2 promotes heptamer occupancy by RAG-1 in the assembly of a V(D)J initiation complex. Mol. Cell. Biol. 19:3674-3683.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 3674-3683
-
-
Swanson, P.C.1
Desiderio, S.2
-
41
-
-
0032126295
-
V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2
-
Swanson PC, Desiderio S. 1998. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. Immunity 9:115-125.
-
(1998)
Immunity
, vol.9
, pp. 115-125
-
-
Swanson, P.C.1
Desiderio, S.2
-
42
-
-
1042301422
-
Full-length RAG-2, and not full-length RAG1, specically suppress RAG-mediated transposition but not hybrid joint formation or disintegration
-
Swanson PC, Volkmer D, Wang L. 2004. Full-length RAG-2, and not full-length RAG1, specically suppress RAG-mediated transposition but not hybrid joint formation or disintegration. J. Biol. Chem. 279: 4034-4044.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 4034-4044
-
-
Swanson, P.C.1
Volkmer, D.2
Wang, L.3
-
44
-
-
66149096706
-
Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis
-
Yin FF, et al. 2009. Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Nat. Struct. Mol. Biol. 16:499-508.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 499-508
-
-
Yin, F.F.1
-
45
-
-
0033782185
-
The nicking step of V(D)J recombination is independent of synapsis: implications for the immune repertoire
-
Yu K, Lieber MR. 2000. The nicking step of V(D)J recombination is independent of synapsis: implications for the immune repertoire. Mol. Cell. Biol. 20:7914-7921.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 7914-7921
-
-
Yu, K.1
Lieber, M.R.2
-
46
-
-
79951757607
-
Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lym-phoid tumorigenesis
-
Zhang L, Reynolds TL, Shan X, Desiderio S. 2011. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lym-phoid tumorigenesis. Immunity 34:163-174.
-
(2011)
Immunity
, vol.34
, pp. 163-174
-
-
Zhang, L.1
Reynolds, T.L.2
Shan, X.3
Desiderio, S.4
-
47
-
-
43749118207
-
V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identied from lymphoid malig-nancies
-
ZhangM, Swanson PC. 2008. V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identied from lymphoid malig-nancies. J. Biol. Chem. 283:6717-6727.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 6717-6727
-
-
Zhang, M.1
Swanson, P.C.2
-
48
-
-
62049085849
-
A non-sequence-specic DNA binding mode of RAG1 is inhibited by RAG2
-
Zhao S, Gwyn LM, De P, Rodgers KK. 2009. A non-sequence-specic DNA binding mode of RAG1 is inhibited by RAG2. J. Mol. Biol. 387: 744-758.
-
(2009)
J. Mol. Biol.
, vol.387
, pp. 744-758
-
-
Zhao, S.1
Gwyn, L.M.2
De, P.3
Rodgers, K.K.4
|