메뉴 건너뛰기




Volumn 175, Issue , 2012, Pages 19-27

A conduction-convection model for self-heating in piezoresistive microcantilever biosensors

Author keywords

Conduction; Convection; Piezoresistive microcantilever; Self heating; Sensitivity; Thermal drifting

Indexed keywords

ANALYTICAL RESULTS; COMPARISON RESULT; CONVECTIVE HEAT TRANSFER COEFFICIENT; GOLD-COATED; MICRO-CANTILEVERS; MICROCANTILEVER BIOSENSORS; NUMERICAL RESULTS; PIEZO-RESISTIVE; PIEZORESISTOR; RESISTANCE CHANGE; SELF-HEATING; SENSITIVITY; SURFACE STRESS; TEMPERATURE PROFILES; THERMAL DRIFTING; U-SHAPED;

EID: 84856731003     PISSN: 09244247     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sna.2011.12.014     Document Type: Article
Times cited : (27)

References (26)
  • 1
    • 0000780558 scopus 로고    scopus 로고
    • Uncooled thermal imaging using a piezoresistive microcantilever
    • P.I. Oden, P.G. Datskos, T. Thundat, and R.J. Warmack Uncooled thermal imaging using a piezoresistive microcantilever Appl. Phys. Lett. 69 1996 3277 3279 (Pubitemid 126605880)
    • (1996) Applied Physics Letters , vol.69 , Issue.21 , pp. 3277-3279
    • Oden, P.I.1    Datskos, P.G.2    Thundat, T.3    Warmack, R.J.4
  • 6
    • 70349647011 scopus 로고    scopus 로고
    • Design optimization of piezoresistive cantilevers for force sensing in air and water
    • J.C. Doll, S-J Park, and B.L. Pruitt Design optimization of piezoresistive cantilevers for force sensing in air and water J. Appl. Phys. 106 2009 064310
    • (2009) J. Appl. Phys. , vol.106 , pp. 064310
    • Doll, J.C.1    Park, S.-J.2    Pruitt, B.L.3
  • 7
    • 68149103121 scopus 로고    scopus 로고
    • Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor
    • Y. Zhou, Z. Wang, C. Wang, W. Ruan, and L. Liu Design, fabrication and characterization of a two-step released silicon dioxide piezoresistive microcantilever immunosensor J. Micromech. Microeng. 19 2009 065026
    • (2009) J. Micromech. Microeng. , vol.19 , pp. 065026
    • Zhou, Y.1    Wang, Z.2    Wang, C.3    Ruan, W.4    Liu, L.5
  • 8
    • 33644901020 scopus 로고    scopus 로고
    • A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material
    • K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material Sens. Actuators A: Phys. 127 2006 295 301
    • (2006) Sens. Actuators A: Phys. , vol.127 , pp. 295-301
    • Noda, K.1    Hoshino, K.2    Matsumoto, K.3    Shimoyama, I.4
  • 9
    • 21544472129 scopus 로고
    • Atomic resolution with an atomic force microscope using piezoresistive detection
    • M. Tortonese, R. Barrett, and C. Quate Atomic resolution with an atomic force microscope using piezoresistive detection Appl. Phys. Lett. 62 1993 834 836
    • (1993) Appl. Phys. Lett. , vol.62 , pp. 834-836
    • Tortonese, M.1    Barrett, R.2    Quate, C.3
  • 10
    • 24944439851 scopus 로고    scopus 로고
    • Nanomechanical sensing of DNA sequences using piezoresistive cantilevers
    • DOI 10.1021/la0511687
    • R. Mukhopadhyay, M. Lorentzen, J. Kjems, and F. Besenbacher Nanomechanical sensing of DNA sequences using piezoresistive cantilevers Langmuir 21 2005 8400 8408 (Pubitemid 41321817)
    • (2005) Langmuir , vol.21 , Issue.18 , pp. 8400-8408
    • Mukhopadhyay, R.1    Lorentzen, M.2    Kjems, J.3    Besenbacher, F.4
  • 11
    • 0033742575 scopus 로고    scopus 로고
    • Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement
    • J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement Sens. Actuators 83 2000 47 53
    • (2000) Sens. Actuators , vol.83 , pp. 47-53
    • Thaysen, J.1    Boisen, A.2    Hansen, O.3    Bouwstra, S.4
  • 12
    • 0032023865 scopus 로고    scopus 로고
    • Low-stiffness silicon cantilever with integrated heaters and piezoresistive sensors for high density AFM thermomechanical data storage
    • B.W. Chui, T.D. Stowe, Y.S. Ju, K.E. Goodson, T.W. Kenny, H.J. Mamin, B.D. Terris, and R.P. Ried Low-stiffness silicon cantilever with integrated heaters and piezoresistive sensors for high density AFM thermomechanical data storage J. Microelectromech. Syst. 7 1998 69
    • (1998) J. Microelectromech. Syst. , vol.7 , pp. 69
    • Chui, B.W.1    Stowe, T.D.2    Ju, Y.S.3    Goodson, K.E.4    Kenny, T.W.5    Mamin, H.J.6    Terris, B.D.7    Ried, R.P.8
  • 14
    • 27944455145 scopus 로고    scopus 로고
    • Design analysis of heated atomic force microscope cantilevers for nanotopography measurements
    • W.P. King Design analysis of heated atomic force microscope cantilevers for nanotopography measurements J. Micromech. Microeng. 15 2005 2441
    • (2005) J. Micromech. Microeng. , vol.15 , pp. 2441
    • King, W.P.1
  • 15
    • 5444238361 scopus 로고    scopus 로고
    • Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements
    • W.P. King, T.W. Kenny, and K.E. Goodson Comparison of thermal and piezoresistive sensing approaches for atomic force microscopy topography measurements Appl. Phys. Lett. 85 2004 2086
    • (2004) Appl. Phys. Lett. , vol.85 , pp. 2086
    • King, W.P.1    Kenny, T.W.2    Goodson, K.E.3
  • 18
    • 33845659457 scopus 로고    scopus 로고
    • Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor
    • DOI 10.1016/j.snb.2006.03.053, PII S0925400506002450
    • S.M. Yang, T.I. Yin, and Design Analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor Sens. Actuators B: Chem. 120 2007 736 744 (Pubitemid 44959839)
    • (2007) Sensors and Actuators, B: Chemical , vol.120 , Issue.2 , pp. 736-744
    • Yang, S.M.1    Yin, T.I.2
  • 19
    • 78249245411 scopus 로고    scopus 로고
    • An analytical model of joule heating in piezoresistive microcantilevers
    • M.Z. Ansari, and C.D. Cho An analytical model of joule heating in piezoresistive microcantilevers Sensors 10 2010 9668 9686
    • (2010) Sensors , vol.10 , pp. 9668-9686
    • Ansari, M.Z.1    Cho, C.D.2
  • 20
  • 22
    • 0008766227 scopus 로고
    • Temperature coefficient of resistivity of silicon and germanium near room temperature
    • W.M. Bullis, F.H. Brewer, C.D. Kolstad, and L.J. Swartzendruber Temperature coefficient of resistivity of silicon and germanium near room temperature Solid-State Electron. 11 1968 639 646
    • (1968) Solid-State Electron. , vol.11 , pp. 639-646
    • Bullis, W.M.1    Brewer, F.H.2    Kolstad, C.D.3    Swartzendruber, L.J.4
  • 23
    • 0019916789 scopus 로고
    • A graphical representation of the piezoresistance coefficients in silicon
    • Y. Kanda A graphical representation of the piezoresistance coefficients in silicon IEEE Trans. Electron. Devices 29 1982 64 70 (Pubitemid 12474034)
    • (1982) IEEE Transactions on Electron Devices , vol.ED-29 , Issue.1 , pp. 64-70
    • Kanda Yozo1
  • 24
    • 67349250905 scopus 로고    scopus 로고
    • Silicon microcantilever hotplates with high temperature uniformity
    • N.L. Privorotskaya, and W.P. King Silicon microcantilever hotplates with high temperature uniformity Sens. Actuators A: Phys. 152 2009 160 167
    • (2009) Sens. Actuators A: Phys. , vol.152 , pp. 160-167
    • Privorotskaya, N.L.1    King, W.P.2
  • 25
    • 34247125989 scopus 로고    scopus 로고
    • Microcantilever hotplates: Design, fabrication, and characterization
    • DOI 10.1016/j.sna.2006.10.051, PII S0924424706006832
    • J. Lee, and W.P. King Microcantilever hotplates: design, fabrication, and characterization Sens. Actuators A: Phys. 136 2007 291 298 (Pubitemid 46590662)
    • (2007) Sensors and Actuators, A: Physical , vol.136 , Issue.1 , pp. 291-298
    • Lee, J.1    King, W.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.