-
1
-
-
0025725905
-
Instance-based learning algorithms
-
D. Aha, and D. Kibler Instance-based learning algorithms Machine Learning 6 1991 37 66
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.2
-
2
-
-
0004493166
-
On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
-
E. Amaldi, and V. Kann On the approximation of minimizing non zero variables or unsatisfied relations in linear systems Theoretical Computer Science 209 1-2 1998 237 260
-
(1998)
Theoretical Computer Science
, vol.209
, Issue.12
, pp. 237-260
-
-
Amaldi, E.1
Kann, V.2
-
3
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Transactions on Neural Networks 5 4 1994 537 550
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
5
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A. Blum, and P. Langley Selection of relevant features and examples in machine learning Artificial Intelligence 97 1997 245 271
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
8
-
-
0013326060
-
Feature selection for classification
-
M. Dash, and H. Liu Feature selection for classification Intelligent Data Analysis 1 1997 131 156
-
(1997)
Intelligent Data Analysis
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
9
-
-
84960463485
-
Minimum redundancy feature selection from microarray gene expression data
-
IEEE computer society Washington, DC, USA
-
Ding, C.; & Peng, H. (2003). Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of the IEEE computer society conference on bioinformatics. CSB'03. IEEE computer society (pp. 523-528). Washington, DC, USA.
-
(2003)
Proceedings of the IEEE Computer Society Conference on Bioinformatics. CSB'03
, pp. 523-528
-
-
Ding, C.1
Peng, H.2
-
11
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
F. Flueret Fast binary feature selection with conditional mutual information Journal of Machine Learning Research 5 2004 1531 1555
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1531-1555
-
-
Flueret, F.1
-
12
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler Support vector machine classification and validation of cancer tissue samples using microarray expression data Bioinformatics 16 10 2000 906 914
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
14
-
-
85065703189
-
Correlation-based feature selection for discrete and numeric class machine learning
-
Morgan Kaufmann, Los Altos, CA, USA
-
Hall, M.A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the seventh international conference on machine learning. ICML'00 (pp. 359-366). Morgan Kaufmann, Los Altos, CA, USA.
-
(2000)
Proceedings of the Seventh International Conference on Machine Learning. ICML'00
, pp. 359-366
-
-
Hall, A.M.1
-
15
-
-
12144251725
-
Effective feature selection scheme using mutual information
-
D. Huang, and T.W.S. Chow Effective feature selection scheme using mutual information Neurocomputing 63 2005 325 343
-
(2005)
Neurocomputing
, vol.63
, pp. 325-343
-
-
Huang, D.1
Chow, T.W.S.2
-
16
-
-
40649115462
-
A parameterless feature ranking algorithm based on mi
-
J.J. Huang, Y.Z. Cai, and X.M. Xu A parameterless feature ranking algorithm based on mi Neurocomputing 71 2008 1656 1668
-
(2008)
Neurocomputing
, vol.71
, pp. 1656-1668
-
-
Huang, J.J.1
Cai, Y.Z.2
Xu, X.M.3
-
18
-
-
85146422424
-
Apractical approach to feature selection
-
Morgan Kaufmann, San Francisco, CA, USA
-
Kira, K.; & Rendell, L. (1992). Apractical approach to feature selection. In: Proceedingsof the ninth international workshop on machine learning. ML'92 (pp. 249-256). Morgan Kaufmann, San Francisco, CA, USA.
-
(1992)
Proceedingsof the Ninth International Workshop on Machine Learning. ML'92
, pp. 249-256
-
-
Kira, K.1
Rendell, L.2
-
19
-
-
0000012317
-
Toward optimal feature selection
-
Morgan Kaufmann, Los Altos, CA, USA
-
Koller, D.; & Sahami, M. (1996). Toward optimal feature selection. In: Proceedings of International Conference on Machine Learning. ICML'96 (pp. 284-292). Morgan Kaufmann, Los Altos, CA, USA.
-
(1996)
Proceedings of International Conference on Machine Learning. ICML'96
, pp. 284-292
-
-
Koller, D.1
Sahami, M.2
-
20
-
-
84992726552
-
Estimating attributes: Analysis and extensions of relief
-
Secaucus, NJ, USA: Springer-Verlag New York, Inc.
-
Kononenko, I. (1994). Estimating attributes: analysis and extensions of relief. In: Proceedings of European Conference on Machine Learning. ECML'94 (pp. 171-182). Secaucus, NJ, USA: Springer-Verlag New York, Inc.
-
(1994)
Proceedings of European Conference on Machine Learning. ECML'94
, pp. 171-182
-
-
Kononenko, I.1
-
21
-
-
0036127473
-
Input feature selection for classification problems
-
N. Kwak, and C.H. Choi Input feature selection for classification problems IEEE Transactions on Neural Networks 13 1 2002 143 159
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.1
, pp. 143-159
-
-
Kwak, N.1
Choi, C.H.2
-
22
-
-
17044405923
-
Toward integrating features election algorithms for classification and clustering
-
H. Liu, and L. Yu Toward integrating features election algorithms for classification and clustering IEEE Transactions on Knowledge and Data Engineering 17 4 2005 491 502
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
26
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 2005 1226 1238
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
27
-
-
34249931694
-
Towards scalable and data efficient learning of markov boundaries
-
J.M. Pea, R. Nilsson, J. Björkegren, and J. Tegnér Towards scalable and data efficient learning of markov boundaries International Journal of Approximate Reasoning 45 2 2007 211 232
-
(2007)
International Journal of Approximate Reasoning
, vol.45
, Issue.2
, pp. 211-232
-
-
Pea, J.M.1
Nilsson, R.2
Björkegren, J.3
Tegnér, J.4
-
28
-
-
85115260483
-
Floating search methods for feature selection with nonmonotonic criterion functions
-
P. Pudil, F.J. Ferri, J. Novovicova, and J. Kittler Floating search methods for feature selection with nonmonotonic criterion functions Pattern Recognition 2 1994 279 283
-
(1994)
Pattern Recognition
, vol.2
, pp. 279-283
-
-
Pudil, P.1
Ferri, F.J.2
Novovicova, J.3
Kittler, J.4
-
31
-
-
0141990695
-
Theoretical and empirical analysis of relief and relieff
-
M. Robnik-Sikonja, and I. Kononenko Theoretical and empirical analysis of relief and relieff Machine Learning 53 2003 23 69
-
(2003)
Machine Learning
, vol.53
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
33
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
New York, NY, USA: ACM Press
-
Song, L.; Smola, A.J.; Borgwardt, K.M.; & Bedo, J. (2007). Supervised feature selection via dependence estimation. In: Proceedings of the twentyfourth international conference on machine learning. ICML'07 (pp. 823-830). New York, NY, USA: ACM Press.
-
(2007)
Proceedings of the Twentyfourth International Conference on Machine Learning. ICML'07
, pp. 823-830
-
-
Song, L.1
Smola, A.J.2
Borgwardt, K.M.3
Bedo, J.4
-
34
-
-
76749129275
-
Supervised feature selection by clustering using conditional mutual information-based distances
-
J.M. Sotoca, and F. Pla Supervised feature selection by clustering using conditional mutual information-based distances Pattern Recognition 43 6 2010 2068 2081
-
(2010)
Pattern Recognition
, vol.43
, Issue.6
, pp. 2068-2081
-
-
Sotoca, J.M.1
Pla, F.2
-
35
-
-
1942450610
-
Feature extraction by non-parametric mutual information maximization
-
K. Torkkola Feature extraction by non-parametric mutual information maximization Journal of Machine Learning Research 3 2003 1415 1438
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
36
-
-
76749137632
-
Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
-
I. Tsamardinos, C. Aliferis, and A. Statnikov Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation Journal of Machine Learning Research 11 2010 171 234
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 171-234
-
-
Tsamardinos, I.1
Aliferis, C.2
Statnikov, A.3
-
37
-
-
1642397083
-
Algorithms for large scale markov blanket discovery
-
Menlo Park, CA, USA: AAAI Press
-
Tsamardinos, I.; Aliferis, C.F.; & Statnikov, A. (2003). Algorithms for large scale markov blanket discovery. In: Proceedings of the sixteenth international florida artificial intelligence research society conference. FLAIRS'03 (pp. 376-381). Menlo Park, CA, USA: AAAI Press.
-
(2003)
Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference. FLAIRS'03
, pp. 376-381
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
-
38
-
-
33746035971
-
The max-min hillclimbing bayesian network structure learning algorithm
-
I. Tsamardinos, L.E. Brown, and C.F. Aliferis The max-min hillclimbing bayesian network structure learning algorithm Machine Learning 65 1 2006 31 78
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
39
-
-
18744400819
-
Feature selection with conditional mutual information maximin in text categorization
-
New York, NY, USA: ACM Press
-
Wang, G.; Lochovsky, F.H.; & Yang, Q.; 2004. Feature selection with conditional mutual information maximin in text categorization. In: Proceedings of the nineteenth ACM international conference on information and knowledge management. CIKM'04 (pp. 342-349). New York, NY, USA: ACM Press.
-
(2004)
Proceedings of the Nineteenth ACM International Conference on Information and Knowledge Management. CIKM'04
, pp. 342-349
-
-
Wang, G.1
Lochovsky, F.H.2
Yang, Q.3
-
40
-
-
0038797944
-
-
2nd ed. John Wiley & Sons Ltd Chichester, West Sussex, England
-
A.R. Webb Statistical pattern recognition 2nd ed. 2002 John Wiley & Sons Ltd Chichester, West Sussex, England
-
(2002)
Statistical Pattern Recognition
-
-
Webb, A.R.1
-
42
-
-
77956517464
-
Online streaming feature selection
-
Madison, WI, USA: Omnipress
-
Wu, X.; Yu, K.; Wang, H.; & Ding, W. (2010). Online streaming feature selection. In: Proceedings of the seventyseventh international conference on machine learning. ICML'10 (pp. 1159-1166). Madison, WI, USA: Omnipress.
-
(2010)
Proceedings of the Seventyseventh International Conference on Machine Learning. ICML'10
, pp. 1159-1166
-
-
Wu, X.1
Yu, K.2
Wang, H.3
Ding, W.4
-
45
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu, and H. Liu Efficient feature selection via analysis of relevance and redundancy Journal of Machine Learning Research 5 2004 1205 1224
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
|