-
1
-
-
0004493166
-
On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
-
Amaldi E., and Kann V. On the approximation of minimizing non zero variables or unsatisfied relations in linear systems. Theoret. Comput. Sci. 209 (1998) 237-260
-
(1998)
Theoret. Comput. Sci.
, vol.209
, pp. 237-260
-
-
Amaldi, E.1
Kann, V.2
-
2
-
-
0028468293
-
Using MI for selecting features in supervised neural net learning
-
Battiti R. Using MI for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 4 (1994) 537-550
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
3
-
-
0038391452
-
Genetic algorithm based feature selection for target detection in SAR images
-
Bhanu B., and Lin Y. Genetic algorithm based feature selection for target detection in SAR images. Image Vis. Comput. 21 7 (2003) 591-608
-
(2003)
Image Vis. Comput.
, vol.21
, Issue.7
, pp. 591-608
-
-
Bhanu, B.1
Lin, Y.2
-
4
-
-
17444379002
-
On fuzzy-rough sets approach to feature selection
-
Bhatt R.B., and Gopal M. On fuzzy-rough sets approach to feature selection. Pattern Recogn. Lett. 26 7 (2005) 965-975
-
(2005)
Pattern Recogn. Lett.
, vol.26
, Issue.7
, pp. 965-975
-
-
Bhatt, R.B.1
Gopal, M.2
-
5
-
-
40649107520
-
-
B.V. Bonnlander, A.S. Weigend, Selecting input variables using MI and nonparametric density estimation, in: Proceedings of International Symposium on Artificial Neural Networks, Taiwan, 1994, pp. 42-50.
-
B.V. Bonnlander, A.S. Weigend, Selecting input variables using MI and nonparametric density estimation, in: Proceedings of International Symposium on Artificial Neural Networks, Taiwan, 1994, pp. 42-50.
-
-
-
-
6
-
-
0034061686
-
Variable selection using neural-network models
-
Castellano G., and Fanelli A.M. Variable selection using neural-network models. Neurocomputing 31 3 (2000) 1-13
-
(2000)
Neurocomputing
, vol.31
, Issue.3
, pp. 1-13
-
-
Castellano, G.1
Fanelli, A.M.2
-
7
-
-
1242263791
-
A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
-
Chakraborty D., and Pal N.R. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans. Neural Networks 15 1 (2004) 110-123
-
(2004)
IEEE Trans. Neural Networks
, vol.15
, Issue.1
, pp. 110-123
-
-
Chakraborty, D.1
Pal, N.R.2
-
9
-
-
0013326060
-
Feature selection for classification
-
Dash M., and Liu H. Feature selection for classification. Intell. Data Anal. 1 (1997) 131-156
-
(1997)
Intell. Data Anal.
, vol.1
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
10
-
-
0242302657
-
Consistency-based search in feature selection
-
Dash M., and Liu H. Consistency-based search in feature selection. Artif.Intell. 151 1-2 (2003) 155-176
-
(2003)
Artif.Intell.
, vol.151
, Issue.1-2
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
12
-
-
10044224476
-
-
M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, Cambridge, UK, 2004, pp. 287-290.
-
M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, Cambridge, UK, 2004, pp. 287-290.
-
-
-
-
13
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
Febbo S., et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell March (2002). 〈http://www.broad.mit.edu/mpr/publications/projects/Prostate_Cancer/Prostate_TN_final0701_allmeanScale.res〉
-
(2002)
Cancer Cell March
-
-
Febbo, S.1
-
14
-
-
0037403098
-
Feature selection based on a modified fuzzy C-means algorithm with supervision
-
Francesco M. Feature selection based on a modified fuzzy C-means algorithm with supervision. Inform. Sci. 151 (2003) 201-226
-
(2003)
Inform. Sci.
, vol.151
, pp. 201-226
-
-
Francesco, M.1
-
15
-
-
34548696055
-
Independent coordinates for strange attractors from MI
-
Fraser A.M., and Swinney H.L. Independent coordinates for strange attractors from MI. Phys. Rev. A 33 2 (1986) 1134-1140
-
(1986)
Phys. Rev. A
, vol.33
, Issue.2
, pp. 1134-1140
-
-
Fraser, A.M.1
Swinney, H.L.2
-
16
-
-
84915005479
-
Probability of error, equivocation and the chernoff bound
-
Hellman M.E., and Raviv J. Probability of error, equivocation and the chernoff bound. IEEE Transactions on Information Theory 16 4 (1970) 368-372
-
(1970)
IEEE Transactions on Information Theory
, vol.16
, Issue.4
, pp. 368-372
-
-
Hellman, M.E.1
Raviv, J.2
-
17
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
18
-
-
13644251919
-
The coefficient of intrinsic dependence (feature selection using el CID)
-
Hsing T., Liu L.-Y., Brun M., and Dougherty E.R. The coefficient of intrinsic dependence (feature selection using el CID). Pattern Recogn. 38 5 (2005) 623-636
-
(2005)
Pattern Recogn.
, vol.38
, Issue.5
, pp. 623-636
-
-
Hsing, T.1
Liu, L.-Y.2
Brun, M.3
Dougherty, E.R.4
-
19
-
-
12144251725
-
Effective feature selection scheme using MI
-
Huang D., and Chow T.W.S. Effective feature selection scheme using MI. Neurocomputing 63 (2005) 325-343
-
(2005)
Neurocomputing
, vol.63
, pp. 325-343
-
-
Huang, D.1
Chow, T.W.S.2
-
20
-
-
0031078007
-
Feature selection: evaluation, application, and small sample performance
-
Jain A., and Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19 2 (1997) 153-158
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
22
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 (1997) 273-324
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
23
-
-
40649118840
-
-
D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning, Bari, Italy, 1996, pp. 284-292.
-
D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning, Bari, Italy, 1996, pp. 284-292.
-
-
-
-
24
-
-
0036933407
-
Input feature selection by MI based on Parzen window
-
Kwak N., and Choi C.H. Input feature selection by MI based on Parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24 12 (2002) 1667-1671
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.12
, pp. 1667-1671
-
-
Kwak, N.1
Choi, C.H.2
-
25
-
-
0036127473
-
Input feature selection for classification problems
-
Kwak N., and Choi C.H. Input feature selection for classification problems. IEEE Trans. Neural Networks 13 1 (2002) 143-159
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.1
, pp. 143-159
-
-
Kwak, N.1
Choi, C.H.2
-
26
-
-
1342324574
-
A compact and accurate model for classification
-
Last M., and Maimon O. A compact and accurate model for classification. IEEE Trans. Knowl. Data Eng. 16 2 (2004) 203-215
-
(2004)
IEEE Trans. Knowl. Data Eng.
, vol.16
, Issue.2
, pp. 203-215
-
-
Last, M.1
Maimon, O.2
-
27
-
-
0037204072
-
Feature selection based on similarity
-
Lazzerini B., and Marcelloni F. Feature selection based on similarity. Electron. Lett. 38 3 (2002) 121-122
-
(2002)
Electron. Lett.
, vol.38
, Issue.3
, pp. 121-122
-
-
Lazzerini, B.1
Marcelloni, F.2
-
28
-
-
0037119179
-
A fuzzy neural network for pattern classification and feature selection
-
Li R.P., Mukaidono M., and Turksen I.B. A fuzzy neural network for pattern classification and feature selection. Fuzzy Sets Systems 130 1 (2002) 101-108
-
(2002)
Fuzzy Sets Systems
, vol.130
, Issue.1
, pp. 101-108
-
-
Li, R.P.1
Mukaidono, M.2
Turksen, I.B.3
-
30
-
-
10244259183
-
PCA-based feature selection scheme for machine defect classification
-
Malhi A., and Gao R.X. PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 53 6 (2004) 1517-1525
-
(2004)
IEEE Trans. Instrum. Meas.
, vol.53
, Issue.6
, pp. 1517-1525
-
-
Malhi, A.1
Gao, R.X.2
-
31
-
-
0003408496
-
-
University of California, Department of Information and Computer Science, Irvine, CA
-
Merz C.J., and Murphy P.M. UCI Repository of Machine Learning Databases (1996), University of California, Department of Information and Computer Science, Irvine, CA. 〈http://www.ics.uci.edu/~mlearn/MLRepository.html〉
-
(1996)
UCI Repository of Machine Learning Databases
-
-
Merz, C.J.1
Murphy, P.M.2
-
32
-
-
0017535866
-
A branch and bound algorithm for feature subset selection
-
Narendra P., and Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26 9 (1977) 917-922
-
(1977)
IEEE Trans. Comput.
, vol.26
, Issue.9
, pp. 917-922
-
-
Narendra, P.1
Fukunaga, K.2
-
34
-
-
0028547556
-
Floating search methods in feature selection
-
Pudil P., Novovicova J., and Kittler J. Floating search methods in feature selection. Pattern Recogn. Lett. 15 11 (1994) 1119-1125
-
(1994)
Pattern Recogn. Lett.
, vol.15
, Issue.11
, pp. 1119-1125
-
-
Pudil, P.1
Novovicova, J.2
Kittler, J.3
-
35
-
-
40649127068
-
-
A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1961, pp. 547-561.
-
A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1961, pp. 547-561.
-
-
-
-
36
-
-
0022059209
-
Trigonometric entropies, Jensen difference divergences and error bounds
-
Sant'anna A.P., and Taneja I.J. Trigonometric entropies, Jensen difference divergences and error bounds. Inform. Sci. 35 (1985) 145-156
-
(1985)
Inform. Sci.
, vol.35
, pp. 145-156
-
-
Sant'anna, A.P.1
Taneja, I.J.2
-
37
-
-
40649097862
-
-
J.C. Schlimmer, Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning, in: Proceedings of Tenth International Conference on Machine Learning, Morgan Kaufmann, Amherst, MA, 1993, pp. 284-290.
-
J.C. Schlimmer, Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning, in: Proceedings of Tenth International Conference on Machine Learning, Morgan Kaufmann, Amherst, MA, 1993, pp. 284-290.
-
-
-
-
38
-
-
84856043672
-
A mathematical theory of communication
-
623-656
-
Shannon C.E. A mathematical theory of communication. The Bell System Tech. J. 27 (1948) 379-423 623-656
-
(1948)
The Bell System Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
39
-
-
0033220764
-
Adaptive floating search methods in feature selection
-
Somol P., Pudil P., Novoviova J., and Paclik P. Adaptive floating search methods in feature selection. Pattern Recogn. Lett. 20 11-13 (1999) 1157-1163
-
(1999)
Pattern Recogn. Lett.
, vol.20
, Issue.11-13
, pp. 1157-1163
-
-
Somol, P.1
Pudil, P.2
Novoviova, J.3
Paclik, P.4
-
41
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
Swiniarski R.W., and Andrzej S. Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24 6 (2003) 833-849
-
(2003)
Pattern Recogn. Lett.
, vol.24
, Issue.6
, pp. 833-849
-
-
Swiniarski, R.W.1
Andrzej, S.2
-
42
-
-
1942450610
-
Feature extraction by non-parametric mi maximization
-
Torkkola K. Feature extraction by non-parametric mi maximization. J. Mach. Learn. Res. 3 (2003) 1415-1438
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
44
-
-
0036721934
-
Feature selection with neural networks
-
Verikas A., and Bacauskiene M. Feature selection with neural networks. Pattern Recogn. Lett. 23 11 (2002) 1323-1335
-
(2002)
Pattern Recogn. Lett.
, vol.23
, Issue.11
, pp. 1323-1335
-
-
Verikas, A.1
Bacauskiene, M.2
-
45
-
-
0042198967
-
Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition
-
Wang X., and Paliwal K.K. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recogn. 36 10 (2003) 2429-2439
-
(2003)
Pattern Recogn.
, vol.36
, Issue.10
, pp. 2429-2439
-
-
Wang, X.1
Paliwal, K.K.2
-
46
-
-
0033097744
-
Axiomatic approach to feature subset selection based on relevance
-
Wang H., Bell D., and Murtagh F. Axiomatic approach to feature subset selection based on relevance. IEEE Trans. Pattern Anal. Mach. Intell. 21 3 (1999) 271-277
-
(1999)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.21
, Issue.3
, pp. 271-277
-
-
Wang, H.1
Bell, D.2
Murtagh, F.3
-
47
-
-
10944261895
-
Feature selection based on MI and redundancy-synergy coefficient
-
Yang S., and Gu J. Feature selection based on MI and redundancy-synergy coefficient. J. Zhejiang Univ. Sci. 5 11 (2004) 1382-1391
-
(2004)
J. Zhejiang Univ. Sci.
, vol.5
, Issue.11
, pp. 1382-1391
-
-
Yang, S.1
Gu, J.2
-
48
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
Yang J., and Honavar V. Feature subset selection using a genetic algorithm. IEEE Intell. Systems 13 (1998) 44-49
-
(1998)
IEEE Intell. Systems
, vol.13
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
49
-
-
84898987386
-
-
H. Yang, J. Moody, Data visualization and feature selection: New algorithms for nongaussian data, in: Advances in Neural Information Processing Systems vol. 12, MIT Press, 2000, pp. 687-693.
-
H. Yang, J. Moody, Data visualization and feature selection: New algorithms for nongaussian data, in: Advances in Neural Information Processing Systems vol. 12, MIT Press, 2000, pp. 687-693.
-
-
-
-
50
-
-
84968542369
-
-
H. Ye, H. Liu, A SOM-based method for feature selection, in: Proceedings of the 9th International Conference on Neural Information Processing vol. 3, 2002, pp. 1295-1299.
-
H. Ye, H. Liu, A SOM-based method for feature selection, in: Proceedings of the 9th International Conference on Neural Information Processing vol. 3, 2002, pp. 1295-1299.
-
-
-
|