메뉴 건너뛰기




Volumn 71, Issue 7-9, 2008, Pages 1656-1668

A parameterless feature ranking algorithm based on MI

Author keywords

Feature ranking; Feature selection; Machine learning; Mutual information; Pattern classification

Indexed keywords

ALGORITHMS; ESTIMATION; LEARNING SYSTEMS;

EID: 40649115462     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.04.012     Document Type: Article
Times cited : (19)

References (50)
  • 1
    • 0004493166 scopus 로고    scopus 로고
    • On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
    • Amaldi E., and Kann V. On the approximation of minimizing non zero variables or unsatisfied relations in linear systems. Theoret. Comput. Sci. 209 (1998) 237-260
    • (1998) Theoret. Comput. Sci. , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 2
    • 0028468293 scopus 로고
    • Using MI for selecting features in supervised neural net learning
    • Battiti R. Using MI for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 4 (1994) 537-550
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 3
    • 0038391452 scopus 로고    scopus 로고
    • Genetic algorithm based feature selection for target detection in SAR images
    • Bhanu B., and Lin Y. Genetic algorithm based feature selection for target detection in SAR images. Image Vis. Comput. 21 7 (2003) 591-608
    • (2003) Image Vis. Comput. , vol.21 , Issue.7 , pp. 591-608
    • Bhanu, B.1    Lin, Y.2
  • 4
    • 17444379002 scopus 로고    scopus 로고
    • On fuzzy-rough sets approach to feature selection
    • Bhatt R.B., and Gopal M. On fuzzy-rough sets approach to feature selection. Pattern Recogn. Lett. 26 7 (2005) 965-975
    • (2005) Pattern Recogn. Lett. , vol.26 , Issue.7 , pp. 965-975
    • Bhatt, R.B.1    Gopal, M.2
  • 5
    • 40649107520 scopus 로고    scopus 로고
    • B.V. Bonnlander, A.S. Weigend, Selecting input variables using MI and nonparametric density estimation, in: Proceedings of International Symposium on Artificial Neural Networks, Taiwan, 1994, pp. 42-50.
    • B.V. Bonnlander, A.S. Weigend, Selecting input variables using MI and nonparametric density estimation, in: Proceedings of International Symposium on Artificial Neural Networks, Taiwan, 1994, pp. 42-50.
  • 6
    • 0034061686 scopus 로고    scopus 로고
    • Variable selection using neural-network models
    • Castellano G., and Fanelli A.M. Variable selection using neural-network models. Neurocomputing 31 3 (2000) 1-13
    • (2000) Neurocomputing , vol.31 , Issue.3 , pp. 1-13
    • Castellano, G.1    Fanelli, A.M.2
  • 7
    • 1242263791 scopus 로고    scopus 로고
    • A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification
    • Chakraborty D., and Pal N.R. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans. Neural Networks 15 1 (2004) 110-123
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.1 , pp. 110-123
    • Chakraborty, D.1    Pal, N.R.2
  • 9
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and Liu H. Feature selection for classification. Intell. Data Anal. 1 (1997) 131-156
    • (1997) Intell. Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 10
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., and Liu H. Consistency-based search in feature selection. Artif.Intell. 151 1-2 (2003) 155-176
    • (2003) Artif.Intell. , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 12
    • 10044224476 scopus 로고    scopus 로고
    • M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, Cambridge, UK, 2004, pp. 287-290.
    • M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, in: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, Cambridge, UK, 2004, pp. 287-290.
  • 13
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Febbo S., et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell March (2002). 〈http://www.broad.mit.edu/mpr/publications/projects/Prostate_Cancer/Prostate_TN_final0701_allmeanScale.res〉
    • (2002) Cancer Cell March
    • Febbo, S.1
  • 14
    • 0037403098 scopus 로고    scopus 로고
    • Feature selection based on a modified fuzzy C-means algorithm with supervision
    • Francesco M. Feature selection based on a modified fuzzy C-means algorithm with supervision. Inform. Sci. 151 (2003) 201-226
    • (2003) Inform. Sci. , vol.151 , pp. 201-226
    • Francesco, M.1
  • 15
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from MI
    • Fraser A.M., and Swinney H.L. Independent coordinates for strange attractors from MI. Phys. Rev. A 33 2 (1986) 1134-1140
    • (1986) Phys. Rev. A , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 16
    • 84915005479 scopus 로고
    • Probability of error, equivocation and the chernoff bound
    • Hellman M.E., and Raviv J. Probability of error, equivocation and the chernoff bound. IEEE Transactions on Information Theory 16 4 (1970) 368-372
    • (1970) IEEE Transactions on Information Theory , vol.16 , Issue.4 , pp. 368-372
    • Hellman, M.E.1    Raviv, J.2
  • 17
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 18
    • 13644251919 scopus 로고    scopus 로고
    • The coefficient of intrinsic dependence (feature selection using el CID)
    • Hsing T., Liu L.-Y., Brun M., and Dougherty E.R. The coefficient of intrinsic dependence (feature selection using el CID). Pattern Recogn. 38 5 (2005) 623-636
    • (2005) Pattern Recogn. , vol.38 , Issue.5 , pp. 623-636
    • Hsing, T.1    Liu, L.-Y.2    Brun, M.3    Dougherty, E.R.4
  • 19
    • 12144251725 scopus 로고    scopus 로고
    • Effective feature selection scheme using MI
    • Huang D., and Chow T.W.S. Effective feature selection scheme using MI. Neurocomputing 63 (2005) 325-343
    • (2005) Neurocomputing , vol.63 , pp. 325-343
    • Huang, D.1    Chow, T.W.S.2
  • 20
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: evaluation, application, and small sample performance
    • Jain A., and Zongker D. Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19 2 (1997) 153-158
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 22
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 23
    • 40649118840 scopus 로고    scopus 로고
    • D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning, Bari, Italy, 1996, pp. 284-292.
    • D. Koller, M. Sahami, Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning, Bari, Italy, 1996, pp. 284-292.
  • 24
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by MI based on Parzen window
    • Kwak N., and Choi C.H. Input feature selection by MI based on Parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24 12 (2002) 1667-1671
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.H.2
  • 25
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., and Choi C.H. Input feature selection for classification problems. IEEE Trans. Neural Networks 13 1 (2002) 143-159
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 26
    • 1342324574 scopus 로고    scopus 로고
    • A compact and accurate model for classification
    • Last M., and Maimon O. A compact and accurate model for classification. IEEE Trans. Knowl. Data Eng. 16 2 (2004) 203-215
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.2 , pp. 203-215
    • Last, M.1    Maimon, O.2
  • 27
    • 0037204072 scopus 로고    scopus 로고
    • Feature selection based on similarity
    • Lazzerini B., and Marcelloni F. Feature selection based on similarity. Electron. Lett. 38 3 (2002) 121-122
    • (2002) Electron. Lett. , vol.38 , Issue.3 , pp. 121-122
    • Lazzerini, B.1    Marcelloni, F.2
  • 28
    • 0037119179 scopus 로고    scopus 로고
    • A fuzzy neural network for pattern classification and feature selection
    • Li R.P., Mukaidono M., and Turksen I.B. A fuzzy neural network for pattern classification and feature selection. Fuzzy Sets Systems 130 1 (2002) 101-108
    • (2002) Fuzzy Sets Systems , vol.130 , Issue.1 , pp. 101-108
    • Li, R.P.1    Mukaidono, M.2    Turksen, I.B.3
  • 30
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • Malhi A., and Gao R.X. PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 53 6 (2004) 1517-1525
    • (2004) IEEE Trans. Instrum. Meas. , vol.53 , Issue.6 , pp. 1517-1525
    • Malhi, A.1    Gao, R.X.2
  • 31
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science, Irvine, CA
    • Merz C.J., and Murphy P.M. UCI Repository of Machine Learning Databases (1996), University of California, Department of Information and Computer Science, Irvine, CA. 〈http://www.ics.uci.edu/~mlearn/MLRepository.html〉
    • (1996) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 32
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra P., and Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26 9 (1977) 917-922
    • (1977) IEEE Trans. Comput. , vol.26 , Issue.9 , pp. 917-922
    • Narendra, P.1    Fukunaga, K.2
  • 34
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil P., Novovicova J., and Kittler J. Floating search methods in feature selection. Pattern Recogn. Lett. 15 11 (1994) 1119-1125
    • (1994) Pattern Recogn. Lett. , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 35
    • 40649127068 scopus 로고    scopus 로고
    • A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1961, pp. 547-561.
    • A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1961, pp. 547-561.
  • 36
    • 0022059209 scopus 로고
    • Trigonometric entropies, Jensen difference divergences and error bounds
    • Sant'anna A.P., and Taneja I.J. Trigonometric entropies, Jensen difference divergences and error bounds. Inform. Sci. 35 (1985) 145-156
    • (1985) Inform. Sci. , vol.35 , pp. 145-156
    • Sant'anna, A.P.1    Taneja, I.J.2
  • 37
    • 40649097862 scopus 로고    scopus 로고
    • J.C. Schlimmer, Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning, in: Proceedings of Tenth International Conference on Machine Learning, Morgan Kaufmann, Amherst, MA, 1993, pp. 284-290.
    • J.C. Schlimmer, Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning, in: Proceedings of Tenth International Conference on Machine Learning, Morgan Kaufmann, Amherst, MA, 1993, pp. 284-290.
  • 38
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-656
    • Shannon C.E. A mathematical theory of communication. The Bell System Tech. J. 27 (1948) 379-423 623-656
    • (1948) The Bell System Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 39
    • 0033220764 scopus 로고    scopus 로고
    • Adaptive floating search methods in feature selection
    • Somol P., Pudil P., Novoviova J., and Paclik P. Adaptive floating search methods in feature selection. Pattern Recogn. Lett. 20 11-13 (1999) 1157-1163
    • (1999) Pattern Recogn. Lett. , vol.20 , Issue.11-13 , pp. 1157-1163
    • Somol, P.1    Pudil, P.2    Novoviova, J.3    Paclik, P.4
  • 40
    • 3042527351 scopus 로고    scopus 로고
    • Fast branch and bound algorithms for optimal feature selection
    • Somol P., Pudil P., and Kittler J. Fast branch and bound algorithms for optimal feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26 7 (2004) 900-912
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.7 , pp. 900-912
    • Somol, P.1    Pudil, P.2    Kittler, J.3
  • 41
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski R.W., and Andrzej S. Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24 6 (2003) 833-849
    • (2003) Pattern Recogn. Lett. , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Andrzej, S.2
  • 42
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mi maximization
    • Torkkola K. Feature extraction by non-parametric mi maximization. J. Mach. Learn. Res. 3 (2003) 1415-1438
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 44
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Verikas A., and Bacauskiene M. Feature selection with neural networks. Pattern Recogn. Lett. 23 11 (2002) 1323-1335
    • (2002) Pattern Recogn. Lett. , vol.23 , Issue.11 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 45
    • 0042198967 scopus 로고    scopus 로고
    • Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition
    • Wang X., and Paliwal K.K. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recogn. 36 10 (2003) 2429-2439
    • (2003) Pattern Recogn. , vol.36 , Issue.10 , pp. 2429-2439
    • Wang, X.1    Paliwal, K.K.2
  • 46
    • 0033097744 scopus 로고    scopus 로고
    • Axiomatic approach to feature subset selection based on relevance
    • Wang H., Bell D., and Murtagh F. Axiomatic approach to feature subset selection based on relevance. IEEE Trans. Pattern Anal. Mach. Intell. 21 3 (1999) 271-277
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.3 , pp. 271-277
    • Wang, H.1    Bell, D.2    Murtagh, F.3
  • 47
    • 10944261895 scopus 로고    scopus 로고
    • Feature selection based on MI and redundancy-synergy coefficient
    • Yang S., and Gu J. Feature selection based on MI and redundancy-synergy coefficient. J. Zhejiang Univ. Sci. 5 11 (2004) 1382-1391
    • (2004) J. Zhejiang Univ. Sci. , vol.5 , Issue.11 , pp. 1382-1391
    • Yang, S.1    Gu, J.2
  • 48
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J., and Honavar V. Feature subset selection using a genetic algorithm. IEEE Intell. Systems 13 (1998) 44-49
    • (1998) IEEE Intell. Systems , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 49
    • 84898987386 scopus 로고    scopus 로고
    • H. Yang, J. Moody, Data visualization and feature selection: New algorithms for nongaussian data, in: Advances in Neural Information Processing Systems vol. 12, MIT Press, 2000, pp. 687-693.
    • H. Yang, J. Moody, Data visualization and feature selection: New algorithms for nongaussian data, in: Advances in Neural Information Processing Systems vol. 12, MIT Press, 2000, pp. 687-693.
  • 50
    • 84968542369 scopus 로고    scopus 로고
    • H. Ye, H. Liu, A SOM-based method for feature selection, in: Proceedings of the 9th International Conference on Neural Information Processing vol. 3, 2002, pp. 1295-1299.
    • H. Ye, H. Liu, A SOM-based method for feature selection, in: Proceedings of the 9th International Conference on Neural Information Processing vol. 3, 2002, pp. 1295-1299.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.