메뉴 건너뛰기




Volumn 13, Issue 1, 2012, Pages 1-19

Travelling the world of gene-gene interactions

Author keywords

Controlling false positives; Gene gene interaction; Translational medicine; Variable selection

Indexed keywords

ANIMAL; ARTICLE; BIOLOGICAL MODEL; GENE; GENETIC EPISTASIS; GENOTYPE; HUMAN;

EID: 84855661466     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbr012     Document Type: Article
Times cited : (144)

References (190)
  • 1
    • 3442894519 scopus 로고    scopus 로고
    • Epistasis: too often neglected in complex trait studies?
    • Carlborg O, Haley CS. Epistasis: too often neglected in complex trait studies? Nat Rev Genet 2004;5:618-4.
    • (2004) Nat Rev Genet , vol.5 , pp. 618-624
    • Carlborg, O.1    Haley, C.S.2
  • 2
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: integrating 'omics' data sets
    • Joyce AR, Palsson BO. The model organism as a system: integrating 'omics' data sets. Nat RevMol Cell Biol 2006;7: 198-210.
    • (2006) Nat RevMol Cell Biol , vol.7 , pp. 198-210
    • Joyce, A.R.1    Palsson, B.O.2
  • 3
    • 33749242962 scopus 로고    scopus 로고
    • Epistasis correlates to genomic complexity
    • Sanjuan R, Elena SF. Epistasis correlates to genomic complexity. ProcNatl Acad SciUSA 2006;103:14402-5.
    • (2006) ProcNatl Acad SciUSA , vol.103 , pp. 14402-14405
    • Sanjuan, R.1    Elena, S.F.2
  • 4
    • 50549091013 scopus 로고    scopus 로고
    • A network model for the correlation between epistasis and genomic complexity
    • Sanjuan R, Nebot MR. A network model for the correlation between epistasis and genomic complexity. PLoS ONE 2008;3:e2663.
    • (2008) PLoS ONE , vol.3
    • Sanjuan, R.1    Nebot, M.R.2
  • 5
    • 11244293921 scopus 로고    scopus 로고
    • A global view of epistasis
    • Moore JH. A global view of epistasis. Nat Genet 2005;37: 13-4.
    • (2005) Nat Genet , vol.37 , pp. 13-14
    • Moore, J.H.1
  • 6
    • 70349629971 scopus 로고    scopus 로고
    • Using biological networks to search for interacting loci in genome-wide association studies
    • Emily M, Mailund T, Hein J, et al. Using biological networks to search for interacting loci in genome-wide association studies. EurJ Hum Genet 2009;17:1231-40.
    • (2009) EurJ Hum Genet , vol.17 , pp. 1231-1240
    • Emily, M.1    Mailund, T.2    Hein, J.3
  • 7
    • 77949865384 scopus 로고    scopus 로고
    • Screen and clean: a tool for identifying interactions in genome-wide association studies
    • Wu J, Devlin B, Ringquist S, et al. Screen and clean: a tool for identifying interactions in genome-wide association studies. Genet Epidemiol 2010;34:275-85.
    • (2010) Genet Epidemiol , vol.34 , pp. 275-285
    • Wu, J.1    Devlin, B.2    Ringquist, S.3
  • 9
    • 84971185409 scopus 로고
    • The correlation between relatives on the supposition of Mendelian inheritance
    • Fisher R. The correlation between relatives on the supposition of Mendelian inheritance. TransRSoc Edinb 1918; 52:399-433.
    • (1918) TransRSoc Edinb , vol.52 , pp. 399-433
    • Fisher, R.1
  • 10
    • 78650304195 scopus 로고    scopus 로고
    • Statistical interaction in human genetics: how should we model it if we are looking for biological interaction?
    • Wang X, Elston RC, Zhu X. Statistical interaction in human genetics: how should we model it if we are looking for biological interaction? Nat RevGenet 2010;12:74.
    • (2010) Nat RevGenet , vol.12 , pp. 74
    • Wang, X.1    Elston, R.C.2    Zhu, X.3
  • 11
    • 67349166946 scopus 로고    scopus 로고
    • Detecting gene-gene interactions that underlie human diseases
    • Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nat RevGenet 2009;10:392-404.
    • (2009) Nat RevGenet , vol.10 , pp. 392-404
    • Cordell, H.J.1
  • 12
    • 78649794378 scopus 로고    scopus 로고
    • The meaning of interaction
    • Wang X, Elston RC, Zhu X. The meaning of interaction. HumHered 2010;70:269-77.
    • (2010) HumHered , vol.70 , pp. 269-277
    • Wang, X.1    Elston, R.C.2    Zhu, X.3
  • 13
    • 54149088214 scopus 로고    scopus 로고
    • Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems
    • Phillips PC. Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 2008;9:855-67.
    • (2008) Nat Rev Genet , vol.9 , pp. 855-867
    • Phillips, P.C.1
  • 14
    • 33749515298 scopus 로고    scopus 로고
    • Functional epistasis on a common MHC haplotype associated with multiple sclerosis
    • Gregersen JW, Kranc KR, Ke X, et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis. Nature 2006;443:574-7.
    • (2006) Nature , vol.443 , pp. 574-577
    • Gregersen, J.W.1    Kranc, K.R.2    Ke, X.3
  • 15
    • 27144434505 scopus 로고    scopus 로고
    • The synthetic genetic interaction spectrum of essential genes
    • Davierwala AP, Haynes J, Li Z, et al. The synthetic genetic interaction spectrum of essential genes. Nat Genet 2005;37: 1147-52.
    • (2005) Nat Genet , vol.37 , pp. 1147-1152
    • Davierwala, A.P.1    Haynes, J.2    Li, Z.3
  • 16
    • 0036155238 scopus 로고    scopus 로고
    • A perspective on epistasis: limits of models displaying no main effect
    • Culverhouse R, Suarez BK, Lin J, et al. A perspective on epistasis: limits of models displaying no main effect. Am JHum Genet 2002;70:461-71.
    • (2002) Am JHum Genet , vol.70 , pp. 461-471
    • Culverhouse, R.1    Suarez, B.K.2    Lin, J.3
  • 17
    • 0033940280 scopus 로고    scopus 로고
    • A complete enumeration and classification of two-locus disease models
    • Li W, Reich J. A complete enumeration and classification of two-locus disease models. Hum Hered 2000;50: 334-49.
    • (2000) Hum Hered , vol.50 , pp. 334-349
    • Li, W.1    Reich, J.2
  • 18
    • 41949132217 scopus 로고    scopus 로고
    • A complete classification of epistatic two-locus models
    • Hallgrimsdottir IB, Yuster DS. A complete classification of epistatic two-locus models. BMCGenet 2008;9:17.
    • (2008) BMCGenet , vol.9 , pp. 17
    • Hallgrimsdottir, I.B.1    Yuster, D.S.2
  • 19
    • 33645228542 scopus 로고    scopus 로고
    • A survey of data mining methods for linkage disequilibrium mapping
    • Onkamo P, Toivonen H. A survey of data mining methods for linkage disequilibrium mapping. HumGenom 2006; 2:336-40.
    • (2006) HumGenom , vol.2 , pp. 336-340
    • Onkamo, P.1    Toivonen, H.2
  • 20
    • 33847059518 scopus 로고    scopus 로고
    • Detection of gene x gene interactions in genome-wide association studies of human population data
    • Musani SK, Shriner D, Liu NJ, et al. Detection of gene x gene interactions in genome-wide association studies of human population data. HumHered 2007;63:67-84.
    • (2007) HumHered , vol.63 , pp. 67-84
    • Musani, S.K.1    Shriner, D.2    Liu, N.J.3
  • 21
    • 69449103247 scopus 로고    scopus 로고
    • Mining patterns of epistasis in human genetics
    • Chen JY, Lonardi S, (eds). New York: Chapman and Hall
    • Moore JH. Mining patterns of epistasis in human genetics. In: Chen JY, Lonardi S, (eds). BiologicalDataMining. New York: Chapman and Hall, 2009.
    • (2009) BiologicalDataMining
    • Moore, J.H.1
  • 22
    • 38149003435 scopus 로고    scopus 로고
    • Feature extraction, foundations and applications
    • Guyon I, Gunn S, Nikravesh M, Zadeh L, (eds). Physica-Verlag: Springer
    • Guyon I, Gunn S, Nikravesh M, et al. Feature extraction, foundations and applications. In: Guyon I, Gunn S, Nikravesh M, Zadeh L, (eds). Series Studies in Fuzziness and Soft Computing. Physica-Verlag: Springer, 2006.
    • (2006) Series Studies in Fuzziness and Soft Computing
    • Guyon, I.1    Gunn, S.2    Nikravesh, M.3
  • 23
    • 71249151258 scopus 로고    scopus 로고
    • Identification of gene-gene interaction using principal components
    • Li J, Tang R, Biernacka JM, et al. Identification of gene-gene interaction using principal components. BMC Proc 2009;3(Suppl 7):S78.
    • (2009) BMC Proc , vol.3 , Issue.SUPPL. 7
    • Li, J.1    Tang, R.2    Biernacka, J.M.3
  • 24
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable selection and feature selection
    • Guyon I, Elisseeff A. An introduction to variable selection and feature selection. J Machine Learn Res 2003;3: 1157-82.
    • (2003) J Machine Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23: 2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 26
    • 38349134867 scopus 로고    scopus 로고
    • Exploration of gene-gene interaction effects using entropy-based methods
    • Dong CZ, Chu X, Wang Y, et al. Exploration of gene-gene interaction effects using entropy-based methods. EurJ Hum Genet 2008;16:229-35.
    • (2008) EurJ Hum Genet , vol.16 , pp. 229-235
    • Dong, C.Z.1    Chu, X.2    Wang, Y.3
  • 27
    • 33747872850 scopus 로고    scopus 로고
    • Computational inference of the molecular logic for synaptic connectivity in C. elegans
    • Varadan V, Miller DM 3rd, Anastassiou D. Computational inference of the molecular logic for synaptic connectivity in C. elegans. Bioinformatics 2006;22:e497-506.
    • (2006) Bioinformatics , vol.22
    • Varadan, V.1    Miller 3rd, D.M.2    Anastassiou, D.3
  • 29
    • 34548802636 scopus 로고    scopus 로고
    • Tuning reliefF for genome-wide genetic analysis
    • Marchiori E, Moore JH, Rajapakse JC, (eds). Berlin, Heidelberg: Springer-Verlag
    • Moore JH, White BC. Tuning reliefF for genome-wide genetic analysis. In: Marchiori E, Moore JH, Rajapakse JC, (eds). EvoBIO 2007, LNCS 4447. Berlin, Heidelberg: Springer-Verlag, 2007;166-75.
    • (2007) EvoBIO 2007, LNCS 4447 , pp. 166-175
    • Moore, J.H.1    White, B.C.2
  • 30
    • 69449088874 scopus 로고    scopus 로고
    • Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions
    • Greene CS, Penrod NM, Kiralis J, et al. Spatially uniform relieff (SURF) for computationally-efficient filtering of gene-gene interactions. BioDataMin 2009;2:5.
    • (2009) BioDataMin , vol.2 , pp. 5
    • Greene, C.S.1    Penrod, N.M.2    Kiralis, J.3
  • 31
    • 34548577158 scopus 로고    scopus 로고
    • Evaporative cooling feature selection for genotypic data involving interactions
    • McKinney BA, Reif DM, White BC, et al. Evaporative cooling feature selection for genotypic data involving interactions. Bioinformatics 2007;23:2113-20.
    • (2007) Bioinformatics , vol.23 , pp. 2113-2120
    • McKinney, B.A.1    Reif, D.M.2    White, B.C.3
  • 32
    • 36949021059 scopus 로고    scopus 로고
    • Detecting high-order interactions of single nucleotide polymorphisms using genetic programming
    • Nunkesser R, Bernholt T, Schwender H, et al. Detecting high-order interactions of single nucleotide polymorphisms using genetic programming. Bioinformatics 2007;23: 3280-8.
    • (2007) Bioinformatics , vol.23 , pp. 3280-3288
    • Nunkesser, R.1    Bernholt, T.2    Schwender, H.3
  • 33
    • 56449121529 scopus 로고    scopus 로고
    • Ant colony optimization for genome-wide genetic analysis
    • 5217/2008
    • Greene CS, White BC, Moore JH. Ant colony optimization for genome-wide genetic analysis. Lect Notes Comput Sci 2008;5217/2008:37-47.
    • (2008) Lect Notes Comput Sci , pp. 37-47
    • Greene, C.S.1    White, B.C.2    Moore, J.H.3
  • 34
    • 77953271464 scopus 로고    scopus 로고
    • AntiEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm
    • Wang Y, Liu X, Robbins K, etal. AntiEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm. BMC Res Notes 2010;3:117.
    • (2010) BMC Res Notes , vol.3 , pp. 117
    • Wang, Y.1    Liu, X.2    Robbins, K.3
  • 35
    • 37249085147 scopus 로고    scopus 로고
    • Identification of SNP interactions using logic regression
    • Schwender H, Ickstadt K. Identification of SNP interactions using logic regression. Biostatistics 2008;9: 187-98.
    • (2008) Biostatistics , vol.9 , pp. 187-198
    • Schwender, H.1    Ickstadt, K.2
  • 36
    • 78650647757 scopus 로고    scopus 로고
    • Testing SNPs and sets of SNPs for importance in association studies
    • Schwender H, Ruczinski I, Ickstadt K. Testing SNPs and sets of SNPs for importance in association studies. Biostatistics 2011;12:18-32.
    • (2011) Biostatistics , vol.12 , pp. 18-32
    • Schwender, H.1    Ruczinski, I.2    Ickstadt, K.3
  • 37
    • 33847015674 scopus 로고    scopus 로고
    • Computational analysis of the synergy among multiple interacting genes
    • Anastassiou D. Computational analysis of the synergy among multiple interacting genes. Mol Syst Biol 2007;3:83.
    • (2007) Mol Syst Biol , vol.3 , pp. 83
    • Anastassiou, D.1
  • 38
    • 58149353029 scopus 로고    scopus 로고
    • AMBIENCE: a novel approach and efficient algorithm for identifying informative genetic and environmental associations with complex phenotypes
    • Chanda P, Sucheston L, Zhang A, et al. AMBIENCE: a novel approach and efficient algorithm for identifying informative genetic and environmental associations with complex phenotypes. Genetics 2008;180:1191-210.
    • (2008) Genetics , vol.180 , pp. 1191-1210
    • Chanda, P.1    Sucheston, L.2    Zhang, A.3
  • 39
    • 70349619639 scopus 로고    scopus 로고
    • The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors
    • Chanda P, Sucheston L, Zhang AD, et al. The interaction index, a novel information-theoretic metric for prioritizing interacting genetic variations and environmental factors. EurJ Hum Genet 2009;17:1274-86.
    • (2009) EurJ Hum Genet , vol.17 , pp. 1274-1286
    • Chanda, P.1    Sucheston, L.2    Zhang, A.D.3
  • 40
    • 35348897831 scopus 로고    scopus 로고
    • Informationtheoretic metrics for visualizing gene-environment interactions
    • Chanda P, Zhang A, Brazeau D, et al. Informationtheoretic metrics for visualizing gene-environment interactions. AmJHum Genet 2007;81:939-63.
    • (2007) AmJHum Genet , vol.81 , pp. 939-963
    • Chanda, P.1    Zhang, A.2    Brazeau, D.3
  • 41
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon CE. A mathematical theory of communication. Bell SystTechJ 1948;27:379-423, 623-56.
    • (1948) Bell SystTechJ , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 42
    • 9444253133 scopus 로고    scopus 로고
    • Faculty of Computer and Information Science.. University of Ljubljana
    • Jakulin A. Attribute interactions in machine learning. Faculty of Computer and Information Science.. University of Ljubljana, 2003.
    • (2003) Attribute interactions in machine learning
    • Jakulin, A.1
  • 43
    • 39049166721 scopus 로고    scopus 로고
    • On association in regression: the coefficient of determination revisited
    • van der Linde A, Tutz G. On association in regression: the coefficient of determination revisited. Stat Med 2008;42: 1-24.
    • (2008) Stat Med , vol.42 , pp. 1-24
    • van der Linde, A.1    Tutz, G.2
  • 45
    • 77956486089 scopus 로고    scopus 로고
    • Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity
    • Sucheston L, Chanda P, Zhang A, et al. Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity. BMC Genomics 2010;3:487.
    • (2010) BMC Genomics , vol.3 , pp. 487
    • Sucheston, L.1    Chanda, P.2    Zhang, A.3
  • 47
    • 16844366786 scopus 로고    scopus 로고
    • Genome-wide strategies for detecting multiple loci that influence complex diseases
    • Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 2005;37:413-7.
    • (2005) Nat Genet , vol.37 , pp. 413-417
    • Marchini, J.1    Donnelly, P.2    Cardon, L.R.3
  • 48
    • 63249107210 scopus 로고    scopus 로고
    • Improving strategies for detecting genetic patterns of disease susceptibility in association studies
    • Calle ML, Urrea V, Vellalta G, et al. Improving strategies for detecting genetic patterns of disease susceptibility in association studies. Stat in Med 2008;27: 632-6546.
    • (2008) Stat in Med , vol.27 , pp. 632-6546
    • Calle, M.L.1    Urrea, V.2    Vellalta, G.3
  • 49
    • 42249088310 scopus 로고    scopus 로고
    • Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics
    • Zhu X, Davidson I, (eds). Hershey: IGI Press
    • Moore JH. Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Zhu X, Davidson I, (eds). Knowledge Discovery and Data Mining: Challenges and Realities with RealWorld Data. Hershey: IGI Press, 2007;17-30.
    • (2007) Knowledge Discovery and Data Mining: Challenges and Realities with RealWorld Data , pp. 17-30
    • Moore, J.H.1
  • 50
    • 77957157531 scopus 로고    scopus 로고
    • A screening methodology based on Random Forests to improve the detection of gene-gene interactions
    • De Lobel L, Geurts P, Baele G, et al. A screening methodology based on Random Forests to improve the detection of gene-gene interactions. Eur J Hum Genet 2010;18: 1127-32.
    • (2010) Eur J Hum Genet , vol.18 , pp. 1127-1132
    • De Lobel, L.1    Geurts, P.2    Baele, G.3
  • 51
    • 77954485448 scopus 로고    scopus 로고
    • On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data
    • Schwarz DF, Konig IR, Ziegler A. On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics 2010;26: 1752-8.
    • (2010) Bioinformatics , vol.26 , pp. 1752-1758
    • Schwarz, D.F.1    Konig, I.R.2    Ziegler, A.3
  • 52
    • 60149109479 scopus 로고    scopus 로고
    • SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies
    • Yang C, He Z, Wan X, et al. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Bioinformatics 2009;25: 504-11.
    • (2009) Bioinformatics , vol.25 , pp. 504-511
    • Yang, C.1    He, Z.2    Wan, X.3
  • 53
    • 34548352849 scopus 로고    scopus 로고
    • Bayesian inference of epistatic interactions in case-control studies
    • Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nat Genet 2007;39: 1167-73.
    • (2007) Nat Genet , vol.39 , pp. 1167-1173
    • Zhang, Y.1    Liu, J.S.2
  • 58
    • 42949084703 scopus 로고    scopus 로고
    • Polymorphism Interaction Analysis (PIA): a method for investigating complex gene-gene interactions
    • Mechanic LE, Luke BT, Goodman JE, etal. Polymorphism Interaction Analysis (PIA): a method for investigating complex gene-gene interactions. BMC Bioinformatics 2008;9: 146.
    • (2008) BMC Bioinformatics , vol.9 , pp. 146
    • Mechanic, L.E.1    Luke, B.T.2    Goodman, J.E.3
  • 59
    • 0034973569 scopus 로고    scopus 로고
    • Multifactordimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer
    • Ritchie MD, Hahn LW, Roodi N, et al. Multifactordimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. AmJHum Genet 2001;69:138-47.
    • (2001) AmJHum Genet , vol.69 , pp. 138-147
    • Ritchie, M.D.1    Hahn, L.W.2    Roodi, N.3
  • 61
    • 33847021135 scopus 로고    scopus 로고
    • The use of the restricted partition method with case-control data
    • Culverhouse R. The use of the restricted partition method with case-control data. HumHered 2007;63:93-100.
    • (2007) HumHered , vol.63 , pp. 93-100
    • Culverhouse, R.1
  • 62
    • 71249143225 scopus 로고    scopus 로고
    • Power and false-positive rates for the restricted partition method (RPM) in a large candidate gene data set
    • Culverhouse R, Jin W, Jin CH, et al. Power and false-positive rates for the restricted partition method (RPM) in a large candidate gene data set. BMC Proc 2009;3(Suppl 7):S74.
    • (2009) BMC Proc , vol.3 , Issue.SUPPL. 7
    • Culverhouse, R.1    Jin, W.2    Jin, C.H.3
  • 63
    • 31144466293 scopus 로고    scopus 로고
    • Multi-locus penetrance variance analysis method for association study in complex diseases
    • Sun X, Zhang Z, Zhang Y, et al. Multi-locus penetrance variance analysis method for association study in complex diseases. HumHered 2005;60:143-9.
    • (2005) HumHered , vol.60 , pp. 143-149
    • Sun, X.1    Zhang, Z.2    Zhang, Y.3
  • 64
    • 12744269194 scopus 로고    scopus 로고
    • Identifying interacting SNPs using Monte Carlo logic regression
    • Kooperberg C, Ruczinski I. Identifying interacting SNPs using Monte Carlo logic regression. Genet Epidemiol 2005; 28:157-70.
    • (2005) Genet Epidemiol , vol.28 , pp. 157-170
    • Kooperberg, C.1    Ruczinski, I.2
  • 66
    • 33845774806 scopus 로고    scopus 로고
    • Backward genotype-trait association (BGTA)-based dissection of complex traits in case-control designs
    • Zheng T, Wang H, Lo SH. Backward genotype-trait association (BGTA)-based dissection of complex traits in case-control designs. HumHered 2006;62:196-212.
    • (2006) HumHered , vol.62 , pp. 196-212
    • Zheng, T.1    Wang, H.2    Lo, S.H.3
  • 67
    • 77958048688 scopus 로고    scopus 로고
    • A genetic ensemble approach for gene-gene interaction identification
    • Yang P, Ho JW, Zomaya AY, et al. A genetic ensemble approach for gene-gene interaction identification. BMC Bioinformatics 2010;11:524.
    • (2010) BMC Bioinformatics , vol.11 , pp. 524
    • Yang, P.1    Ho, J.W.2    Zomaya, A.Y.3
  • 68
    • 77955892255 scopus 로고    scopus 로고
    • Logic forest: an ensemble classifier for discovering logical combinations of binary markers
    • Wolf BJ, Hill EG, Slate EH. Logic forest: an ensemble classifier for discovering logical combinations of binary markers. Bioinformatics 2010;26:2183-9.
    • (2010) Bioinformatics , vol.26 , pp. 2183-2189
    • Wolf, B.J.1    Hill, E.G.2    Slate, E.H.3
  • 69
    • 77952315305 scopus 로고    scopus 로고
    • Grammatical evolution of neural networks for discovering epistasis among quantitative trait loci
    • Pizzuti C, Ritchie MD, Giacobini M, (eds). Berlin, Heidelberg: Springer-Verlag
    • Turner SD, Dudek SM, Ritchie MD. Grammatical evolution of neural networks for discovering epistasis among quantitative trait loci. In: Pizzuti C, Ritchie MD, Giacobini M, (eds). EvoBIO 2010, LNCS 6023. Berlin, Heidelberg: Springer-Verlag, 2010;86-97.
    • (2010) EvoBIO 2010, LNCS 6023 , pp. 86-97
    • Turner, S.D.1    Dudek, S.M.2    Ritchie, M.D.3
  • 70
    • 12744259874 scopus 로고    scopus 로고
    • Identifying SNPs predictive of phenotype using random forests
    • Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol 2005;28:171-82.
    • (2005) Genet Epidemiol , vol.28 , pp. 171-182
    • Bureau, A.1    Dupuis, J.2    Falls, K.3
  • 71
    • 60849093174 scopus 로고    scopus 로고
    • A random forest approach to the detection of epistatic interactions in case-control studies
    • Jiang R, Tang WW, Wu XB, et al. A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinformatics 2009; 10(Suppl 1):S65.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1
    • Jiang, R.1    Tang, W.W.2    Wu, X.B.3
  • 72
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: exploiting interactions using random forests
    • Lunetta KL, Hayward LB, Segal J, et al. Screening large-scale association study data: exploiting interactions using random forests. BMCGenet 2004;5:32.
    • (2004) BMCGenet , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.B.2    Segal, J.3
  • 73
    • 37349073894 scopus 로고    scopus 로고
    • Random forests for multiclass classification: random multinomial logit, expert systems with applications
    • Prinzie A, Van den Poel D. Random forests for multiclass classification: random multinomial logit, expert systems with applications. Expert Syst Appl 2008;34:1721-32.
    • (2008) Expert Syst Appl , vol.34 , pp. 1721-1732
    • Prinzie, A.1    Van den Poel, D.2
  • 74
    • 38049091494 scopus 로고    scopus 로고
    • Random multiclass classification: generalizing random forests to random MNL and random NB
    • Prinzie A, Van den Poel D. Random multiclass classification: generalizing random forests to random MNL and random NB. Database Expert SystAppl 2007;349-58.
    • (2007) Database Expert SystAppl , pp. 349-358
    • Prinzie, A.1    Van den Poel, D.2
  • 77
    • 77955876007 scopus 로고    scopus 로고
    • mbmdr: an R package for exploring gene-gene interactions associated with binary or quantitative traits
    • Calle ML, Urrea V, Malats N, et al. mbmdr: an R package for exploring gene-gene interactions associated with binary or quantitative traits. Bioinformatics 2010;26: 2198-9.
    • (2010) Bioinformatics , vol.26 , pp. 2198-2199
    • Calle, M.L.1    Urrea, V.2    Malats, N.3
  • 79
    • 71249153009 scopus 로고    scopus 로고
    • Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects
    • Kim Y, Wojciechowski R, Sung H, et al. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proc 2009;3(Suppl 7):S64.
    • (2009) BMC Proc , vol.3 , Issue.SUPPL. 7
    • Kim, Y.1    Wojciechowski, R.2    Sung, H.3
  • 80
    • 74249090052 scopus 로고    scopus 로고
    • Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses
    • Wongseree W, Assawamakin A, Piroonratana T, et al. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses. Bmc Bioinformatics 2009;10:294.
    • (2009) Bmc Bioinformatics , vol.10 , pp. 294
    • Wongseree, W.1    Assawamakin, A.2    Piroonratana, T.3
  • 81
    • 79956311471 scopus 로고    scopus 로고
    • Model-Based Multifactor Dimensionality Reduction to detect epistasis for quantitative traits in the presence of error-free and noisy data
    • Mahachie John JM, Cattaert T, Van Lishout F, et al. Model-Based Multifactor Dimensionality Reduction to detect epistasis for quantitative traits in the presence of error-free and noisy data. EurJ Hum Genet 2011;1-8.
    • (2011) EurJ Hum Genet , pp. 1-8
    • Mahachie John, J.M.1    Cattaert, T.2    Van Lishout, F.3
  • 82
    • 0033879555 scopus 로고    scopus 로고
    • The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci
    • Carlborg O, Andersson L, Kinghorn B. The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 2000;155: 2003-10.
    • (2000) Genetics , vol.155 , pp. 2003-2010
    • Carlborg, O.1    Andersson, L.2    Kinghorn, B.3
  • 83
    • 57749172222 scopus 로고
    • A mathematical theory of adaptive control processes
    • Bellman R, Kalaba R. A mathematical theory of adaptive control processes. Proc Natl Acad Sci USA 1959;45: 1288-90.
    • (1959) Proc Natl Acad Sci USA , vol.45 , pp. 1288-1290
    • Bellman, R.1    Kalaba, R.2
  • 84
    • 38049026746 scopus 로고    scopus 로고
    • Detecting association using epistatic information
    • Chapman J, Clayton D. Detecting association using epistatic information. Genet Epidemiol 2007;31:894-909.
    • (2007) Genet Epidemiol , vol.31 , pp. 894-909
    • Chapman, J.1    Clayton, D.2
  • 85
    • 33845284533 scopus 로고    scopus 로고
    • Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions
    • Chatterjee N, Kalaylioglu Z, Moslehi R, et al. Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions. AmJ Hum Genet 2006;79:1002-16.
    • (2006) AmJ Hum Genet , vol.79 , pp. 1002-1016
    • Chatterjee, N.1    Kalaylioglu, Z.2    Moslehi, R.3
  • 86
    • 75649111609 scopus 로고    scopus 로고
    • Empirical tests for compositional epistasis
    • VanderWeele TJ. Empirical tests for compositional epistasis. Nat Rev Genet 2010;11:166.
    • (2010) Nat Rev Genet , vol.11 , pp. 166
    • VanderWeele, T.J.1
  • 88
    • 78650118237 scopus 로고    scopus 로고
    • Tests for compositional epistasis under single interaction-parameter models
    • VanderWeele TJ, Laird NM. Tests for compositional epistasis under single interaction-parameter models. Ann Hum Genet 2010;75:146-56.
    • (2010) Ann Hum Genet , vol.75 , pp. 146-156
    • VanderWeele, T.J.1    Laird, N.M.2
  • 89
    • 77950614421 scopus 로고    scopus 로고
    • On the classification of epistatic interactions
    • Gao H, Granka JM, Feldman MW. On the classification of epistatic interactions. Genetics 2010;184:827-37.
    • (2010) Genetics , vol.184 , pp. 827-837
    • Gao, H.1    Granka, J.M.2    Feldman, M.W.3
  • 90
    • 33847008736 scopus 로고    scopus 로고
    • Optimal two-stage strategy for detecting interacting genes in complex diseases
    • Ionita I, Man M. Optimal two-stage strategy for detecting interacting genes in complex diseases. BMCGenet 2006;7: 39.
    • (2006) BMCGenet , vol.7 , pp. 39
    • Ionita, I.1    Man, M.2
  • 91
    • 21044450087 scopus 로고    scopus 로고
    • Application of logistic regression to case-control association studies involving two causative loci
    • North BV, Curtis D, Sham PC. Application of logistic regression to case-control association studies involving two causative loci. HumHered 2005;59:79-87.
    • (2005) HumHered , vol.59 , pp. 79-87
    • North, B.V.1    Curtis, D.2    Sham, P.C.3
  • 92
    • 37249080278 scopus 로고    scopus 로고
    • Penalized logistic regression for detecting gene-gene interactions
    • Park M, Hastie T. Penalized logistic regression for detecting gene-gene interactions. Biostatistics 2007;9: 30-50.
    • (2007) Biostatistics , vol.9 , pp. 30-50
    • Park, M.1    Hastie, T.2
  • 93
    • 33845227628 scopus 로고    scopus 로고
    • Simultaneous estimation of gene-gene and gene-environment interactions for numerous loci using double penalized log-likelihood
    • Tanck MW, Jukema JW, Zwinderman AH. Simultaneous estimation of gene-gene and gene-environment interactions for numerous loci using double penalized log-likelihood. Genet Epidemiol 2006;30:645-51.
    • (2006) Genet Epidemiol , vol.30 , pp. 645-651
    • Tanck, M.W.1    Jukema, J.W.2    Zwinderman, A.H.3
  • 94
    • 50249119020 scopus 로고    scopus 로고
    • Comparison of multivariate adaptive regression splines and logistic regression in detecting SNP-SNP interactions and their application in prostate cancer
    • Lin HY, Wang W, Liu YH, et al. Comparison of multivariate adaptive regression splines and logistic regression in detecting SNP-SNP interactions and their application in prostate cancer. J Hum Genet 2008;53: 802-11.
    • (2008) J Hum Genet , vol.53 , pp. 802-811
    • Lin, H.Y.1    Wang, W.2    Liu, Y.H.3
  • 96
    • 65849377200 scopus 로고    scopus 로고
    • A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped
    • Wang T, Ho G, Ye K, etal. A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped. Genet Epidemiol 2009;33:6-15.
    • (2009) Genet Epidemiol , vol.33 , pp. 6-15
    • Wang, T.1    Ho, G.2    Ye, K.3
  • 97
    • 77956395423 scopus 로고    scopus 로고
    • BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies
    • Wan X, Yang C, Yang Q, etal. BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. AmJHum Genet 2010;87:325-40.
    • (2010) AmJHum Genet , vol.87 , pp. 325-340
    • Wan, X.1    Yang, C.2    Yang, Q.3
  • 98
    • 75149156212 scopus 로고    scopus 로고
    • Identifying main effects and epistatic interactions from large-scale SNP data via adaptive group Lasso
    • Yang C, Wan X, Yang Q, et al. Identifying main effects and epistatic interactions from large-scale SNP data via adaptive group Lasso. BMC Bioinformatics 2010; 11(Suppl 1):S18.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 1
    • Yang, C.1    Wan, X.2    Yang, Q.3
  • 99
    • 77957875452 scopus 로고    scopus 로고
    • A general model for multilocus epistatic interactions in case-control studies
    • Wang Z, Liu T, Lin Z, et al. A general model for multilocus epistatic interactions in case-control studies. PLoS ONE 2010;5:e11384.
    • (2010) PLoS ONE , vol.5
    • Wang, Z.1    Liu, T.2    Lin, Z.3
  • 100
    • 0035889492 scopus 로고    scopus 로고
    • Variable selection and Bayesian model averaging in case-control studies
    • Viallefont V, Raftery AE, Richardson S. Variable selection and Bayesian model averaging in case-control studies. Stat Med 2001;20:3215-30.
    • (2001) Stat Med , vol.20 , pp. 3215-3230
    • Viallefont, V.1    Raftery, A.E.2    Richardson, S.3
  • 101
    • 33646351332 scopus 로고    scopus 로고
    • Relevance networks: a first step towards finding genetic regulatory networks within microarray data
    • Parmigiani G, Garrett ES, Irizarry RA, et al, (eds). New York: Springer
    • Butte AS, Kohane IS. Relevance networks: a first step towards finding genetic regulatory networks within microarray data. In: Parmigiani G, Garrett ES, Irizarry RA, et al, (eds). The Analysis of Gene Expression Data. New York: Springer, 2003;428-46.
    • (2003) The Analysis of Gene Expression Data , pp. 428-446
    • Butte, A.S.1    Kohane, I.S.2
  • 102
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005;21:754-64.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 103
    • 74349109644 scopus 로고    scopus 로고
    • An efficient method for identifying statistical interactors in gene association networks
    • Andrei A, Kendziorski C. An efficient method for identifying statistical interactors in gene association networks. Biostatistics 2009;10:706-18.
    • (2009) Biostatistics , vol.10 , pp. 706-718
    • Andrei, A.1    Kendziorski, C.2
  • 104
    • 67651015931 scopus 로고    scopus 로고
    • A graphical model approach for inferring large-scale networks integrating gene expression and genetic polymorphism
    • Chu JH, Weiss ST, Carey VJ, et al. A graphical model approach for inferring large-scale networks integrating gene expression and genetic polymorphism. BMC Syst Biol 2009;3:55.
    • (2009) BMC Syst Biol , vol.3 , pp. 55
    • Chu, J.H.1    Weiss, S.T.2    Carey, V.J.3
  • 105
    • 78650122276 scopus 로고    scopus 로고
    • Reconstructability analysis of epistasis
    • Zwick M. Reconstructability analysis of epistasis. AnnHum Genet 2011;75:157-71.
    • (2011) AnnHum Genet , vol.75 , pp. 157-171
    • Zwick, M.1
  • 106
    • 79952740772 scopus 로고    scopus 로고
    • EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units
    • doi:10.1038/ejhg.2010.196 [Epub ahead of print 8 December 2010]
    • Kam-Thong T, Czamara D, Tsuda K, et al. EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. Eur J Hum Genet, doi:10.1038/ejhg.2010.196 [Epub ahead of print 8 December 2010].
    • Eur J Hum Genet
    • Kam-Thong, T.1    Czamara, D.2    Tsuda, K.3
  • 108
    • 70349956433 scopus 로고    scopus 로고
    • Finding the missing heritability of complex diseases
    • Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009;461: 747-53.
    • (2009) Nature , vol.461 , pp. 747-753
    • Manolio, T.A.1    Collins, F.S.2    Cox, N.J.3
  • 109
    • 0036797562 scopus 로고    scopus 로고
    • Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans
    • Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002;11:2463-8.
    • (2002) Hum Mol Genet , vol.11 , pp. 2463-2468
    • Cordell, H.J.1
  • 110
    • 84878673009 scopus 로고    scopus 로고
    • A family-based association test to detect gene-gene interactions in the presence of linkage
    • De Lobel L, De Meyer H, Thijs L, et al. A family-based association test to detect gene-gene interactions in the presence of linkage. Genet Epidemiol 2009;33:771-2.
    • (2009) Genet Epidemiol , vol.33 , pp. 771-772
    • De Lobel, L.1    De Meyer, H.2    Thijs, L.3
  • 111
    • 77954972153 scopus 로고    scopus 로고
    • FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals
    • Cattaert T, Urrea V, Naj AC, et al. FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PLoS ONE 2010;5:e10304.
    • (2010) PLoS ONE , vol.5
    • Cattaert, T.1    Urrea, V.2    Naj, A.C.3
  • 112
    • 35048838105 scopus 로고    scopus 로고
    • Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis
    • Aulchenko YS, de Koning DJ, Haley C. Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 2007; 177:577-85.
    • (2007) Genetics , vol.177 , pp. 577-585
    • Aulchenko, Y.S.1    de Koning, D.J.2    Haley, C.3
  • 113
    • 34548292504 scopus 로고    scopus 로고
    • PLINK: A tool set for whole-genome association and population-based linkage analyses
    • Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. AmJHum Genet 2007;81:559-75.
    • (2007) AmJHum Genet , vol.81 , pp. 559-575
    • Purcell, S.1    Neale, B.2    Todd-Brown, K.3
  • 114
    • 69449099445 scopus 로고    scopus 로고
    • Accelerating epistasis analysis in human genetics with consumer graphics hardware
    • Sinnott-Armstrong NA, Greene CS, Cancare F, et al. Accelerating epistasis analysis in human genetics with consumer graphics hardware. BMC Res Notes 2009;2: 149.
    • (2009) BMC Res Notes , vol.2 , pp. 149
    • Sinnott-Armstrong, N.A.1    Greene, C.S.2    Cancare, F.3
  • 115
    • 77953893931 scopus 로고    scopus 로고
    • FastEpistasis: a high performance computing solution for quantitative trait epistasis
    • Schupbach T, Xenarios I, Bergmann S, et al. FastEpistasis: a high performance computing solution for quantitative trait epistasis. Bioinformatics 2010;26:1468-9.
    • (2010) Bioinformatics , vol.26 , pp. 1468-1469
    • Schupbach, T.1    Xenarios, I.2    Bergmann, S.3
  • 117
    • 77955855669 scopus 로고    scopus 로고
    • Fast genome-wide epistasis analysis using ant colony optimization for multifactor dimensionality reduction analysis on graphics processing units
    • Sinnott-Armstrong NA, Greene CS, Moore JH. Fast genome-wide epistasis analysis using ant colony optimization for multifactor dimensionality reduction analysis on graphics processing units. GECCO 2010;215-6.
    • (2010) GECCO , pp. 215-216
    • Sinnott-Armstrong, N.A.1    Greene, C.S.2    Moore, J.H.3
  • 118
    • 77950798630 scopus 로고    scopus 로고
    • COE: a general approach for efficient genome-wide two-locus epistasis test in disease association study
    • Zhang XA, Pan F, Xie YY, et al. COE: a general approach for efficient genome-wide two-locus epistasis test in disease association study. JComputBiol 2010;17:401-15.
    • (2010) JComputBiol , vol.17 , pp. 401-415
    • Zhang, X.A.1    Pan, F.2    Xie, Y.Y.3
  • 119
    • 77954182718 scopus 로고    scopus 로고
    • TEAM: efficient two-locus epistasis tests in human genome-wide association study
    • Zhang X, Huang SP, Zou F, et al. TEAM: efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics 2010;26:i217-27.
    • (2010) Bioinformatics , vol.26
    • Zhang, X.1    Huang, S.P.2    Zou, F.3
  • 121
    • 33645228354 scopus 로고    scopus 로고
    • Detecting multiple associations in genome-wide studies
    • Dudbridge F, Gusnanto A, Koeleman BP. Detecting multiple associations in genome-wide studies. Hum Genomics 2006;2:310-7.
    • (2006) Hum Genomics , vol.2 , pp. 310-317
    • Dudbridge, F.1    Gusnanto, A.2    Koeleman, B.P.3
  • 123
    • 3042562270 scopus 로고    scopus 로고
    • Genomics, prior probability, and statistical tests of multiple hypotheses
    • Manly KF, Nettleton D, Hwang JT. Genomics, prior probability, and statistical tests of multiple hypotheses. Genome Res 2004;14:997-1001.
    • (2004) Genome Res , vol.14 , pp. 997-1001
    • Manly, K.F.1    Nettleton, D.2    Hwang, J.T.3
  • 124
    • 4043183452 scopus 로고    scopus 로고
    • Choice of a null distribution in resampling-based multiple testing
    • Pollard KS, van der Laan MJ. Choice of a null distribution in resampling-based multiple testing. J Stat Plann Inference 2004;125:85-100.
    • (2004) J Stat Plann Inference , vol.125 , pp. 85-100
    • Pollard, K.S.1    van der Laan, M.J.2
  • 125
    • 1842539516 scopus 로고    scopus 로고
    • A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other
    • Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. AmJHum Genet 2004;74:765-9.
    • (2004) AmJHum Genet , vol.74 , pp. 765-769
    • Nyholt, D.R.1
  • 126
    • 50249187303 scopus 로고    scopus 로고
    • On multiple-testing correction in genome-wide association studies
    • Moskvina V, Schmidt KM. On multiple-testing correction in genome-wide association studies. Genet Epidemiol 2008; 32:567-73.
    • (2008) Genet Epidemiol , vol.32 , pp. 567-573
    • Moskvina, V.1    Schmidt, K.M.2
  • 127
    • 30344462556 scopus 로고    scopus 로고
    • Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms
    • Nicodemus KK, Liu WL, Chase GA, et al. Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms. BMC Genet 2005;6(Suppl 1):S78.
    • (2005) BMC Genet , vol.6 , Issue.SUPPL. 1
    • Nicodemus, K.K.1    Liu, W.L.2    Chase, G.A.3
  • 128
    • 62849107228 scopus 로고    scopus 로고
    • Large-scale multiple testing under dependence
    • Sun W, Cai T. Large-scale multiple testing under dependence. JRStat Soc B 2009;71:393-424.
    • (2009) JRStat Soc B , vol.71 , pp. 393-424
    • Sun, W.1    Cai, T.2
  • 129
    • 70350664664 scopus 로고    scopus 로고
    • Multiple testing in genome-wide association studies via hidden Markov models
    • Wei Z, Sun W, Wang K, et al. Multiple testing in genome-wide association studies via hidden Markov models. Bioinformatics 2009;25:2802-8.
    • (2009) Bioinformatics , vol.25 , pp. 2802-2808
    • Wei, Z.1    Sun, W.2    Wang, K.3
  • 130
    • 63549095080 scopus 로고    scopus 로고
    • QVALITY: non-parametric estimation of q-values and posterior error probabilities
    • Kall L, Storey JD, Noble WS. QVALITY: non-parametric estimation of q-values and posterior error probabilities. Bioinformatics 2009;25:964-6.
    • (2009) Bioinformatics , vol.25 , pp. 964-966
    • Kall, L.1    Storey, J.D.2    Noble, W.S.3
  • 131
    • 45449097447 scopus 로고    scopus 로고
    • Fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
    • Strimmer K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 2008;24:1461-2.
    • (2008) Bioinformatics , vol.24 , pp. 1461-1462
    • Strimmer, K.1
  • 133
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: a Bayesian interpretation and the q-value
    • Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 2003;31: 2013-35.
    • (2003) Ann Stat , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 134
    • 9744225788 scopus 로고    scopus 로고
    • Assessing the probability that a positive report is false: An approach for molecular epidemiology studies - response
    • Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: An approach for molecular epidemiology studies - response. J Natl Cancer Inst 2004;96:1722-3.
    • (2004) J Natl Cancer Inst , vol.96 , pp. 1722-1723
    • Wacholder, S.1    Chanock, S.2    Garcia-Closas, M.3
  • 135
    • 1642295096 scopus 로고    scopus 로고
    • Assessing the probability that a positive report is false: An approach for molecular epidemiology studies
    • Wacholder S, Chanock S, Garcia-Closas M, et al. Assessing the probability that a positive report is false: An approach for molecular epidemiology studies. JNatlCancer Inst 2004; 96:434-42.
    • (2004) JNatlCancer Inst , vol.96 , pp. 434-442
    • Wacholder, S.1    Chanock, S.2    Garcia-Closas, M.3
  • 136
    • 1542784653 scopus 로고    scopus 로고
    • Empirical Bayes analysis of a microarray experiment
    • Efron B, Tibshirani R, Storey JD, et al. Empirical Bayes analysis of a microarray experiment. JAm StatAssoc 2001; 96:1151-60.
    • (2001) JAm StatAssoc , vol.96 , pp. 1151-1160
    • Efron, B.1    Tibshirani, R.2    Storey, J.D.3
  • 139
    • 34248593385 scopus 로고    scopus 로고
    • Gene expression network analysis and applications to immunology
    • Nacu S, Critchley-Thorne R, Lee P, etal. Gene expression network analysis and applications to immunology. Bioinformatics 2007;23:850-8.
    • (2007) Bioinformatics , vol.23 , pp. 850-858
    • Nacu, S.1    Critchley-Thorne, R.2    Lee, P.3
  • 140
    • 70350702470 scopus 로고    scopus 로고
    • Order-restricted scores test for the evaluation of population-based case-control studies when the genetic model is unknown
    • Hothorn LA, Hothorn T. Order-restricted scores test for the evaluation of population-based case-control studies when the genetic model is unknown. Biometrical J 2009; 51:659-69.
    • (2009) Biometrical J , vol.51 , pp. 659-669
    • Hothorn, L.A.1    Hothorn, T.2
  • 141
    • 58149345887 scopus 로고    scopus 로고
    • Practical aspects of imputation-driven meta-analysis of genome-wide association studies
    • de Bakker P, Ferreira M, Jia X, et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. HumanMol Genet 2008;17:R122.
    • (2008) HumanMol Genet , vol.17
    • de Bakker, P.1    Ferreira, M.2    Jia, X.3
  • 143
    • 84855692273 scopus 로고    scopus 로고
    • Statistical analysis of rare sequence variants: an overview of collapsing methods
    • Dering C, Pugh E, Ziegler A. Statistical analysis of rare sequence variants: an overview of collapsing methods. BMC Proc 2011.
    • (2011) BMC Proc
    • Dering, C.1    Pugh, E.2    Ziegler, A.3
  • 144
    • 0034064834 scopus 로고    scopus 로고
    • Accounting for variability in the use of permutation testing to detect quantitative trait loci
    • Nettleton D, Doerge RW. Accounting for variability in the use of permutation testing to detect quantitative trait loci. Biometrics 2000;56:52-8.
    • (2000) Biometrics , vol.56 , pp. 52-58
    • Nettleton, D.1    Doerge, R.W.2
  • 145
    • 0028151261 scopus 로고
    • Empirical threshold values for quantitative trait mapping
    • Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics 1994;138:963-71.
    • (1994) Genetics , vol.138 , pp. 963-971
    • Churchill, G.A.1    Doerge, R.W.2
  • 146
    • 0030052609 scopus 로고    scopus 로고
    • Permutation tests for multiple loci affecting a quantitative character
    • Doerge RW, Churchill GA. Permutation tests for multiple loci affecting a quantitative character. Genetics 1996;142: 285-94.
    • (1996) Genetics , vol.142 , pp. 285-294
    • Doerge, R.W.1    Churchill, G.A.2
  • 147
    • 0036251086 scopus 로고    scopus 로고
    • Use of randomization testing to detect multiple epistatic QTLs
    • Carlborg R, Andersson L. Use of randomization testing to detect multiple epistatic QTLs. Genet Res Camb 2002;79: 175-84.
    • (2002) Genet Res Camb , vol.79 , pp. 175-184
    • Carlborg, R.1    Andersson, L.2
  • 148
    • 4143076901 scopus 로고    scopus 로고
    • Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies
    • Dudbridge F, Koeleman BP. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genomewide association studies. AmJHum Genet 2004;75:424-35.
    • (2004) AmJHum Genet , vol.75 , pp. 424-435
    • Dudbridge, F.1    Koeleman, B.P.2
  • 150
    • 65849424905 scopus 로고    scopus 로고
    • A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction
    • Pattin KA, White BC, Barney N, et al. A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genet Epidemiol 2009;33:87-94.
    • (2009) Genet Epidemiol , vol.33 , pp. 87-94
    • Pattin, K.A.1    White, B.C.2    Barney, N.3
  • 151
    • 66349103652 scopus 로고    scopus 로고
    • Rapid and accurate multiple testing correction and power estimation for millions of correlated markers
    • Han B, Kang HM, Eskin E. Rapid and accurate multiple testing correction and power estimation for millions of correlated markers. PLoS Genet 2009;5:e1000456.
    • (2009) PLoS Genet , vol.5
    • Han, B.1    Kang, H.M.2    Eskin, E.3
  • 152
    • 36749079336 scopus 로고    scopus 로고
    • So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests
    • Conneely KN, Boehnke M. So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. AmJHum Genet 2007;81:1158-68.
    • (2007) AmJHum Genet , vol.81 , pp. 1158-1168
    • Conneely, K.N.1    Boehnke, M.2
  • 154
    • 77957171378 scopus 로고    scopus 로고
    • ATHENA: a knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait loci
    • Turner SD, Dudek SM, Ritchie MD. ATHENA: a knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait loci. BioDataMin 2010;3:5.
    • (2010) BioDataMin , vol.3 , pp. 5
    • Turner, S.D.1    Dudek, S.M.2    Ritchie, M.D.3
  • 155
    • 42249099044 scopus 로고    scopus 로고
    • Increasing the power of identifying gene x gene interactions in genome-wide association studies
    • Kooperberg C, LeBlanc M. Increasing the power of identifying gene x gene interactions in genome-wide association studies. Genetic Epidemiol 2008;32:255-63.
    • (2008) Genetic Epidemiol , vol.32 , pp. 255-263
    • Kooperberg, C.1    LeBlanc, M.2
  • 156
    • 33745279392 scopus 로고    scopus 로고
    • Evaluating and improving power in whole-genome association studies using fixed marker sets
    • Pe'er I, de Bakker PIW, Maller J, et al. Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 2006;38:663-7.
    • (2006) Nat Genet , vol.38 , pp. 663-667
    • Pe'er, I.1    de Bakker, P.I.W.2    Maller, J.3
  • 157
    • 77951622841 scopus 로고    scopus 로고
    • A gene-based method for detecting gene-gene co-association in a case-control association study
    • Peng QQ, Zhao JH, Xue FZ. A gene-based method for detecting gene-gene co-association in a case-control association study. EurJ Hum Genet 2010;18:582-7.
    • (2010) EurJ Hum Genet , vol.18 , pp. 582-587
    • Peng, Q.Q.1    Zhao, J.H.2    Xue, F.Z.3
  • 158
    • 77951245218 scopus 로고    scopus 로고
    • Identifying gene interaction enrichment for gene expression data
    • Zhang J, Li J, Deng HW. Identifying gene interaction enrichment for gene expression data. PLoS ONE 2009;4: e8064.
    • (2009) PLoS ONE , vol.4
    • Zhang, J.1    Li, J.2    Deng, H.W.3
  • 159
    • 61949417042 scopus 로고    scopus 로고
    • Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies
    • Bush WS, Dudek SM, Ritchie MD. Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. Pac Symp Biocomput 2009;14:368-79.
    • (2009) Pac Symp Biocomput , vol.14 , pp. 368-379
    • Bush, W.S.1    Dudek, S.M.2    Ritchie, M.D.3
  • 160
    • 78651386724 scopus 로고    scopus 로고
    • Does heritability hide in epistasis between linked SNPs?
    • Haig D. Does heritability hide in epistasis between linked SNPs? EurJ Hum Genet 2010;19:123.
    • (2010) EurJ Hum Genet , vol.19 , pp. 123
    • Haig, D.1
  • 161
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • Moore JH, Gilbert JC, Tsai CT, et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 2006;241: 252-61.
    • (2006) J Theor Biol , vol.241 , pp. 252-261
    • Moore, J.H.1    Gilbert, J.C.2    Tsai, C.T.3
  • 162
    • 33751074962 scopus 로고    scopus 로고
    • Test for interaction between two unlinked loci
    • Zhao JY, Jin L, Xiong MM. Test for interaction between two unlinked loci. AmJHuman Genet 2006;79:831-45.
    • (2006) AmJHuman Genet , vol.79 , pp. 831-845
    • Zhao, J.Y.1    Jin, L.2    Xiong, M.M.3
  • 163
    • 0000046644 scopus 로고
    • An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present
    • Cockerham CC. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 1954; 39:859-82.
    • (1954) Genetics , vol.39 , pp. 859-882
    • Cockerham, C.C.1
  • 164
    • 0029112753 scopus 로고
    • Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes
    • Cordell HJ, Todd JA, Bennett ST, et al. Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes. AmJHum Genet 1995;57:920-34.
    • (1995) AmJHum Genet , vol.57 , pp. 920-934
    • Cordell, H.J.1    Todd, J.A.2    Bennett, S.T.3
  • 165
    • 85058721669 scopus 로고    scopus 로고
    • Reports of the death of the epistasis model are greatly exaggerated
    • author reply 1471-63
    • Farrall M. Reports of the death of the epistasis model are greatly exaggerated. Am J Hum Genet 2003;73:1467-8; author reply 1471-63.
    • (2003) Am J Hum Genet , vol.73 , pp. 1467-1468
    • Farrall, M.1
  • 166
    • 53849097744 scopus 로고    scopus 로고
    • Main-effects model is a special kind of additive model in the presence of linkage disequilibrium
    • Zhang YL, Ji L. Main-effects model is a special kind of additive model in the presence of linkage disequilibrium. HumHered 2009;67:13-25.
    • (2009) HumHered , vol.67 , pp. 13-25
    • Zhang, Y.L.1    Ji, L.2
  • 167
    • 75749107854 scopus 로고    scopus 로고
    • Common disease, multiple rare (and distant) variants
    • Robinson R. Common disease, multiple rare (and distant) variants. PLoS Biol 2010;8:e1000293.
    • (2010) PLoS Biol , vol.8
    • Robinson, R.1
  • 168
    • 77952557918 scopus 로고    scopus 로고
    • Missing heritability and strategies for finding the underlying causes of complex disease
    • Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-50.
    • (2010) Nat Rev Genet , vol.11 , pp. 446-450
    • Eichler, E.E.1    Flint, J.2    Gibson, G.3
  • 169
    • 44349132708 scopus 로고    scopus 로고
    • Common and rare variants in multifactorial susceptibility to common diseases
    • Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008;40:695-701.
    • (2008) Nat Genet , vol.40 , pp. 695-701
    • Bodmer, W.1    Bonilla, C.2
  • 170
    • 77249134594 scopus 로고    scopus 로고
    • Rare variants create synthetic genome-wide associations
    • Dickson SP, Wang K, Krantz I, et al. Rare variants create synthetic genome-wide associations. PLoS Biol 2010;8: e1000294.
    • (2010) PLoS Biol , vol.8
    • Dickson, S.P.1    Wang, K.2    Krantz, I.3
  • 171
    • 24044541648 scopus 로고    scopus 로고
    • Genetic association, post-translational modification, and protein-protein interactions in type 2 diabetes mellitus
    • Sharma A, Chavali S, Mahajan A, et al. Genetic association, post-translational modification, and protein-protein interactions in type 2 diabetes mellitus. MolCellProteomics 2005; 4:1029-37.
    • (2005) MolCellProteomics , vol.4 , pp. 1029-1037
    • Sharma, A.1    Chavali, S.2    Mahajan, A.3
  • 172
    • 77958102016 scopus 로고    scopus 로고
    • Statistical analysis strategies for association studies involving rare variants
    • Bansal V, Libiger O, Torkamani A, et al. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11:773-85.
    • Nat Rev Genet , vol.11 , pp. 773-785
    • Bansal, V.1    Libiger, O.2    Torkamani, A.3
  • 173
    • 78449245227 scopus 로고    scopus 로고
    • A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions
    • Liu DJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet 2010;6: e1001156.
    • (2010) PLoS Genet , vol.6
    • Liu, D.J.1    Leal, S.M.2
  • 174
    • 61449168010 scopus 로고    scopus 로고
    • A groupwise association test for rare mutations using a weighted sum statistic
    • Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 2009;5:e1000384.
    • (2009) PLoS Genet , vol.5
    • Madsen, B.E.1    Browning, S.R.2
  • 175
    • 50949095168 scopus 로고    scopus 로고
    • Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data
    • Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. AmJHum Genet 2008;83:311-21.
    • (2008) AmJHum Genet , vol.83 , pp. 311-321
    • Li, B.1    Leal, S.M.2
  • 177
    • 77953429324 scopus 로고    scopus 로고
    • Using prior knowledge and genome-wide association to identify pathways involved in multiple sclerosis
    • Ritchie MD. Using prior knowledge and genome-wide association to identify pathways involved in multiple sclerosis. GenomeMed 2009;1:65.
    • (2009) GenomeMed , vol.1 , pp. 65
    • Ritchie, M.D.1
  • 178
    • 16844369571 scopus 로고    scopus 로고
    • The need for a systematic approach to complex pathways in molecular epidemiology
    • Thomas DC. The need for a systematic approach to complex pathways in molecular epidemiology. CancerEpidemiol Biomarkers Prev 2005;14:557-9.
    • (2005) CancerEpidemiol Biomarkers Prev , vol.14 , pp. 557-559
    • Thomas, D.C.1
  • 179
    • 46949101742 scopus 로고    scopus 로고
    • Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases
    • Pattin KA, Moore JH. Exploiting the proteome to improve the genome-wide genetic analysis of epistasis in common human diseases. Human Genet 2008;124:19-29.
    • (2008) Human Genet , vol.124 , pp. 19-29
    • Pattin, K.A.1    Moore, J.H.2
  • 180
    • 65549084289 scopus 로고    scopus 로고
    • Pathway and network-based analysis of genome-wide association studies in multiple sclerosis
    • Baranzini SE, Galwey NW, Wang J, et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009;18: 2078-90.
    • (2009) Hum Mol Genet , vol.18 , pp. 2078-2090
    • Baranzini, S.E.1    Galwey, N.W.2    Wang, J.3
  • 181
    • 77954760095 scopus 로고    scopus 로고
    • Predicting genetic modifier loci using functional gene networks
    • Lee I, Lehner B, Vavouri T, etal. Predicting genetic modifier loci using functional gene networks. GenomeRes 2010; 20:1143-53.
    • (2010) GenomeRes , vol.20 , pp. 1143-1153
    • Lee, I.1    Lehner, B.2    Vavouri, T.3
  • 182
    • 22844450110 scopus 로고    scopus 로고
    • Systematic interpretation of genetic interactions using protein networks
    • Kelley R, Ideker T. Systematic interpretation of genetic interactions using protein networks. Nature Biotechnol 2005; 23:561-6.
    • (2005) Nature Biotechnol , vol.23 , pp. 561-566
    • Kelley, R.1    Ideker, T.2
  • 183
    • 77954760827 scopus 로고    scopus 로고
    • A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes
    • Lin A, Wang RT, Ahn S, et al. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res 2010;20:1122-32.
    • (2010) Genome Res , vol.20 , pp. 1122-1132
    • Lin, A.1    Wang, R.T.2    Ahn, S.3
  • 184
    • 69449103972 scopus 로고    scopus 로고
    • Epistasis and its implications for personal genetics
    • Moore JH, Williams SM. Epistasis and its implications for personal genetics. AmJHum Genet 2009;85:309-20.
    • (2009) AmJHum Genet , vol.85 , pp. 309-320
    • Moore, J.H.1    Williams, S.M.2
  • 185
    • 84878670545 scopus 로고
    • Sur les divers modes d'application de la méthode graphique a' l'art du calcul. Calcul graphique et calcul nomographique
    • Duporcq E, (ed). Paris: Gauthier-Villars
    • d'Ocagne M. Sur les divers modes d'application de la méthode graphique a' l'art du calcul. Calcul graphique et calcul nomographique. In: Duporcq E, (ed). Deuxie'me Congre's International des Mathe{currency sign}maticiens. Paris: Gauthier-Villars, 1902, 419-24.
    • (1902) Deuxiéme Congrè's International des Mathématiciens , pp. 419-424
    • d'Ocagne, M.1
  • 187
    • 0036499241 scopus 로고    scopus 로고
    • Sample size requirements for association studies of gene-gene interaction
    • Gauderman WJ. Sample size requirements for association studies of gene-gene interaction. AmJ Epidemiol 2002;155: 478-84.
    • (2002) AmJ Epidemiol , vol.155 , pp. 478-484
    • Gauderman, W.J.1
  • 188
    • 34447620856 scopus 로고    scopus 로고
    • Application of multi-locus analytical methods to identify interacting loci in case-control studies
    • Vermeulen SH, Den Heijer M, Sham P, et al. Application of multi-locus analytical methods to identify interacting loci in case-control studies. Ann Hum Genet 2007;71: 689-700.
    • (2007) Ann Hum Genet , vol.71 , pp. 689-700
    • Vermeulen, S.H.1    Den Heijer, M.2    Sham, P.3
  • 189
    • 46949098027 scopus 로고    scopus 로고
    • The importance of replication in gene-gene interaction studies: multifactor dimensionality reduction applied to a two-stage breast cancer case-control study
    • Milne RL, Fagerholm R, Nevanlinna H, etal. The importance of replication in gene-gene interaction studies: multifactor dimensionality reduction applied to a two-stage breast cancer case-control study. Carcinogenesis 2008;29: 1215-8.
    • (2008) Carcinogenesis , vol.29 , pp. 1215-1218
    • Milne, R.L.1    Fagerholm, R.2    Nevanlinna, H.3
  • 190
    • 0042921461 scopus 로고    scopus 로고
    • Multilocus statistics to uncover epistasis and heterogeneity in complex diseases: revisiting a set of multiple sclerosis data
    • Böhringer S, Hardt C, Miterski B, et al. Multilocus statistics to uncover epistasis and heterogeneity in complex diseases: revisiting a set of multiple sclerosis data. Eur J Hum Genet 2003;11:573-84.
    • (2003) Eur J Hum Genet , vol.11 , pp. 573-584
    • Böhringer, S.1    Hardt, C.2    Miterski, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.