메뉴 건너뛰기




Volumn 4, Issue 9, 2009, Pages

An introspective comparison of random forest-based classifiers for the analysis of cluster-correlated data by way of RF++

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BOOTSTRAPPING; CLASSIFIER; CLUSTER ANALYSIS; COMPUTER GRAPHICS; COMPUTER INTERFACE; COMPUTER SIMULATION; CONTROLLED STUDY; ESOPHAGUS CANCER; INFORMATION PROCESSING; MATRIX ASSISTED LASER DESORPTION IONIZATION TIME OF FLIGHT MASS SPECTROMETRY; RANDOM FOREST; SAMPLE SIZE; AUTOMATED PATTERN RECOGNITION; BIOLOGICAL MODEL; COMPUTER PROGRAM; DNA MICROARRAY; GENE EXPRESSION PROFILING; MASS SPECTROMETRY; METHODOLOGY; STATISTICAL MODEL;

EID: 70349445083     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0007087     Document Type: Article
Times cited : (61)

References (37)
  • 1
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, et al. (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 62: 3609-3614.
    • (2002) Cancer Res , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3    Ward, M.D.4    Clements, M.A.5
  • 2
    • 0037458636 scopus 로고    scopus 로고
    • Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer
    • Adam PJ, Boyd R, Tyson KL, Fletcher GC, Stamps A, et al. (2003) Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J Biol Chem 278: 6482-6489.
    • (2003) J Biol Chem , vol.278 , pp. 6482-6489
    • Adam, P.J.1    Boyd, R.2    Tyson, K.L.3    Fletcher, G.C.4    Stamps, A.5
  • 3
    • 33748476238 scopus 로고    scopus 로고
    • Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum
    • Agranoff D, Fernandez-Reyes D, Papadopoulos MC, Rojas SA, Herbster M, et al. (2006) Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet 368: 1012-1021.
    • (2006) Lancet , vol.368 , pp. 1012-1021
    • Agranoff, D.1    Fernandez-Reyes, D.2    Papadopoulos, M.C.3    Rojas, S.A.4    Herbster, M.5
  • 4
    • 11144233952 scopus 로고    scopus 로고
    • Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population
    • Chen YD, Zheng S, Yu JK, Hu X (2004) Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin Cancer Res 10: 8380-8385.
    • (2004) Clin Cancer Res , vol.10 , pp. 8380-8385
    • Chen, Y.D.1    Zheng, S.2    Yu, J.K.3    Hu, X.4
  • 6
    • 20144377294 scopus 로고    scopus 로고
    • Classification of cancer types by measuring variants of host response proteins using SELDI serum assays
    • Fung ET, Yip TT, Lomas L, Wang Z, Yip C, et al. (2005) Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. Int J Cancer 115: 783-789.
    • (2005) Int J Cancer , vol.115 , pp. 783-789
    • Fung, E.T.1    Yip, T.T.2    Lomas, L.3    Wang, Z.4    Yip, C.5
  • 7
    • 12944265461 scopus 로고    scopus 로고
    • Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins
    • Koomen JM, Shih LN, Coombes KR, Li D, Xiao LC, et al. (2005) Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. Clin Cancer Res 11: 1110-1118.
    • (2005) Clin Cancer Res , vol.11 , pp. 1110-1118
    • Koomen, J.M.1    Shih, L.N.2    Coombes, K.R.3    Li, D.4    Xiao, L.C.5
  • 8
    • 4444234496 scopus 로고    scopus 로고
    • Data mining techniques for cancer detection using serum proteomic profiling
    • Li L, Tang H, Wu Z, Gong J, Gruidl M, et al. (2004) Data mining techniques for cancer detection using serum proteomic profiling. Artif Intell Med 32: 71-83.
    • (2004) Artif Intell Med , vol.32 , pp. 71-83
    • Li, L.1    Tang, H.2    Wu, Z.3    Gong, J.4    Gruidl, M.5
  • 9
    • 20844448363 scopus 로고    scopus 로고
    • Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry
    • Pawlik TM, Fritsche H, Coombes KR, Xiao L, Krishnamurthy S, et al. (2005) Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Res Treat 89: 149-157.
    • (2005) Breast Cancer Res Treat , vol.89 , pp. 149-157
    • Pawlik, T.M.1    Fritsche, H.2    Coombes, K.R.3    Xiao, L.4    Krishnamurthy, S.5
  • 10
    • 0346101481 scopus 로고    scopus 로고
    • Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry
    • Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, et al. (2004) Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 65: 323-332.
    • (2004) Kidney Int , vol.65 , pp. 323-332
    • Schaub, S.1    Wilkins, J.2    Weiler, T.3    Sangster, K.4    Rush, D.5
  • 13
    • 0033985441 scopus 로고    scopus 로고
    • Heterogeneity within MALDI samples as revealed by mass spectrometric imaging
    • Garden RW, Sweedler JV (2000) Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal Chem 72: 30-36.
    • (2000) Anal Chem , vol.72 , pp. 30-36
    • Garden, R.W.1    Sweedler, J.V.2
  • 14
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl: 490-495.
    • (2002) Nat Genet , vol.32 , Issue.SUPPL. , pp. 490-495
    • Churchill, G.A.1
  • 15
    • 33745023798 scopus 로고    scopus 로고
    • A reanalysis of a published Affymetrix GeneChip control dataset
    • Dabney AR, Storey JD (2006) A reanalysis of a published Affymetrix GeneChip control dataset. Genome Biol 7: 401.
    • (2006) Genome Biol , vol.7 , pp. 401
    • Dabney, A.R.1    Storey, J.D.2
  • 19
    • 2942513120 scopus 로고    scopus 로고
    • Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial
    • Izmirlian G (2004) Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial. Ann N Y Acad Sci 1020: 154-174.
    • (2004) Ann N Y Acad Sci , vol.1020 , pp. 154-174
    • Izmirlian, G.1
  • 20
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8: 25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Machine Learning 24: 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 22
    • 70349438778 scopus 로고    scopus 로고
    • Quinlan JR. Bagging, boosting, and C4.5; 1996. Meno Park: AAAI Press.
    • Quinlan JR. Bagging, boosting, and C4.5; 1996. Meno Park: AAAI Press.
  • 24
    • 35048900518 scopus 로고    scopus 로고
    • Application of Breiman's Random Forest to modeling structure-activity relationships of pharmaceutical molecules
    • Roli F, Kittler J, Windeatt T, eds, Cagliari, Italy. New York: Springer, pp
    • Svetnik V, Liaw A, Tong C, Wang T. Application of Breiman's Random Forest to modeling structure-activity relationships of pharmaceutical molecules. In: Roli F, Kittler J, Windeatt T, eds. June 2004: proceedings; Cagliari, Italy. New York: Springer, pp 334-343.
    • June 2004: Proceedings , pp. 334-343
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Wang, T.4
  • 25
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D, McMurray W, Mor G, et al. (2003) Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19: 1636-1643.
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5
  • 26
    • 33847665648 scopus 로고    scopus 로고
    • Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease
    • Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease. Ann Neurol 61: 120-129.
    • (2007) Ann Neurol , vol.61 , pp. 120-129
    • Finehout, E.J.1    Franck, Z.2    Choe, L.H.3    Relkin, N.4    Lee, K.H.5
  • 31
    • 27944460344 scopus 로고    scopus 로고
    • Using Generalized Estimating Equation to Learn Decision Tree with Multivariate Responses
    • Lee SK, Kang HK, Han ST, Kim KH (2005) Using Generalized Estimating Equation to Learn Decision Tree with Multivariate Responses. Data Mining and Knowledge Discovery 11: 273-293.
    • (2005) Data Mining and Knowledge Discovery , vol.11 , pp. 273-293
    • Lee, S.K.1    Kang, H.K.2    Han, S.T.3    Kim, K.H.4
  • 35
    • 0030190032 scopus 로고    scopus 로고
    • Technical Note: Some Properties of Splitting Criteria
    • Breiman L (1996) Technical Note: Some Properties of Splitting Criteria. Machine Learning 24: 41-47.
    • (1996) Machine Learning , vol.24 , pp. 41-47
    • Breiman, L.1
  • 36
    • 18744384734 scopus 로고    scopus 로고
    • Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum
    • Morris JS, Coombes KR, Koomen J, Baggerly KA, Kobayashi R (2005) Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21: 1764-1775.
    • (2005) Bioinformatics , vol.21 , pp. 1764-1775
    • Morris, J.S.1    Coombes, K.R.2    Koomen, J.3    Baggerly, K.A.4    Kobayashi, R.5
  • 37
    • 0142008803 scopus 로고    scopus 로고
    • A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection
    • Yasui Y, Pepe M, Thompson ML, Adam BL, Wright GL Jr, et al. (2003) A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4: 449-463.
    • (2003) Biostatistics , vol.4 , pp. 449-463
    • Yasui, Y.1    Pepe, M.2    Thompson, M.L.3    Adam, B.L.4    Wright Jr, G.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.