메뉴 건너뛰기




Volumn 44, Issue 1, 2012, Pages 3-13

Linking DNA replication to heterochromatin silencing and epigenetic inheritance

Author keywords

DNA replication; DNA replication coupled nucleosome assembly; epigenetic inheritance; heterochromatin silencing

Indexed keywords

CYCLINE; DNA DIRECTED DNA POLYMERASE; ORIGIN RECOGNITION COMPLEX;

EID: 84555204362     PISSN: 16729145     EISSN: 17457270     Source Type: Journal    
DOI: 10.1093/abbs/gmr107     Document Type: Review
Times cited : (18)

References (153)
  • 1
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997, 389: 251-260.
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 2
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li B, Carey M and Workman JL. The role of chromatin during transcription. Cell 2007, 128: 707-719.
    • (2007) Cell , vol.128 , pp. 707-719
    • Li, B.1    Carey, M.2    Workman, J.L.3
  • 3
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD and Allis CD. The language of covalent histone modifications. Nature 2000, 403: 41-45.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 4
    • 77949874234 scopus 로고    scopus 로고
    • Histone variants-ancient wrap artists of the epigenome
    • Talbert PB and Henikoff S. Histone variants-ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 2010, 11: 264-275.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 264-275
    • Talbert, P.B.1    Henikoff, S.2
  • 5
    • 79952535972 scopus 로고    scopus 로고
    • Regulation and function of DNA methylation in plants and animals
    • He XJ, Chen T and Zhu JK. Regulation and function of DNA methylation in plants and animals. Cell Res 2011, 21: 442-465.
    • (2011) Cell Res , vol.21 , pp. 442-465
    • He, X.J.1    Chen, T.2    Zhu, J.K.3
  • 6
    • 79956294973 scopus 로고    scopus 로고
    • DNA methylation and demethylation in mammals
    • Chen ZX and Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem 2011, 286: 18347-18353.
    • (2011) J Biol Chem , vol.286 , pp. 18347-18353
    • Chen, Z.X.1    Riggs, A.D.2
  • 7
    • 67649671961 scopus 로고    scopus 로고
    • Long noncoding RNAs: Functional surprises from the RNA world
    • Wilusz JE, Sunwoo H and Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009, 23: 1494-1504.
    • (2009) Genes Dev , vol.23 , pp. 1494-1504
    • Wilusz, J.E.1    Sunwoo, H.2    Spector, D.L.3
  • 8
    • 34250729138 scopus 로고    scopus 로고
    • Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs
    • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA and Goodnough LH, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007, 129: 1311-1323.
    • (2007) Cell , vol.129 , pp. 1311-1323
    • Rinn, J.L.1    Kertesz, M.2    Wang, J.K.3    Squazzo, S.L.4    Xu, X.5    Brugmann, S.A.6    Goodnough, L.H.7
  • 9
    • 33646239638 scopus 로고    scopus 로고
    • Histone H3 variants and their potential role in indexing mammalian genomes: The 'H3 barcode hypothesis'
    • Hake SB and Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the 'H3 barcode hypothesis'. Proc Natl Acad Sci USA 2006, 103: 6428-6435.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 6428-6435
    • Hake, S.B.1    Allis, C.D.2
  • 10
    • 37549049820 scopus 로고    scopus 로고
    • Regulation of replication fork progression through histone supply and demand
    • Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J and Almouzni G. Regulation of replication fork progression through histone supply and demand. Science 2007, 318: 1928-1931.
    • (2007) Science , vol.318 , pp. 1928-1931
    • Groth, A.1    Corpet, A.2    Cook, A.J.3    Roche, D.4    Bartek, J.5    Lukas, J.6    Almouzni, G.7
  • 11
    • 0018036390 scopus 로고
    • Assembly of newly replicated chromatin
    • Worcel A, Han S and Wong ML. Assembly of newly replicated chromatin. Cell 1978, 15: 969-977.
    • (1978) Cell , vol.15 , pp. 969-977
    • Worcel, A.1    Han, S.2    Wong, M.L.3
  • 12
    • 0037087587 scopus 로고    scopus 로고
    • The origin recognition complex: From simple origins to complex functions
    • Bell SP. The origin recognition complex: from simple origins to complex functions. Genes Dev 2002, 16: 659-672.
    • (2002) Genes Dev , vol.16 , pp. 659-672
    • Bell, S.P.1
  • 13
    • 0026607331 scopus 로고
    • ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex
    • Bell SP and Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 1992, 357: 128-134.
    • (1992) Nature , vol.357 , pp. 128-134
    • Bell, S.P.1    Stillman, B.2
  • 14
    • 70350751416 scopus 로고    scopus 로고
    • Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
    • Remus D, Beuron F, Tolun G, Griffith JD, Morris EP and Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009, 139: 719-730.
    • (2009) Cell , vol.139 , pp. 719-730
    • Remus, D.1    Beuron, F.2    Tolun, G.3    Griffith, J.D.4    Morris, E.P.5    Diffley, J.F.6
  • 15
    • 70549085855 scopus 로고    scopus 로고
    • Eukaryotic DNA replication control: Lock and load, then fire
    • Remus D and Diffley JF. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 2009, 21: 771-777.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 771-777
    • Remus, D.1    Diffley, J.F.2
  • 16
    • 0031663505 scopus 로고    scopus 로고
    • The DNA replication fork in eukaryotic cells
    • Waga S and Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem 1998, 67: 721-751.
    • (1998) Annu Rev Biochem , vol.67 , pp. 721-751
    • Waga, S.1    Stillman, B.2
  • 17
    • 84555213815 scopus 로고    scopus 로고
    • Blow JJ ed. Eukaryotic DNA Replication. IRL Press, Oxford, UK
    • Burgers PMJ. Enzymology of the replication fork. In: Blow JJ ed. Eukaryotic DNA Replication. IRL Press, Oxford, UK, 1996, 1-28.
    • (1996) Enzymology of the Replication Fork , pp. 1-28
    • Pmj, B.1
  • 19
    • 34249066085 scopus 로고    scopus 로고
    • PCNA, the maestro of the replication fork
    • Moldovan GL, Pfander B and Jentsch S. PCNA, the maestro of the replication fork. Cell 2007, 129: 665-679.
    • (2007) Cell , vol.129 , pp. 665-679
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 20
    • 0037636027 scopus 로고    scopus 로고
    • The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae
    • Rusche LN, Kirchmaier AL and Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 2003, 72: 481-516.
    • (2003) Annu Rev Biochem , vol.72 , pp. 481-516
    • Rusche, L.N.1    Kirchmaier, A.L.2    Rine, J.3
  • 21
    • 0032076121 scopus 로고    scopus 로고
    • Yeast heterochromatin: Regulation of its assembly and inheritance by histones
    • Grunstein M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 1998, 93: 325-328.
    • (1998) Cell , vol.93 , pp. 325-328
    • Grunstein, M.1
  • 22
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M and Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 24
    • 0025900189 scopus 로고
    • Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae
    • Aparicio OM, Billington BL and Gottschling DE. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 1991, 66: 1279-1287.
    • (1991) Cell , vol.66 , pp. 1279-1287
    • Aparicio, O.M.1    Billington, B.L.2    Gottschling, D.E.3
  • 25
    • 0023340731 scopus 로고
    • Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae
    • Rine J and Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987, 116: 9-22.
    • (1987) Genetics , vol.116 , pp. 9-22
    • Rine, J.1    Herskowitz, I.2
  • 26
    • 0037085264 scopus 로고    scopus 로고
    • Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3
    • Carmen AA, Milne L and Grunstein M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem 2002, 277: 4778-4781.
    • (2002) J Biol Chem , vol.277 , pp. 4778-4781
    • Carmen, A.A.1    Milne, L.2    Grunstein, M.3
  • 27
    • 19344377042 scopus 로고    scopus 로고
    • Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation
    • Liou GG, Tanny JC, Kruger RG, Walz T and Moazed D. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell 2005, 121: 515-527.
    • (2005) Cell , vol.121 , pp. 515-527
    • Liou, G.G.1    Tanny, J.C.2    Kruger, R.G.3    Walz, T.4    Moazed, D.5
  • 28
    • 0030951007 scopus 로고    scopus 로고
    • Silent information regulator protein complexes in Saccharomyces cerevisiae: A SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with
    • Moazed D, Kistler A, Axelrod A, Rine J and Johnson AD. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with, SIR3. Proc Natl Acad Sci USA 1997, 94: 2186-2191.
    • (1997) SIR3. Proc Natl Acad Sci USA , vol.94 , pp. 2186-2191
    • Moazed, D.1    Kistler, A.2    Axelrod, A.3    Rine, J.4    Johnson, A.D.5
  • 29
    • 0036261650 scopus 로고    scopus 로고
    • Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation
    • Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S, Gygi SP and Moazed D. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 2002, 22: 4167-4180.
    • (2002) Mol Cell Biol , vol.22 , pp. 4167-4180
    • Hoppe, G.J.1    Tanny, J.C.2    Rudner, A.D.3    Gerber, S.A.4    Danaie, S.5    Gygi, S.P.6    Moazed, D.7
  • 30
    • 0037097940 scopus 로고    scopus 로고
    • Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast
    • Luo K, Vega-Palas MA and Grunstein M. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 2002, 16: 1528-1539.
    • (2002) Genes Dev , vol.16 , pp. 1528-1539
    • Luo, K.1    Vega-Palas, M.A.2    Grunstein, M.3
  • 31
    • 0036843170 scopus 로고    scopus 로고
    • Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing
    • Kimura A, Umehara T and Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 2002, 32: 370-377.
    • (2002) Nat Genet , vol.32 , pp. 370-377
    • Kimura, A.1    Umehara, T.2    Horikoshi, M.3
  • 32
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
    • Suka N, Luo K and Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 2002, 32: 378-383.
    • (2002) Nat Genet , vol.32 , pp. 378-383
    • Suka, N.1    Luo, K.2    Grunstein, M.3
  • 33
    • 0035254535 scopus 로고    scopus 로고
    • RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae
    • Donze D and Kamakaka RT. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 2001, 20: 520-531.
    • (2001) EMBO J , vol.20 , pp. 520-531
    • Donze, D.1    Kamakaka, R.T.2
  • 34
    • 6344285337 scopus 로고    scopus 로고
    • A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast
    • Sadaie M, Iida T, Urano T and Nakayama J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J 2004, 23: 3825-3835.
    • (2004) EMBO J , vol.23 , pp. 3825-3835
    • Sadaie, M.1    Iida, T.2    Urano, T.3    Nakayama, J.4
  • 35
    • 63649152075 scopus 로고    scopus 로고
    • High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin
    • Schalch T, Job G, Noffsinger VJ, Shanker S, Kuscu C, Joshua-Tor L and Partridge JF. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol Cell 2009, 34: 36-46.
    • (2009) Mol Cell , vol.34 , pp. 36-46
    • Schalch, T.1    Job, G.2    Noffsinger, V.J.3    Shanker, S.4    Kuscu, C.5    Joshua-Tor, L.6    Partridge, J.F.7
  • 37
    • 10744230544 scopus 로고    scopus 로고
    • Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin
    • Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S and Chen T, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003, 13: 1192-1200.
    • (2003) Curr Biol , vol.13 , pp. 1192-1200
    • Lehnertz, B.1    Ueda, Y.2    Derijck, A.A.3    Braunschweig, U.4    Perez-Burgos, L.5    Kubicek, S.6    Chen, T.7
  • 38
    • 0034194376 scopus 로고    scopus 로고
    • Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis
    • Cowieson NP, Partridge JF, Allshire RC and McLaughlin PJ. Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol 2000, 10: 517-525.
    • (2000) Curr Biol , vol.10 , pp. 517-525
    • Cowieson, N.P.1    Partridge, J.F.2    Allshire, R.C.3    McLaughlin, P.J.4
  • 39
    • 0034599522 scopus 로고    scopus 로고
    • The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer
    • Brasher SV, Smith BO, Fogh RH, Nietlispach D, Thiru A, Nielsen PR and Broadhurst RW, et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J 2000, 19: 1587-1597.
    • (2000) EMBO J , vol.19 , pp. 1587-1597
    • Brasher, S.V.1    Smith, B.O.2    Fogh, R.H.3    Nietlispach, D.4    Thiru, A.5    Nielsen, P.R.6    Broadhurst, R.W.7
  • 40
    • 18844432121 scopus 로고    scopus 로고
    • The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain
    • Lechner MS, Schultz DC, Negorev D, Maul GG and Rauscher FJ, III. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem Biophys Res Commun 2005, 331: 929-937.
    • (2005) Biochem Biophys Res Commun , vol.331 , pp. 929-937
    • Lechner, M.S.1    Schultz, D.C.2    Negorev, D.3    Maul, G.G.4    Rauscher III, F.J.5
  • 41
    • 1942454496 scopus 로고    scopus 로고
    • Heterochromatin: Silence is golden
    • Elgin SC and Grewal SI. Heterochromatin: silence is golden. Curr Biol 2003, 13: R895-R898.
    • (2003) Curr Biol , vol.13
    • Elgin, S.C.1    Grewal, S.I.2
  • 42
    • 0028963089 scopus 로고
    • Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos
    • Kellum R, Raff JW and Alberts BM. Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. J Cell Sci 1995, 108: 1407-1418.
    • (1995) J Cell Sci , vol.108 , pp. 1407-1418
    • Kellum, R.1    Raff, J.W.2    Alberts, B.M.3
  • 43
    • 0024560286 scopus 로고
    • Characterization of mutations that enhance position-effect variegation in Drosophila melanogaster
    • Sinclair DA, Lloyd VK and Grigliatti TA. Characterization of mutations that enhance position-effect variegation in Drosophila melanogaster. Mol Gen Genet 1989, 216: 328-333.
    • (1989) Mol Gen Genet , vol.216 , pp. 328-333
    • Sinclair, D.A.1    Lloyd, V.K.2    Grigliatti, T.A.3
  • 44
    • 0024320630 scopus 로고
    • The genetics of position-effect variegation modifying loci in Drosophila melanogaster
    • Wustmann G, Szidonya J, Taubert H and Reuter G. The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol Gen Genet 1989, 217: 520-527.
    • (1989) Mol Gen Genet , vol.217 , pp. 520-527
    • Wustmann, G.1    Szidonya, J.2    Taubert, H.3    Reuter, G.4
  • 45
    • 0035282573 scopus 로고    scopus 로고
    • Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
    • Lachner M, O'Carroll D, Rea S, Mechtler K and Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410: 116-120.
    • (2001) Nature , vol.410 , pp. 116-120
    • Lachner, M.1    O'carroll, D.2    Rea, S.3    Mechtler, K.4    Jenuwein, T.5
  • 48
    • 0032871844 scopus 로고    scopus 로고
    • Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells
    • Minc E, Allory Y, Worman HJ, Courvalin JC and Buendia B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 1999, 108: 220-234.
    • (1999) Chromosoma , vol.108 , pp. 220-234
    • Minc, E.1    Allory, Y.2    Worman, H.J.3    Courvalin, J.C.4    Buendia, B.5
  • 49
    • 56549108407 scopus 로고    scopus 로고
    • Epigenetic regulation of centromeric chromatin: Old dogs
    • Allshire RC and Karpen GH. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 2008, 9: 923-937.
    • (2008) New Tricks? Nat Rev Genet , vol.9 , pp. 923-937
    • Allshire, R.C.1    Karpen, G.H.2
  • 50
    • 0037072661 scopus 로고    scopus 로고
    • Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi
    • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS and Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 2002, 297: 1833-1837.
    • (2002) Science , vol.297 , pp. 1833-1837
    • Volpe, T.A.1    Kidner, C.2    Hall, I.M.3    Teng, G.4    Sis, G.5    Martienssen, R.A.6
  • 51
    • 80052009948 scopus 로고    scopus 로고
    • Mechanisms for the inheritance of chromatin states
    • Moazed D. Mechanisms for the inheritance of chromatin states. Cell 2011, 146: 510-518.
    • (2011) Cell , vol.146 , pp. 510-518
    • Moazed, D.1
  • 53
    • 26944502707 scopus 로고    scopus 로고
    • RNAi-directed assembly of heterochromatin in fission yeast
    • Verdel A and Moazed D. RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett 2005, 579: 5872-5878.
    • (2005) FEBS Lett , vol.579 , pp. 5872-5878
    • Verdel, A.1    Moazed, D.2
  • 54
    • 23044498502 scopus 로고    scopus 로고
    • Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome
    • Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC and Grewal SI. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 2005, 37: 809-819.
    • (2005) Nat Genet , vol.37 , pp. 809-819
    • Cam, H.P.1    Sugiyama, T.2    Chen, E.S.3    Chen, X.4    Fitzgerald, P.C.5    Grewal, S.I.6
  • 55
    • 10644221797 scopus 로고    scopus 로고
    • RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing
    • Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S and Moazed D, et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 2004, 36: 1174-1180.
    • (2004) Nat Genet , vol.36 , pp. 1174-1180
    • Noma, K.1    Sugiyama, T.2    Cam, H.3    Verdel, A.4    Zofall, M.5    Jia, S.6    Moazed, D.7
  • 56
    • 10944248935 scopus 로고    scopus 로고
    • Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs
    • Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP and Moazed D. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 2004, 119: 789-802.
    • (2004) Cell , vol.119 , pp. 789-802
    • Motamedi, M.R.1    Verdel, A.2    Colmenares, S.U.3    Gerber, S.A.4    Gygi, S.P.5    Moazed, D.6
  • 57
    • 77955502831 scopus 로고    scopus 로고
    • The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation
    • Gerace EL, Halic M and Moazed D. The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation. Mol Cell 2010, 39: 360-372.
    • (2010) Mol Cell , vol.39 , pp. 360-372
    • Gerace, E.L.1    Halic, M.2    Moazed, D.3
  • 58
    • 77649105301 scopus 로고    scopus 로고
    • Stc1: A critical link between RNAi and chromatin modification required for heterochromatin integrity
    • Bayne EH, White SA, Kagansky A, Bijos DA, Sanchez-Pulido L, Hoe KL and Kim DU, et al. Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 2010, 140: 666-677.
    • (2010) Cell , vol.140 , pp. 666-677
    • Bayne, E.H.1    White, S.A.2    Kagansky, A.3    Bijos, D.A.4    Sanchez-Pulido, L.5    Hoe, K.L.6    Kim, D.U.7
  • 59
    • 0035951475 scopus 로고    scopus 로고
    • DNA replication-independent silencing in S.cerevisiae
    • Kirchmaier AL and Rine J. DNA replication-independent silencing in S.cerevisiae. Science 2001, 291: 646-650.
    • (2001) Science , vol.291 , pp. 646-650
    • Kirchmaier, A.L.1    Rine, J.2
  • 60
    • 0035951449 scopus 로고    scopus 로고
    • Establishment of transcriptional silencing in the absence of DNA replication
    • Li YC, Cheng TH and Gartenberg MR. Establishment of transcriptional silencing in the absence of DNA replication. Science 2001, 291: 650-653.
    • (2001) Science , vol.291 , pp. 650-653
    • Li, Y.C.1    Cheng, T.H.2    Gartenberg, M.R.3
  • 61
    • 0037009519 scopus 로고    scopus 로고
    • Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing
    • Zhang Z, Hayashi MK, Merkel O, Stillman B and Xu RM. Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. EMBO J 2002, 21: 4600-4611.
    • (2002) EMBO J , vol.21 , pp. 4600-4611
    • Zhang, Z.1    Hayashi, M.K.2    Merkel, O.3    Stillman, B.4    Xu, R.M.5
  • 62
    • 0029922959 scopus 로고    scopus 로고
    • Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing
    • Triolo T and Sternglanz R. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 1996, 381: 251-253.
    • (1996) Nature , vol.381 , pp. 251-253
    • Triolo, T.1    Sternglanz, R.2
  • 63
    • 0028832366 scopus 로고
    • The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing
    • Bell SP, Mitchell J, Leber J, Kobayashi R and Stillman B. The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 1995, 83: 563-568.
    • (1995) Cell , vol.83 , pp. 563-568
    • Bell, S.P.1    Mitchell, J.2    Leber, J.3    Kobayashi, R.4    Stillman, B.5
  • 64
    • 0027787870 scopus 로고
    • Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae
    • Foss M, McNally FJ, Laurenson P and Rine J. Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. Science 1993, 262: 1838-1844.
    • (1993) Science , vol.262 , pp. 1838-1844
    • Foss, M.1    McNally, F.J.2    Laurenson, P.3    Rine, J.4
  • 65
    • 0032513357 scopus 로고    scopus 로고
    • Roles for ORC in M phase and S phase
    • Dillin A and Rine J. Roles for ORC in M phase and S phase. Science 1998, 279: 1733-1737.
    • (1998) Science , vol.279 , pp. 1733-1737
    • Dillin, A.1    Rine, J.2
  • 66
    • 0028897908 scopus 로고
    • The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication
    • Fox CA, Loo S, Dillin A and Rine J. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev 1995, 9: 911-924.
    • (1995) Genes Dev , vol.9 , pp. 911-924
    • Fox, C.A.1    Loo, S.2    Dillin, A.3    Rine, J.4
  • 67
    • 1842682915 scopus 로고    scopus 로고
    • The NADp-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication
    • Pappas DL, Frisch R and Weinreich M. The NADp-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication. Genes Dev 2004, 18: 769-781.
    • (2004) Genes Dev , vol.18 , pp. 769-781
    • Pappas, D.L.1    Frisch, R.2    Weinreich, M.3
  • 68
    • 35448976515 scopus 로고    scopus 로고
    • Yeast two-hybrid analysis of the origin recognition complex of Saccharomyces cerevisiae: Interaction between subunits and identification of binding proteins
    • Matsuda K, Makise M, Sueyasu Y, Takehara M, Asano T and Mizushima T. Yeast two-hybrid analysis of the origin recognition complex of Saccharomyces cerevisiae: interaction between subunits and identification of binding proteins. FEMS Yeast Res 2007, 7: 1263-1269.
    • (2007) FEMS Yeast Res , vol.7 , pp. 1263-1269
    • Matsuda, K.1    Makise, M.2    Sueyasu, Y.3    Takehara, M.4    Asano, T.5    Mizushima, T.6
  • 69
    • 0030722744 scopus 로고    scopus 로고
    • Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes
    • Pak DT, Pflumm M, Chesnokov I, Huang DW, Kellum R, Marr J and Romanowski P, et al. Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 1997, 91: 311-323.
    • (1997) Cell , vol.91 , pp. 311-323
    • Pak, D.T.1    Pflumm, M.2    Chesnokov, I.3    Huang, D.W.4    Kellum, R.5    Marr, J.6    Romanowski, P.7
  • 70
    • 0032572558 scopus 로고    scopus 로고
    • Distinct cytoplasmic and nuclear fractions of Drosophila heterochromatin protein 1: Their phosphorylation levels and associations with origin recognition complex proteins
    • Huang DW, Fanti L, Pak DT, Botchan MR, Pimpinelli S and Kellum R. Distinct cytoplasmic and nuclear fractions of Drosophila heterochromatin protein 1: their phosphorylation levels and associations with origin recognition complex proteins. J Cell Biol 1998, 142: 307-318.
    • (1998) J Cell Biol , vol.142 , pp. 307-318
    • Huang, D.W.1    Fanti, L.2    Pak, D.T.3    Botchan, M.R.4    Pimpinelli, S.5    Kellum, R.6
  • 71
    • 0035158109 scopus 로고    scopus 로고
    • Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing
    • Shareef MM, King C, Damaj M, Badagu R, Huang DW and Kellum R. Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. Mol Biol Cell 2001, 12: 1671-1685.
    • (2001) Mol Biol Cell , vol.12 , pp. 1671-1685
    • Shareef, M.M.1    King, C.2    Damaj, M.3    Badagu, R.4    Huang, D.W.5    Kellum, R.6
  • 72
    • 3342926035 scopus 로고    scopus 로고
    • Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance
    • Prasanth SG, Prasanth KV, Siddiqui K, Spector DL and Stillman B. Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J 2004, 23: 2651-2663.
    • (2004) EMBO J , vol.23 , pp. 2651-2663
    • Prasanth, S.G.1    Prasanth, K.V.2    Siddiqui, K.3    Spector, D.L.4    Stillman, B.5
  • 73
    • 77957011803 scopus 로고    scopus 로고
    • Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization
    • Prasanth SG, Shen Z, Prasanth KV and Stillman B. Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci USA 2010, 107: 15093-15098.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 15093-15098
    • Prasanth, S.G.1    Shen, Z.2    Prasanth, K.V.3    Stillman, B.4
  • 76
  • 77
    • 77956643239 scopus 로고    scopus 로고
    • Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers
    • Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F and Lee KK, et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 2010, 142: 967-980.
    • (2010) Cell , vol.142 , pp. 967-980
    • Vermeulen, M.1    Eberl, H.C.2    Matarese, F.3    Marks, H.4    Denissov, S.5    Butter, F.6    Lee, K.K.7
  • 78
    • 0032731777 scopus 로고    scopus 로고
    • A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae
    • Ehrenhofer-Murray AE, Kamakaka RT and Rine J. A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 1999, 153: 1171-1182.
    • (1999) Genetics , vol.153 , pp. 1171-1182
    • Ehrenhofer-Murray, A.E.1    Kamakaka, R.T.2    Rine, J.3
  • 79
    • 79960389332 scopus 로고    scopus 로고
    • Coordination of DNA replication and histone modification by the Rik1-Dos2 complex
    • Li F, Martienssen R and Cande WZ. Coordination of DNA replication and histone modification by the Rik1-Dos2 complex. Nature 2011, 475: 244-248.
    • (2011) Nature , vol.475 , pp. 244-248
    • Li, F.1    Martienssen, R.2    Cande, W.Z.3
  • 80
    • 26944450776 scopus 로고    scopus 로고
    • A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation
    • Hong EJ, Villén J, Gerace EL, Gygi SP and Moazed D. A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochromatin formation. RNA Biol 2005, 2: 106-111.
    • (2005) RNA Biol , vol.2 , pp. 106-111
    • Hong, E.J.1    Villén, J.2    Gerace, E.L.3    Gygi, S.P.4    Moazed, D.5
  • 81
    • 23044504238 scopus 로고    scopus 로고
    • Cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation
    • Horn PJ, Bastie JN and Peterson CL. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev 2005, 19: 1705-1714.
    • (2005) Genes Dev , vol.19 , pp. 1705-1714
    • Horn, P.J.1    Bastie, J.N.2    Peterson, C.L.3    Rik-Associated, A.4
  • 82
    • 23944483515 scopus 로고    scopus 로고
    • Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification
    • Li F, Goto DB, Zaratiegui M, Tang X, Martienssen R and Cande WZ. Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification. Curr Biol 2005, 15: 1448-1457.
    • (2005) Curr Biol , vol.15 , pp. 1448-1457
    • Li, F.1    Goto, D.B.2    Zaratiegui, M.3    Tang, X.4    Martienssen, R.5    Cande, W.Z.6
  • 83
    • 0022966781 scopus 로고
    • An auxiliary protein for DNA polymerase-delta from fetal calf thymus
    • Tan CK, Castillo C, So AG and Downey KM. An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem 1986, 261: 12310-12316.
    • (1986) J Biol Chem , vol.261 , pp. 12310-12316
    • Tan, C.K.1    Castillo, C.2    So, A.G.3    Downey, K.M.4
  • 84
    • 0023091938 scopus 로고
    • Functional identity of proliferating cell nuclear antigen and a DNA polymerase-[delta] auxiliary protein
    • Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM and Stillman B. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-[delta] auxiliary protein. Nature 1987, 326: 517-520.
    • (1987) Nature , vol.326 , pp. 517-520
    • Prelich, G.1    Tan, C.K.2    Kostura, M.3    Mathews, M.B.4    So, A.G.5    Downey, K.M.6    Stillman, B.7
  • 85
    • 0034626734 scopus 로고    scopus 로고
    • PCNA connects DNA replication to epigenetic inheritance in yeast
    • Zhang Z, Shibahara K and Stillman B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 2000, 408: 221-225.
    • (2000) Nature , vol.408 , pp. 221-225
    • Zhang, Z.1    Shibahara, K.2    Stillman, B.3
  • 86
    • 0028345395 scopus 로고
    • Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA
    • Henderson DS, Banga SS, Grigliatti TA and Boyd JB. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J 1994, 13: 1450-1459.
    • (1994) EMBO J , vol.13 , pp. 1450-1459
    • Henderson, D.S.1    Banga, S.S.2    Grigliatti, T.A.3    Boyd, J.B.4
  • 87
    • 73349133725 scopus 로고    scopus 로고
    • The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents
    • Li Q, Fazly AM, Zhou H, Huang S, Zhang Z and Stillman B. The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents. PLoS Genet 2009, 5: e1000684.
    • (2009) PLoS Genet , vol.5
    • Li, Q.1    Fazly, A.M.2    Zhou, H.3    Huang, S.4    Zhang, Z.5    Stillman, B.6
  • 88
    • 48449105537 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3
    • Miller A, Yang B, Foster T and Kirchmaier AL. Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3. Genetics 2008, 179: 793-809.
    • (2008) Genetics , vol.179 , pp. 793-809
    • Miller, A.1    Yang, B.2    Foster, T.3    Kirchmaier, A.L.4
  • 89
    • 78049385736 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes
    • Miller A, Chen J, Takasuka TE, Jacobi JL, Kaufman PD, Irudayaraj JM and Kirchmaier AL. Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes. J Biol Chem 2010, 285: 35142-35154.
    • (2010) J Biol Chem , vol.285 , pp. 35142-35154
    • Miller, A.1    Chen, J.2    Takasuka, T.E.3    Jacobi, J.L.4    Kaufman, P.D.5    Irudayaraj, J.M.6    Kirchmaier, A.L.7
  • 90
    • 0030770835 scopus 로고    scopus 로고
    • Human DNA-(Cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1
    • Chuang LS, Ian HI, Koh TW, Ng HH, Xu G and Li BF. Human DNA-(Cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 1997, 277: 1996-2000.
    • (1997) Science , vol.277 , pp. 1996-2000
    • Chuang, L.S.1    Ian, H.I.2    Koh, T.W.3    Ng, H.H.4    Xu, G.5    Li, B.F.6
  • 91
    • 0036785210 scopus 로고    scopus 로고
    • PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA
    • Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C and Tsurimoto T. PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 2002, 7: 997-1007.
    • (2002) Genes Cells , vol.7 , pp. 997-1007
    • Iida, T.1    Suetake, I.2    Tajima, S.3    Morioka, H.4    Ohta, S.5    Obuse, C.6    Tsurimoto, T.7
  • 92
    • 45549087777 scopus 로고    scopus 로고
    • Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication
    • Huen MS, Sy SM, van Deursen JM and Chen J. Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem 2008, 283: 11073-11077.
    • (2008) J Biol Chem , vol.283 , pp. 11073-11077
    • Huen, M.S.1    Sy, S.M.2    Van Deursen, J.M.3    Chen, J.4
  • 94
    • 79952762476 scopus 로고    scopus 로고
    • Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation
    • Li Z, Nie F, Wang S and Li L. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci USA 2011, 108: 3116-3123.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 3116-3123
    • Li, Z.1    Nie, F.2    Wang, S.3    Li, L.4
  • 95
    • 0025966676 scopus 로고
    • A role for CDC7 in repression of transcription at the silent mating-type locus HMR in Saccharomyces cerevisiae
    • Axelrod A and Rine J. A role for CDC7 in repression of transcription at the silent mating-type locus HMR in Saccharomyces cerevisiae. Mol Cell Biol 1991, 11: 1080-1091.
    • (1991) Mol Cell Biol , vol.11 , pp. 1080-1091
    • Axelrod, A.1    Rine, J.2
  • 96
    • 0042347451 scopus 로고    scopus 로고
    • Evidence for a role of MCM (mini-chromosome maintenance) 5 in transcriptional repression of sub-telomeric and Ty-proximal genes in Saccharomyces cerevisiae
    • Dziak R, Leishman D, Radovic M, Tye BK and Yankulov K. Evidence for a role of MCM (mini-chromosome maintenance) 5 in transcriptional repression of sub-telomeric and Ty-proximal genes in Saccharomyces cerevisiae. J Biol Chem 2003, 278: 27372-27381.
    • (2003) J Biol Chem , vol.278 , pp. 27372-27381
    • Dziak, R.1    Leishman, D.2    Radovic, M.3    Tye, B.K.4    Yankulov, K.5
  • 97
    • 31544437149 scopus 로고    scopus 로고
    • Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae
    • Liachko I and Tye BK. Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae. Genetics 2005, 171: 503-515.
    • (2005) Genetics , vol.171 , pp. 503-515
    • Liachko, I.1    Tye, B.K.2
  • 98
    • 27944467201 scopus 로고    scopus 로고
    • Dual roles for MCM10 in DNA replication initiation and silencing at the mating-type loci
    • Douglas NL, Dozier SK and Donato JJ. Dual roles for MCM10 in DNA replication initiation and silencing at the mating-type loci. Mol Biol Rep 2005, 32: 197-204.
    • (2005) Mol Biol Rep , vol.32 , pp. 197-204
    • Douglas, N.L.1    Dozier, S.K.2    Donato, J.J.3
  • 99
    • 62449182536 scopus 로고    scopus 로고
    • Mcm10 mediates the interaction between DNA replication and silencing machineries
    • Liachko I and Tye BK. Mcm10 mediates the interaction between DNA replication and silencing machineries. Genetics 2009, 181: 379-391.
    • (2009) Genetics , vol.181 , pp. 379-391
    • Liachko, I.1    Tye, B.K.2
  • 100
    • 0038308585 scopus 로고    scopus 로고
    • Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation
    • Christensen TW and Tye BK. Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. Mol Biol Cell 2003, 14: 2206-2215.
    • (2003) Mol Biol Cell , vol.14 , pp. 2206-2215
    • Christensen, T.W.1    Tye, B.K.2
  • 101
    • 79551547443 scopus 로고    scopus 로고
    • Replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: Region specific effects and replication timing in the centromere
    • Li PC, Chretien L, Côté J, Kelly TJ and Forsburg SL. S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle 2011, 10: 323-336.
    • (2011) Cell Cycle , vol.10 , pp. 323-336
    • Li, P.C.1    Chretien, L.2    Côté, J.3    Kelly, T.J.4    Forsburg, S.L.5    Pombe, S.6
  • 102
    • 33748590811 scopus 로고    scopus 로고
    • Interaction between HP1a and replication proteins in mammalian cells
    • Auth T, Kunkel E and Grummt F. Interaction between HP1a and replication proteins in mammalian cells. Exp Cell Res 2006, 312: 3349-3359.
    • (2006) Exp Cell Res , vol.312 , pp. 3349-3359
    • Auth, T.1    Kunkel, E.2    Grummt, F.3
  • 103
    • 0022519177 scopus 로고
    • Chromatin assembly during SV40 DNA replication in vitro
    • Stillman B. Chromatin assembly during SV40 DNA replication in vitro. Cell 1986, 45: 555-565.
    • (1986) Cell , vol.45 , pp. 555-565
    • Stillman, B.1
  • 104
    • 0017739173 scopus 로고
    • Electron microscopic analysis of chromatin replication in the cellular blastoderm drosophila melanogaster embryo
    • McKnight SL and Miller OL. Electron microscopic analysis of chromatin replication in the cellular blastoderm drosophila melanogaster embryo. Cell 1977, 12: 795-804.
    • (1977) Cell , vol.12 , pp. 795-804
    • McKnight, S.L.1    Miller, O.L.2
  • 105
    • 0024044232 scopus 로고
    • Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae
    • Kim UJ, Han M, Kayne P and Grunstein M. Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. EMBO J 1988, 7: 2211-2219.
    • (1988) EMBO J , vol.7 , pp. 2211-2219
    • Kim, U.J.1    Han, M.2    Kayne, P.3    Grunstein, M.4
  • 106
    • 0034659231 scopus 로고    scopus 로고
    • De novo nucleosome assembly: New pieces in an old puzzle
    • Verreault A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev 2000, 14: 1430-1438.
    • (2000) Genes Dev , vol.14 , pp. 1430-1438
    • Verreault, A.1
  • 107
    • 77950462427 scopus 로고    scopus 로고
    • Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly
    • Xu M, Long C, Chen X, Huang C, Chen S and Zhu B. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 2010, 328: 94-98.
    • (2010) Science , vol.328 , pp. 94-98
    • Xu, M.1    Long, C.2    Chen, X.3    Huang, C.4    Chen, S.5    Zhu, B.6
  • 108
    • 0024372060 scopus 로고
    • Purification and characterization of CAF-I, ahuman cell factor required for chromatin assembly during DNA replication in vitro
    • Smith S and Stillman B. Purification and characterization of CAF-I, ahuman cell factor required for chromatin assembly during DNA replication in vitro. Cell 1989, 58: 15-25.
    • (1989) Cell , vol.58 , pp. 15-25
    • Smith, S.1    Stillman, B.2
  • 109
    • 0030696045 scopus 로고    scopus 로고
    • The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres
    • Monson EK, de Bruin D and Zakian VA. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci 1997, 94: 13081-13086.
    • (1997) Proc Natl Acad Sci , vol.94 , pp. 13081-13086
    • Monson, E.K.1    De Bruin, D.2    Zakian, V.A.3
  • 110
    • 0035901504 scopus 로고    scopus 로고
    • Dimerization of the largest subunit of chromatin assembly factor 1: Importance in vitro and during Xenopus early development
    • Quivy JP, Grandi P and Almouzni G. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 2001, 20: 2015-2027.
    • (2001) EMBO J , vol.20 , pp. 2015-2027
    • Quivy, J.P.1    Grandi, P.2    Almouzni, G.3
  • 111
    • 33645851343 scopus 로고    scopus 로고
    • Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis
    • Ono T, Kaya H, Takeda S, Abe M, Ogawa Y, Kato M and Kakutani T, et al. Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells 2006, 11: 153-162.
    • (2006) Genes Cells , vol.11 , pp. 153-162
    • Ono, T.1    Kaya, H.2    Takeda, S.3    Abe, M.4    Ogawa, Y.5    Kato, M.6    Kakutani, T.7
  • 113
    • 77956006048 scopus 로고    scopus 로고
    • Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability
    • Huang H, Yu Z, Zhang S, Liang X, Chen J, Li C and Ma J, et al. Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J Cell Sci 2010, 123: 2853-2861.
    • (2010) J Cell Sci , vol.123 , pp. 2853-2861
    • Huang, H.1    Yu, Z.2    Zhang, S.3    Liang, X.4    Chen, J.5    Li, C.6    Ma, J.7
  • 114
    • 0031049284 scopus 로고    scopus 로고
    • RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo
    • Enomoto S, McCune-Zierath PD, Gerami-Nejad M, Sanders MA and Berman J. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev 1997, 11: 358-370.
    • (1997) Genes Dev , vol.11 , pp. 358-370
    • Enomoto, S.1    McCune-Zierath, P.D.2    Gerami-Nejad, M.3    Sanders, M.A.4    Berman, J.5
  • 115
    • 0031043134 scopus 로고    scopus 로고
    • Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I
    • Kaufman PD, Kobayashi R and Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 1997, 11: 345-357.
    • (1997) Genes Dev , vol.11 , pp. 345-357
    • Kaufman, P.D.1    Kobayashi, R.2    Stillman, B.3
  • 116
    • 58149153075 scopus 로고    scopus 로고
    • Fission yeast chromatin assembly factor 1 assists in the replicationcoupled maintenance of heterochromatin
    • Dohke K, Miyazaki S, Tanaka K, Urano T, Grewal SIS and Murakami Y. Fission yeast chromatin assembly factor 1 assists in the replicationcoupled maintenance of heterochromatin. Genes Cells 2008, 13: 1027-1043.
    • (2008) Genes Cells , vol.13 , pp. 1027-1043
    • Dohke, K.1    Miyazaki, S.2    Tanaka, K.3    Urano, T.4    Sis, G.5    Murakami, Y.6
  • 117
    • 35348960506 scopus 로고    scopus 로고
    • CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory
    • Song Y, He F, Xie G, Guo X, Xu Y, Chen Y and Liang X, et al. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev Biol 2007, 311: 213-222.
    • (2007) Dev Biol , vol.311 , pp. 213-222
    • Song, Y.1    He, F.2    Xie, G.3    Guo, X.4    Xu, Y.5    Chen, Y.6    Liang, X.7
  • 118
    • 34247626968 scopus 로고    scopus 로고
    • A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing
    • Huang S, Zhou H, Tarara J and Zhang Z. A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing. EMBO J 2007, 26: 2274-2283.
    • (2007) EMBO J , vol.26 , pp. 2274-2283
    • Huang, S.1    Zhou, H.2    Tarara, J.3    Zhang, Z.4
  • 119
    • 4344685735 scopus 로고    scopus 로고
    • Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly
    • Sarraf SA and Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 2004, 15: 595-605.
    • (2004) Mol Cell , vol.15 , pp. 595-605
    • Sarraf, S.A.1    Stancheva, I.2
  • 120
    • 67650096728 scopus 로고    scopus 로고
    • The HP1[alpha] -CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin
    • Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A and Nakatani Y, et al. The HP1[alpha]-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 2009, 10: 769-775.
    • (2009) EMBO Rep , vol.10 , pp. 769-775
    • Loyola, A.1    Tagami, H.2    Bonaldi, T.3    Roche, D.4    Quivy, J.P.5    Imhof, A.6    Nakatani, Y.7
  • 121
    • 0030862060 scopus 로고    scopus 로고
    • Two new S-phase-specific genes from Saccharomyces cerevisiae
    • Le S, Davis C, Konopka JB and Sternglanz R. Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 1997, 13: 1029-1042.
    • (1997) Yeast , vol.13 , pp. 1029-1042
    • Le Davis, S.C.1    Konopka, J.B.2    Sternglanz, R.3
  • 124
    • 78650754693 scopus 로고    scopus 로고
    • Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci
    • Yamane K, Mizuguchi T, Cui B, Zofall M, Noma K and Grewal SI. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol Cell 2011, 41: 56-66.
    • (2011) Mol Cell , vol.41 , pp. 56-66
    • Yamane, K.1    Mizuguchi, T.2    Cui, B.3    Zofall, M.4    Noma, K.5    Grewal, S.I.6
  • 125
    • 74549138158 scopus 로고    scopus 로고
    • Chaperoning histones during DNA replication and repair
    • Ransom M, Dennehey BK and Tyler JK. Chaperoning histones during DNA replication and repair. Cell 2010, 140: 183-195.
    • (2010) Cell , vol.140 , pp. 183-195
    • Ransom, M.1    Dennehey, B.K.2    Tyler, J.K.3
  • 126
    • 33646850048 scopus 로고    scopus 로고
    • Hip3 interacts with the HIRA proteins Hip1 and Slm9 and is required for transcriptional silencing and accurate chromosome segregation
    • Greenall A, Williams ES, Martin KA, Palmer JM, Gray J, Liu C and Whitehall SK. Hip3 interacts with the HIRA proteins Hip1 and Slm9 and is required for transcriptional silencing and accurate chromosome segregation. J Biol Chem 2006, 281: 8732-8739.
    • (2006) J Biol Chem , vol.281 , pp. 8732-8739
    • Greenall, A.1    Williams, E.S.2    Martin, K.A.3    Palmer, J.M.4    Gray, J.5    Liu, C.6    Whitehall, S.K.7
  • 127
    • 0031858054 scopus 로고    scopus 로고
    • Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor i
    • Kaufman PD, Cohen JL and Osley MA. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol Cell Biol 1998, 18: 4793-4806.
    • (1998) Mol Cell Biol , vol.18 , pp. 4793-4806
    • Kaufman, P.D.1    Cohen, J.L.2    Osley, M.A.3
  • 128
    • 0035799281 scopus 로고    scopus 로고
    • Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing
    • Sharp JA, Fouts ET, Krawitz DC and Kaufman PD. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 2001, 11: 463-473.
    • (2001) Curr Biol , vol.11 , pp. 463-473
    • Sharp, J.A.1    Fouts, E.T.2    Krawitz, D.C.3    Kaufman, P.D.4
  • 129
    • 34147143631 scopus 로고    scopus 로고
    • Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci
    • Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P and Adams PD. Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007, 27: 2452-2465.
    • (2007) Mol Cell Biol , vol.27 , pp. 2452-2465
    • Ye, X.1    Zerlanko, B.2    Zhang, R.3    Somaiah, N.4    Lipinski, M.5    Salomoni, P.6    Adams, P.D.7
  • 131
    • 0031985051 scopus 로고    scopus 로고
    • Chromatin assembly factor i contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci
    • Enomoto S and Berman J. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 1998, 12: 219-232.
    • (1998) Genes Dev , vol.12 , pp. 219-232
    • Enomoto, S.1    Berman, J.2
  • 132
    • 33644702025 scopus 로고    scopus 로고
    • Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair
    • Zhou H, Madden BJ, Muddiman DC and Zhang Z. Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair. Biochemistry 2006, 45: 2852-2861.
    • (2006) Biochemistry , vol.45 , pp. 2852-2861
    • Zhou, H.1    Madden, B.J.2    Muddiman, D.C.3    Zhang, Z.4
  • 133
    • 77950465846 scopus 로고    scopus 로고
    • Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing
    • Liu Y, Huang H, Zhou BO, Wang SS, Hu Y, Li X and Liu J, et al. Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing. J Biol Chem 2010, 285: 4251-4262.
    • (2010) J Biol Chem , vol.285 , pp. 4251-4262
    • Liu, Y.1    Huang, H.2    Zhou, B.O.3    Wang, S.S.4    Hu, Y.5    Li, X.6    Liu, J.7
  • 134
    • 77953955724 scopus 로고    scopus 로고
    • The deathassociated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3
    • Drane P, Ouararhni K, Depaux A, Shuaib M and Hamiche A. The deathassociated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010, 24: 1253-1265.
    • (2010) Genes Dev , vol.24 , pp. 1253-1265
    • Drane, P.1    Ouararhni, K.2    Depaux, A.3    Shuaib, M.4    Hamiche, A.5
  • 135
    • 77956282773 scopus 로고    scopus 로고
    • Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres
    • Lewis PW, Elsaesser SJ, Noh KM, Stadler SC and Allis CD. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication- independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 2010, 107: 14075-14080.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 14075-14080
    • Lewis, P.W.1    Elsaesser, S.J.2    Noh, K.M.3    Stadler, S.C.4    Allis, C.D.5
  • 139
    • 0034657420 scopus 로고    scopus 로고
    • The Something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAFII30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex
    • John S, Howe L, Tafrov ST, Grant PA, Sternglanz R and Workman JL. The Something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAFII30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 2000, 14: 1196-1208.
    • (2000) Genes Dev , vol.14 , pp. 1196-1208
    • John, S.1    Howe, L.2    Tafrov, S.T.3    Grant, P.A.4    Sternglanz, R.5    Workman, J.L.6
  • 141
  • 142
    • 77957662160 scopus 로고    scopus 로고
    • Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II
    • Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM and Workman JL. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev 2010, 24: 2133-2145.
    • (2010) Genes Dev , vol.24 , pp. 2133-2145
    • Kwon, S.H.1    Florens, L.2    Swanson, S.K.3    Washburn, M.P.4    Abmayr, S.M.5    Workman, J.L.6
  • 143
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier CR and Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009, 78: 273-304.
    • (2009) Annu Rev Biochem , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 144
  • 145
    • 0024388774 scopus 로고
    • The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription
    • Fassler JS and Winston F. The Saccharomyces cerevisiae SPT13/GAL11 gene has both positive and negative regulatory roles in transcription. Mol Cell Biol 1989, 9: 5602-5609.
    • (1989) Mol Cell Biol , vol.9 , pp. 5602-5609
    • Fassler, J.S.1    Winston, F.2
  • 146
    • 4444257692 scopus 로고    scopus 로고
    • The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae
    • Dror V and Winston F. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol Cell Biol 2004, 24: 8227-8235.
    • (2004) Mol Cell Biol , vol.24 , pp. 8227-8235
    • Dror, V.1    Winston, F.2
  • 148
    • 79954580913 scopus 로고    scopus 로고
    • Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure
    • Yu Q, Zhang X and Bi X. Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure. J Biol Chem 2011, 286: 14659-14669.
    • (2011) J Biol Chem , vol.286 , pp. 14659-14669
    • Yu, Q.1    Zhang, X.2    Bi, X.3
  • 149
    • 77952025217 scopus 로고    scopus 로고
    • Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo
    • Emelyanov AV, Konev AY, Vershilova E and Fyodorov DV. Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo. J Biol Chem 2010, 285: 15027-15037.
    • (2010) J Biol Chem , vol.285 , pp. 15027-15037
    • Emelyanov, A.V.1    Konev, A.Y.2    Vershilova, E.3    Fyodorov, D.V.4
  • 151
    • 77954490394 scopus 로고    scopus 로고
    • New chaps in the histone chaperone arena
    • Campos EI and Reinberg D. New chaps in the histone chaperone arena. Genes Dev 2010, 24: 1334-1338.
    • (2010) Genes Dev , vol.24 , pp. 1334-1338
    • Campos, E.I.1    Reinberg, D.2
  • 152
    • 77949678340 scopus 로고    scopus 로고
    • Chromatin structure and the inheritance of epigenetic information
    • Margueron Rl and Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 2010, 11: 285-296.
    • (2010) Nat Rev Genet , vol.11 , pp. 285-296
    • Rl, M.1    Reinberg, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.