메뉴 건너뛰기




Volumn 1824, Issue 2, 2012, Pages 339-349

Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold

Author keywords

Aspartate aminotransferase; Protein engineering; Pyridoxal 5 phosphate

Indexed keywords

ASPARTATE AMINOTRANSFERASE; ASPARTIC ACID; CARBOXYLIC ACID; CYSTEINE; CYSTEINE SULFINATE DESULFINASE; ENZYME; PYRIDOXAL 5 PHOSPHATE; PYRIDOXAMINE PHOSPHATE; TYROSINE; UNCLASSIFIED DRUG;

EID: 83455235662     PISSN: 15709639     EISSN: 18781454     Source Type: Journal    
DOI: 10.1016/j.bbapap.2011.10.016     Document Type: Article
Times cited : (15)

References (70)
  • 1
    • 79953864232 scopus 로고    scopus 로고
    • Mechanistic and structural insights into the regioselectivity of an acyl-CoA fatty acid desaturase via directed molecular evolution
    • T. Vanhercke, P. Shrestha, A.G. Green, and S.P. Singh Mechanistic and structural insights into the regioselectivity of an acyl-CoA fatty acid desaturase via directed molecular evolution J. Biol. Chem. 286 2011 12860 12869
    • (2011) J. Biol. Chem. , vol.286 , pp. 12860-12869
    • Vanhercke, T.1    Shrestha, P.2    Green, A.G.3    Singh, S.P.4
  • 4
    • 0025019734 scopus 로고
    • Redesign of the coenzyme specificity of a dehydrogenase by protein engineering
    • N.S. Scrutton, A. Berry, and R.N. Perham Redesign of the coenzyme specificity of a dehydrogenase by protein engineering Nature 343 1990 38 43
    • (1990) Nature , vol.343 , pp. 38-43
    • Scrutton, N.S.1    Berry, A.2    Perham, R.N.3
  • 5
    • 0025787080 scopus 로고
    • Redox enzyme engineering: Conversion of human glutathione reductase into a trypanothione reductase
    • M. Bradley, U.S. Bucheler, and C.T. Walsh Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase Biochemistry 30 1991 6124 6127
    • (1991) Biochemistry , vol.30 , pp. 6124-6127
    • Bradley, M.1    Bucheler, U.S.2    Walsh, C.T.3
  • 6
    • 0026520387 scopus 로고
    • Converting trypsin to chymotrypsin: The role of surface loops
    • L. Hedstrom, L. Szilagyi, and W.J. Rutter Converting trypsin to chymotrypsin: the role of surface loops Science 255 1992 1249 1253
    • (1992) Science , vol.255 , pp. 1249-1253
    • Hedstrom, L.1    Szilagyi, L.2    Rutter, W.J.3
  • 7
    • 0029079958 scopus 로고
    • Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis
    • J.J. Onuffer, and J.F. Kirsch Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis Protein Sci. 4 1995 1750 1757
    • (1995) Protein Sci. , vol.4 , pp. 1750-1757
    • Onuffer, J.J.1    Kirsch, J.F.2
  • 8
    • 0030220851 scopus 로고    scopus 로고
    • Engineering new functions and altering existing functions
    • DOI 10.1016/S0959-440X(96)80117-5
    • Z. Shao, and F.H. Arnold Engineering new functions and altering existing functions Curr. Opin. Struct. Biol. 6 1996 513 518 (Pubitemid 26315846)
    • (1996) Current Opinion in Structural Biology , vol.6 , Issue.4 , pp. 513-518
    • Shao, Z.1    Arnold, F.H.2
  • 10
    • 0033555932 scopus 로고    scopus 로고
    • Conversion of tyrosine phenol-lyase to dicarboxylic amino acid beta-lyase, an enzyme not found in nature
    • B. Mouratou, P. Kasper, H. Gehring, and P. Christen Conversion of tyrosine phenol-lyase to dicarboxylic amino acid beta-lyase, an enzyme not found in nature J. Biol. Chem. 274 1999 1320 1325
    • (1999) J. Biol. Chem. , vol.274 , pp. 1320-1325
    • Mouratou, B.1    Kasper, P.2    Gehring, H.3    Christen, P.4
  • 11
    • 0033593453 scopus 로고    scopus 로고
    • Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues
    • S. Oue, A. Okamoto, T. Yano, and H. Kagamiyama Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues J. Biol. Chem. 274 1999 2344 2349
    • (1999) J. Biol. Chem. , vol.274 , pp. 2344-2349
    • Oue, S.1    Okamoto, A.2    Yano, T.3    Kagamiyama, H.4
  • 12
    • 9744235147 scopus 로고    scopus 로고
    • Reaction specificity in pyridoxal phosphate enzymes
    • DOI 10.1016/j.abb.2004.09.037, PII S0003986104005338
    • M.D. Toney Reaction specificity in pyridoxal phosphate enzymes Arch. Biochem. Biophys. 433 2005 279 287 (Pubitemid 39586598)
    • (2005) Archives of Biochemistry and Biophysics , vol.433 , Issue.1 , pp. 279-287
    • Toney, M.D.1
  • 13
    • 67049119446 scopus 로고    scopus 로고
    • Two site-directed mutations are required for the conversion of a sugar dehydratase into an aminotransferase
    • P.D. Cook, R.L. Kubiak, D.P. Toomey, and H.M. Holden Two site-directed mutations are required for the conversion of a sugar dehydratase into an aminotransferase Biochemistry 48 2009 5246 5253
    • (2009) Biochemistry , vol.48 , pp. 5246-5253
    • Cook, P.D.1    Kubiak, R.L.2    Toomey, D.P.3    Holden, H.M.4
  • 16
    • 0035471134 scopus 로고    scopus 로고
    • Enzyme redesign
    • DOI 10.1021/cr000049n
    • T.M. Penning, and J.M. Jez Enzyme redesign Chem. Rev. 101 2001 3027 3046 (Pubitemid 35377811)
    • (2001) Chemical Reviews , vol.101 , Issue.10 , pp. 3027-3046
    • Penning, T.M.1    Jez, J.M.2
  • 17
    • 25844525807 scopus 로고    scopus 로고
    • Improving the catalytic activity of Candida antarctica lipase B by circular permutation
    • DOI 10.1021/ja053932h
    • Z. Qian, and S. Lutz Improving the catalytic activity of Candida antarctica lipase B by circular permutation J. Am. Chem. Soc. 127 2005 13466 13467 (Pubitemid 41401178)
    • (2005) Journal of the American Chemical Society , vol.127 , Issue.39 , pp. 13466-13467
    • Qian, Z.1    Lutz, S.2
  • 18
    • 0343192493 scopus 로고    scopus 로고
    • Tailoring new enzyme functions by rational redesign
    • DOI 10.1016/S0959-440X(00)00106-8
    • F. Cedrone, A. Menez, and E. Quemeneur Tailoring new enzyme functions by rational redesign Curr. Opin. Struct. Biol. 10 2000 405 410 (Pubitemid 30496792)
    • (2000) Current Opinion in Structural Biology , vol.10 , Issue.4 , pp. 405-410
    • Cedrone, F.1    Menez, A.2    Quemeneur, E.3
  • 19
    • 70349255505 scopus 로고    scopus 로고
    • Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation
    • Z. Qian, J.R. Horton, X. Cheng, and S. Lutz Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation J. Mol. Biol. 393 2009 191 201
    • (2009) J. Mol. Biol. , vol.393 , pp. 191-201
    • Qian, Z.1    Horton, J.R.2    Cheng, X.3    Lutz, S.4
  • 20
    • 77954832316 scopus 로고    scopus 로고
    • Redesign of cosubstrate specificity and identification of important residues for substrate binding to hChAT
    • K.D. Green, V.R. Porter, Y. Zhang, and S. Garneau-Tsodikova Redesign of cosubstrate specificity and identification of important residues for substrate binding to hChAT Biochemistry 49 2010 6219 6227
    • (2010) Biochemistry , vol.49 , pp. 6219-6227
    • Green, K.D.1    Porter, V.R.2    Zhang, Y.3    Garneau-Tsodikova, S.4
  • 21
    • 77953243269 scopus 로고    scopus 로고
    • Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: Mannosyl binding promoted at subsite - 2 and demoted at subsite - 3
    • O. Hekmat, L. Lo Leggio, A. Rosengren, J. Kamarauskaite, K. Kolenova, and H. Stalbrand Rational engineering of mannosyl binding in the distal glycone subsites of Cellulomonas fimi endo-beta-1,4-mannanase: mannosyl binding promoted at subsite - 2 and demoted at subsite - 3 Biochemistry 49 2010 4884 4896
    • (2010) Biochemistry , vol.49 , pp. 4884-4896
    • Hekmat, O.1    Lo Leggio, L.2    Rosengren, A.3    Kamarauskaite, J.4    Kolenova, K.5    Stalbrand, H.6
  • 22
    • 0033649909 scopus 로고    scopus 로고
    • The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes
    • P.K. Mehta, and P. Christen The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes Adv Enzymol Relat Areas Mol Biol 74 2000 129 184
    • (2000) Adv Enzymol Relat Areas Mol Biol , vol.74 , pp. 129-184
    • Mehta, P.K.1    Christen, P.2
  • 23
    • 46649116753 scopus 로고    scopus 로고
    • Molecular evolution of B6 enzymes: Binding of pyridoxal-5′- phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme
    • R.A. Vacca, S. Giannattasio, G. Capitani, E. Marra, and P. Christen Molecular evolution of B6 enzymes: binding of pyridoxal-5′-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme BMC Biochem. 9 2008 17
    • (2008) BMC Biochem. , vol.9 , pp. 17
    • Vacca, R.A.1    Giannattasio, S.2    Capitani, G.3    Marra, E.4    Christen, P.5
  • 24
    • 0033615621 scopus 로고    scopus 로고
    • Conversion of aspartate aminotransferase into an L-aspartate beta-decarboxylase by a triple active-site mutation
    • R. Graber, P. Kasper, V.N. Malashkevich, P. Strop, H. Gehring, J.N. Jansonius, and P. Christen Conversion of aspartate aminotransferase into an L-aspartate beta-decarboxylase by a triple active-site mutation J. Biol. Chem. 274 1999 31203 31208
    • (1999) J. Biol. Chem. , vol.274 , pp. 31203-31208
    • Graber, R.1    Kasper, P.2    Malashkevich, V.N.3    Strop, P.4    Gehring, H.5    Jansonius, J.N.6    Christen, P.7
  • 25
    • 3943113663 scopus 로고    scopus 로고
    • Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations
    • DOI 10.1146/annurev.biochem.73.011303.074021
    • A.C. Eliot, and J.F. Kirsch Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations Annu. Rev. Biochem. 73 2004 383 415 (Pubitemid 39050374)
    • (2004) Annual Review of Biochemistry , vol.73 , pp. 383-415
    • Eliot, A.C.1    Kirsch, J.F.2
  • 26
    • 34548678883 scopus 로고    scopus 로고
    • Inactivation of Escherichia coli L-aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-thiophenecarboxylic acid reveals "A tale of two mechanisms"
    • DOI 10.1021/bi700663n
    • D. Liu, E. Pozharski, B.W. Lepore, M. Fu, R.B. Silverman, G.A. Petsko, and D. Ringe Inactivation of Escherichia coli L-aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-thiophenecarboxylic acid reveals "a tale of two mechanisms" Biochemistry 46 2007 10517 10527 (Pubitemid 47417247)
    • (2007) Biochemistry , vol.46 , Issue.37 , pp. 10517-10527
    • Liu, D.1    Pozharski, E.2    Lepore, B.W.3    Fu, M.4    Silverman, R.B.5    Petsko, G.A.6    Ringe, D.7
  • 27
    • 4944240750 scopus 로고    scopus 로고
    • Narrowing substrate specificity in a directly evolved enzyme: The A293D mutant of aspartate aminotransferase
    • DOI 10.1021/bi0487544
    • M.A. Chow, K.E. McElroy, K.D. Corbett, J.M. Berger, and J.F. Kirsch Narrowing substrate specificity in a directly evolved enzyme: the A293D mutant of aspartate aminotransferase Biochemistry 43 2004 12780 12787 (Pubitemid 39331797)
    • (2004) Biochemistry , vol.43 , Issue.40 , pp. 12780-12787
    • Chow, M.A.1    McElroy, K.E.2    Corbett, K.D.3    Berger, J.M.4    Kirsch, J.F.5
  • 29
    • 0030822630 scopus 로고    scopus 로고
    • Active-site Arg > Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase
    • DOI 10.1074/jbc.272.35.21932
    • R.A. Vacca, S. Giannattasio, R. Graber, E. Sandmeier, E. Marra, and P. Christen Active-site Arg -> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase J. Biol. Chem. 272 1997 21932 21937 (Pubitemid 27382812)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.35 , pp. 21932-21937
    • Vacca, R.A.1    Giannattasio, S.2    Graber, R.3    Sandmeier, E.4    Marra, E.5    Christen, P.6
  • 30
    • 0037470619 scopus 로고    scopus 로고
    • How does an enzyme evolved in vitro compare to naturally occurring homologs possessing the targeted function? Tyrosine aminotransferase from aspartate aminotransferase
    • DOI 10.1016/S0022-2836(03)00095-0
    • S.C. Rothman, and J.F. Kirsch How does an enzyme evolved in vitro compare to naturally occurring homologs possessing the targeted function? Tyrosine aminotransferase from aspartate aminotransferase J. Mol. Biol. 327 2003 593 608 (Pubitemid 36299066)
    • (2003) Journal of Molecular Biology , vol.327 , Issue.3 , pp. 593-608
    • Rothman, S.C.1    Kirsch, J.F.2
  • 31
    • 0029111444 scopus 로고
    • The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases
    • J.J. Onuffer, B.T. Ton, I. Klement, and J.F. Kirsch The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases Protein Sci. 4 1995 1743 1749
    • (1995) Protein Sci. , vol.4 , pp. 1743-1749
    • Onuffer, J.J.1    Ton, B.T.2    Klement, I.3    Kirsch, J.F.4
  • 32
    • 0028044574 scopus 로고
    • Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific α, β and γ families
    • F.W. Alexander, E. Sandmeier, P.K. Mehta, and P. Christen Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families Eur. J. Biochem. 219 1994 953 960 (Pubitemid 24050965)
    • (1994) European Journal of Biochemistry , vol.219 , Issue.3 , pp. 953-960
    • Alexander, F.W.1    Sandmeier, E.2    Mehta, P.K.3    Christen, P.4
  • 33
    • 0142186241 scopus 로고    scopus 로고
    • A genomic overview of pyridoxal-phosphate-dependent enzymes
    • DOI 10.1038/sj.embor.embor914
    • R. Percudani, and A. Peracchi A genomic overview of pyridoxal-phosphate- dependent enzymes EMBO Rep 4 2003 850 854 (Pubitemid 37304400)
    • (2003) EMBO Reports , vol.4 , Issue.9 , pp. 850-854
    • Percudani, R.1    Peracchi, A.2
  • 34
    • 0028174289 scopus 로고
    • Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms
    • J. Jager, M. Moser, U. Sauder, and J.N. Jansonius Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms J. Mol. Biol. 239 1994 285 305
    • (1994) J. Mol. Biol. , vol.239 , pp. 285-305
    • Jager, J.1    Moser, M.2    Sauder, U.3    Jansonius, J.N.4
  • 35
    • 0021634693 scopus 로고
    • Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure
    • DOI 10.1016/0022-2836(84)90333-4
    • J.F. Kirsch, G. Eichele, G.C. Ford, M.G. Vincent, J.N. Jansonius, H. Gehring, and P. Christen Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure J. Mol. Biol. 174 1984 497 525 (Pubitemid 15011750)
    • (1984) Journal of Molecular Biology , vol.174 , Issue.3 , pp. 497-525
    • Kirsch, J.F.1    Eichele, G.2    Ford, G.C.3
  • 36
    • 0026029016 scopus 로고
    • The open/closed conformational equilibrium of aspartate aminotransferase. Studies in the crystalline state and with a fluorescent probe in solution
    • D. Picot, E. Sandmeier, C. Thaller, M.G. Vincent, P. Christen, and J.N. Jansonius The open/closed conformational equilibrium of aspartate aminotransferase. Studies in the crystalline state and with a fluorescent probe in solution Eur. J. Biochem. 196 1991 329 341
    • (1991) Eur. J. Biochem. , vol.196 , pp. 329-341
    • Picot, D.1    Sandmeier, E.2    Thaller, C.3    Vincent, M.G.4    Christen, P.5    Jansonius, J.N.6
  • 37
    • 0021766656 scopus 로고
    • Transfer of C alpha-hydrogen of glutamate to coenzyme of aspartate aminotransferase during transamination reaction
    • H. Gehring Transfer of C alpha-hydrogen of glutamate to coenzyme of aspartate aminotransferase during transamination reaction Biochemistry 23 1984 6335 6340
    • (1984) Biochemistry , vol.23 , pp. 6335-6340
    • Gehring, H.1
  • 38
    • 0024562737 scopus 로고
    • Kinetic isotope effect studies on aspartate aminotransferase: Evidence for a concerted 1,3 prototropic shift mechanism for the cytoplasmic isozyme and L-aspartate and dichotomy in mechanism
    • DOI 10.1021/bi00435a031
    • D.A. Julin, and J.F. Kirsch Kinetic isotope effect studies on aspartate aminotransferase: evidence for a concerted 1,3 prototropic shift mechanism for the cytoplasmic isozyme and L-aspartate and dichotomy in mechanism Biochemistry 28 1989 3825 3833 (Pubitemid 19125430)
    • (1989) Biochemistry , vol.28 , Issue.9 , pp. 3825-3833
    • Julin, D.A.1    Kirsch, J.F.2
  • 39
    • 0029981787 scopus 로고    scopus 로고
    • The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis
    • DOI 10.1021/bi952138d
    • J.M. Goldberg, and J.F. Kirsch The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis Biochemistry 35 1996 5280 5291 (Pubitemid 26129469)
    • (1996) Biochemistry , vol.35 , Issue.16 , pp. 5280-5291
    • Goldberg, J.M.1    Kirsch, J.F.2
  • 40
    • 0015195921 scopus 로고
    • Stereochemical aspects of pyridoxal phosphate catalysis
    • H.C. Dunathan Stereochemical aspects of pyridoxal phosphate catalysis Adv Enzymol Relat Areas Mol Biol 35 1971 79 134
    • (1971) Adv Enzymol Relat Areas Mol Biol , vol.35 , pp. 79-134
    • Dunathan, H.C.1
  • 41
    • 0003627588 scopus 로고    scopus 로고
    • Harcourt/Academic Press Burlington, MA
    • D.E. Metzler Biochemistry 2001 Harcourt/Academic Press Burlington, MA
    • (2001) Biochemistry
    • Metzler, D.E.1
  • 43
    • 0035895342 scopus 로고    scopus 로고
    • a of the catalytic group in aspartate aminotransferase
    • DOI 10.1021/bi001403e
    • H. Mizuguchi, H. Hayashi, K. Okada, I. Miyahara, K. Hirotsu, and H. Kagamiyama Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase Biochemistry 40 2001 353 360 (Pubitemid 32061983)
    • (2001) Biochemistry , vol.40 , Issue.2 , pp. 353-360
    • Mizuguchi, H.1    Hayashi, H.2    Okada, K.3    Miyahara, I.4    Hirotsu, K.5    Kagamiyama, H.6
  • 45
    • 0028876895 scopus 로고
    • Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity
    • R.A. Vacca, P. Christen, V.N. Malashkevich, J.N. Jansonius, and E. Sandmeier Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity Eur. J. Biochem. 227 1995 481 487
    • (1995) Eur. J. Biochem. , vol.227 , pp. 481-487
    • Vacca, R.A.1    Christen, P.2    Malashkevich, V.N.3    Jansonius, J.N.4    Sandmeier, E.5
  • 46
    • 0028885266 scopus 로고
    • Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase
    • M.D. Toney, E. Hohenester, J.W. Keller, and J.N. Jansonius Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase J. Mol. Biol. 245 1995 151 179
    • (1995) J. Mol. Biol. , vol.245 , pp. 151-179
    • Toney, M.D.1    Hohenester, E.2    Keller, J.W.3    Jansonius, J.N.4
  • 51
    • 0014432781 scopus 로고
    • Solvent content of protein crystals
    • B.W. Matthews Solvent content of protein crystals J. Mol. Biol. 33 1968 491 497
    • (1968) J. Mol. Biol. , vol.33 , pp. 491-497
    • Matthews, B.W.1
  • 54
    • 0028069453 scopus 로고
    • The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E.Coli
    • S.C. Almo, D.L. Smith, A.T. Danishefsky, and D. Ringe The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli Protein Eng 7 1994 405 412 (Pubitemid 24063140)
    • (1994) Protein Engineering , vol.7 , Issue.3 , pp. 405-412
    • Almo, S.C.1    Smith, D.L.2    Danishefsky, A.T.3    Ringe, D.4
  • 59
    • 13244255415 scopus 로고    scopus 로고
    • MUSCLE: A multiple sequence alignment method with reduced time and space complexity
    • R.C. Edgar MUSCLE: a multiple sequence alignment method with reduced time and space complexity BMC Bioinforma. 5 2004 113
    • (2004) BMC Bioinforma. , vol.5 , pp. 113
    • Edgar, R.C.1
  • 60
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • DOI 10.1093/nar/gkh340
    • R.C. Edgar MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res. 32 2004 1792 1797 (Pubitemid 38832724)
    • (2004) Nucleic Acids Research , vol.32 , Issue.5 , pp. 1792-1797
    • Edgar, R.C.1
  • 61
  • 62
    • 0030963659 scopus 로고    scopus 로고
    • Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme
    • DOI 10.1074/jbc.272.36.22417
    • H. Mihara, T. Kurihara, T. Yoshimura, K. Soda, and N. Esaki Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme J. Biol. Chem. 272 1997 22417 22424 (Pubitemid 27386049)
    • (1997) Journal of Biological Chemistry , vol.272 , Issue.36 , pp. 22417-22424
    • Mihara, H.1    Kurihara, T.2    Yoshimura, T.3    Soda, K.4    Esaki, N.5
  • 63
    • 13444307044 scopus 로고    scopus 로고
    • Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
    • DOI 10.1107/S0907444904026460
    • E. Krissinel, and K. Henrick Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions Acta Crystallogr. D: Biol. Crystallogr. 60 2004 2256 2268 (Pubitemid 41742778)
    • (2004) Acta Crystallographica Section D: Biological Crystallography , vol.60 , Issue.12 , pp. 2256-2268
    • Krissinel, E.1    Henrick, K.2
  • 64
    • 0034600929 scopus 로고    scopus 로고
    • Crystal structure of cystalysin from Treponema denticola: A pyridoxal 5'-phosphate-dependent protein acting as a haemolytic enzyme
    • H.I. Krupka, R. Huber, S.C. Holt, and T. Clausen Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5′-phosphate-dependent protein acting as a haemolytic enzyme EMBO J. 19 2000 3168 3178 (Pubitemid 30428196)
    • (2000) EMBO Journal , vol.19 , Issue.13 , pp. 3168-3178
    • Krupka, H.I.1    Huber, R.2    Holt, S.C.3    Clausen, T.4
  • 65
    • 0037162411 scopus 로고    scopus 로고
    • Structural studies of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica: The apo, substrate, and product-aldimine complexes
    • DOI 10.1021/bi020294w
    • C.G. Cheong, J.C. Escalante-Semerena, and I. Rayment Structural studies of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica: the apo, substrate, and product-aldimine complexes Biochemistry 41 2002 9079 9089 (Pubitemid 34787265)
    • (2002) Biochemistry , vol.41 , Issue.29 , pp. 9079-9089
    • Cheong, C.-G.1    Escalante-Semerena, J.C.2    Rayment, I.3
  • 66
    • 0037117715 scopus 로고    scopus 로고
    • Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica
    • DOI 10.1021/bi012111w
    • C.G. Cheong, C.B. Bauer, K.R. Brushaber, J.C. Escalante-Semerena, and I. Rayment Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica Biochemistry 41 2002 4798 4808 (Pubitemid 34298646)
    • (2002) Biochemistry , vol.41 , Issue.15 , pp. 4798-4808
    • Cheong, C.-G.1    Bauer, C.B.2    Brushaber, K.R.3    Escalante-Semerena, J.C.4    Rayment, I.5
  • 67
    • 2442567233 scopus 로고    scopus 로고
    • Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements
    • DOI 10.1016/j.jmb.2004.04.004, PII S0022283604004061
    • S. Hayward Identification of specific interactions that drive ligand-induced closure in five enzymes with classic domain movements J. Mol. Biol. 339 2004 1001 1021 (Pubitemid 38686359)
    • (2004) Journal of Molecular Biology , vol.339 , Issue.4 , pp. 1001-1021
    • Hayward, S.1
  • 68
    • 77953661074 scopus 로고    scopus 로고
    • Insights into the mechanism of Pseudomonas dacunhae aspartate beta-decarboxylase from rapid-scanning stopped-flow kinetics
    • R.S. Phillips, S. Lima, R. Khristoforov, and B. Sudararaju Insights into the mechanism of Pseudomonas dacunhae aspartate beta-decarboxylase from rapid-scanning stopped-flow kinetics Biochemistry 49 2010 5066 5073
    • (2010) Biochemistry , vol.49 , pp. 5066-5073
    • Phillips, R.S.1    Lima, S.2    Khristoforov, R.3    Sudararaju, B.4
  • 69
    • 0037646540 scopus 로고    scopus 로고
    • Conformational change in aspartate aminotransferase on substrate binding induces strain in the catalytic group and enhances catalysis
    • DOI 10.1074/jbc.M209235200
    • H. Hayashi, H. Mizuguchi, I. Miyahara, Y. Nakajima, K. Hirotsu, and H. Kagamiyama Conformational change in aspartate aminotransferase on substrate binding induces strain in the catalytic group and enhances catalysis J. Biol. Chem. 278 2003 9481 9488 (Pubitemid 36800440)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.11 , pp. 9481-9488
    • Hayashi, H.1    Mizuguchi, H.2    Miyahara, I.3    Nakajima, Y.4    Hirotsu, K.5    Kagamiyama, H.6
  • 70
    • 0029078229 scopus 로고
    • Accumulation of the quinonoid intermediate in the reaction catalyzed by aspartate aminotransferase with cysteine sulfinic acid
    • N.C. Furumo, and J.F. Kirsch Accumulation of the quinonoid intermediate in the reaction catalyzed by aspartate aminotransferase with cysteine sulfinic acid Arch. Biochem. Biophys. 319 1995 49 54
    • (1995) Arch. Biochem. Biophys. , vol.319 , pp. 49-54
    • Furumo, N.C.1    Kirsch, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.