메뉴 건너뛰기




Volumn 21, Issue 10, 2011, Pages 615-623

Regulating Rap small G-proteins in time and space

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC AMP; GUANINE NUCLEOTIDE BINDING PROTEIN; RAP PROTEIN; T LYMPHOCYTE RECEPTOR;

EID: 80053111149     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2011.07.001     Document Type: Review
Times cited : (128)

References (90)
  • 1
    • 34249018367 scopus 로고    scopus 로고
    • GEFs and GAPs: critical elements in the control of small G proteins
    • Bos J.L., et al. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007, 129:865-877.
    • (2007) Cell , vol.129 , pp. 865-877
    • Bos, J.L.1
  • 2
    • 69049094831 scopus 로고    scopus 로고
    • Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi
    • van Dam T.J., et al. Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi. Cell Signal. 2009, 21:1579-1585.
    • (2009) Cell Signal. , vol.21 , pp. 1579-1585
    • van Dam, T.J.1
  • 3
    • 10344249427 scopus 로고    scopus 로고
    • The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton
    • Taira K., et al. The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J. Biol. Chem. 2004, 279:49488-49496.
    • (2004) J. Biol. Chem. , vol.279 , pp. 49488-49496
    • Taira, K.1
  • 4
    • 33845985309 scopus 로고    scopus 로고
    • Crystal structure of the RUN domain of the RAP2-interacting protein x
    • Kukimoto-Niino M., et al. Crystal structure of the RUN domain of the RAP2-interacting protein x. J. Biol. Chem. 2006, 281:31843-31853.
    • (2006) J. Biol. Chem. , vol.281 , pp. 31843-31853
    • Kukimoto-Niino, M.1
  • 5
    • 77649191184 scopus 로고    scopus 로고
    • Rap1, a mercenary among the Ras-like GTPases
    • Frische E.W., Zwartkruis F.J. Rap1, a mercenary among the Ras-like GTPases. Dev. Biol. 2010, 340:1-9.
    • (2010) Dev. Biol. , vol.340 , pp. 1-9
    • Frische, E.W.1    Zwartkruis, F.J.2
  • 6
    • 68749098598 scopus 로고    scopus 로고
    • RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange
    • Yaman E., et al. RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange. FEBS J. 2009, 276:4607-4616.
    • (2009) FEBS J. , vol.276 , pp. 4607-4616
    • Yaman, E.1
  • 7
    • 0030793873 scopus 로고    scopus 로고
    • Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N)
    • van den Berghe N., et al. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 1997, 15:845-850.
    • (1997) Oncogene , vol.15 , pp. 845-850
    • van den Berghe, N.1
  • 8
    • 0028293483 scopus 로고
    • Structure and function of rap proteins in human platelets
    • Torti M., Lapetina E.G. Structure and function of rap proteins in human platelets. Thromb. Haemost. 1994, 71:533-543.
    • (1994) Thromb. Haemost. , vol.71 , pp. 533-543
    • Torti, M.1    Lapetina, E.G.2
  • 9
    • 0842266583 scopus 로고    scopus 로고
    • Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion
    • Bivona T.G., et al. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J. Cell Biol. 2004, 164:461-470.
    • (2004) J. Cell Biol. , vol.164 , pp. 461-470
    • Bivona, T.G.1
  • 10
    • 23844509495 scopus 로고    scopus 로고
    • Protein kinase D1 and the β1 integrin cytoplasmic domain control β1 integrin function via regulation of Rap1 activation
    • Medeiros R.B., et al. Protein kinase D1 and the β1 integrin cytoplasmic domain control β1 integrin function via regulation of Rap1 activation. Immunity 2005, 23:213-226.
    • (2005) Immunity , vol.23 , pp. 213-226
    • Medeiros, R.B.1
  • 11
    • 1342324079 scopus 로고    scopus 로고
    • Protease inhibitors prevent the protein kinase A-dependent loss of Rap1 GTPase from the particulate fraction of COS1 cells
    • Rundell C.J., et al. Protease inhibitors prevent the protein kinase A-dependent loss of Rap1 GTPase from the particulate fraction of COS1 cells. Biochem. Biophys. Res. Commun. 2004, 315:1077-1081.
    • (2004) Biochem. Biophys. Res. Commun. , vol.315 , pp. 1077-1081
    • Rundell, C.J.1
  • 12
    • 70350464182 scopus 로고    scopus 로고
    • Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop
    • Edreira M.M., et al. Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop. J. Biol. Chem. 2009, 284:27480-27486.
    • (2009) J. Biol. Chem. , vol.284 , pp. 27480-27486
    • Edreira, M.M.1
  • 13
    • 75949126341 scopus 로고    scopus 로고
    • Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development
    • Kawabe H., et al. Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 2010, 65:358-372.
    • (2010) Neuron , vol.65 , pp. 358-372
    • Kawabe, H.1
  • 14
    • 34547798463 scopus 로고    scopus 로고
    • XRab40 and XCullin5 form a ubiquitin ligase complex essential for the noncanonical Wnt pathway
    • Lee R.H., et al. XRab40 and XCullin5 form a ubiquitin ligase complex essential for the noncanonical Wnt pathway. EMBO J. 2007, 26:3592-3606.
    • (2007) EMBO J. , vol.26 , pp. 3592-3606
    • Lee, R.H.1
  • 15
    • 51349150613 scopus 로고    scopus 로고
    • Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B
    • Rehmann H., et al. Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 2008, 455:124-127.
    • (2008) Nature , vol.455 , pp. 124-127
    • Rehmann, H.1
  • 16
    • 25644452031 scopus 로고    scopus 로고
    • The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways
    • Dodge-Kafka K.L., et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 2005, 437:574-578.
    • (2005) Nature , vol.437 , pp. 574-578
    • Dodge-Kafka, K.L.1
  • 17
    • 77958552943 scopus 로고    scopus 로고
    • Cyclic AMP phosphodiesterase 4D (PDE4D) tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability
    • Rampersad S.N., et al. Cyclic AMP phosphodiesterase 4D (PDE4D) tethers EPAC1 in a vascular endothelial cadherin (VE-Cad)-based signaling complex and controls cAMP-mediated vascular permeability. J. Biol. Chem. 2010, 285:33614-33622.
    • (2010) J. Biol. Chem. , vol.285 , pp. 33614-33622
    • Rampersad, S.N.1
  • 18
    • 66349090219 scopus 로고    scopus 로고
    • Direct spatial control of Epac1 by cAMP
    • Ponsioen B., et al. Direct spatial control of Epac1 by cAMP. Mol. Cell. Biol. 2009, 29:2521-2531.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 2521-2531
    • Ponsioen, B.1
  • 19
    • 77951872871 scopus 로고    scopus 로고
    • 2+/calmodulin kinase II after β(1)-adrenergic receptor stimulation
    • 2+/calmodulin kinase II after β(1)-adrenergic receptor stimulation. J. Cell Biol. 2010, 189:573-587.
    • (2010) J. Cell Biol. , vol.189 , pp. 573-587
    • Mangmool, S.1
  • 20
    • 36749040280 scopus 로고    scopus 로고
    • Effects of prostaglandin E2 on the subcellular localization of Epac-1 and Rap1 proteins during Fcgamma-receptor-mediated phagocytosis in alveolar macrophages
    • Brock T.G., et al. Effects of prostaglandin E2 on the subcellular localization of Epac-1 and Rap1 proteins during Fcgamma-receptor-mediated phagocytosis in alveolar macrophages. Exp. Cell Res. 2008, 314:255-263.
    • (2008) Exp. Cell Res. , vol.314 , pp. 255-263
    • Brock, T.G.1
  • 21
    • 0037135592 scopus 로고    scopus 로고
    • Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP
    • Qiao J., et al. Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J. Biol. Chem. 2002, 277:26581-26586.
    • (2002) J. Biol. Chem. , vol.277 , pp. 26581-26586
    • Qiao, J.1
  • 22
    • 78649543303 scopus 로고    scopus 로고
    • Spatial regulation of cyclic AMP-Epac1 signaling in cell adhesion by ERM proteins
    • Gloerich M., et al. Spatial regulation of cyclic AMP-Epac1 signaling in cell adhesion by ERM proteins. Mol. Cell. Biol. 2010, 30:5421-5431.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 5421-5431
    • Gloerich, M.1
  • 23
    • 77955629623 scopus 로고    scopus 로고
    • The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope
    • Liu C., et al. The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope. Mol. Cell. Biol. 2010, 30:3956-3969.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 3956-3969
    • Liu, C.1
  • 24
    • 79959395511 scopus 로고    scopus 로고
    • The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity
    • Gloerich M., et al. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity. J. Cell Biol. 2011, 193:1009-1020.
    • (2011) J. Cell Biol. , vol.193 , pp. 1009-1020
    • Gloerich, M.1
  • 25
    • 64549105338 scopus 로고    scopus 로고
    • Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function
    • Niimura M., et al. Critical role of the N-terminal cyclic AMP-binding domain of Epac2 in its subcellular localization and function. J. Cell. Physiol. 2009, 219:652-658.
    • (2009) J. Cell. Physiol. , vol.219 , pp. 652-658
    • Niimura, M.1
  • 26
    • 0033769693 scopus 로고    scopus 로고
    • CAMP-GEFII is a direct target of cAMP in regulated exocytosis
    • Ozaki N., et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol. 2000, 2:805-811.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 805-811
    • Ozaki, N.1
  • 27
    • 0037184610 scopus 로고    scopus 로고
    • 2+ sensor in pancreatic β-cells. Involvement of cAMP-GEFII. Rim2. Piccolo complex in cAMP-dependent exocytosis
    • 2+ sensor in pancreatic β-cells. Involvement of cAMP-GEFII. Rim2. Piccolo complex in cAMP-dependent exocytosis. J. Biol. Chem. 2002, 277:50497-50502.
    • (2002) J. Biol. Chem. , vol.277 , pp. 50497-50502
    • Fujimoto, K.1
  • 28
    • 70349559570 scopus 로고    scopus 로고
    • Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines
    • 1275-1284β
    • Woolfrey K.M., et al. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat. Neurosci. 2009, 12. 1275-1284β.
    • (2009) Nat. Neurosci. , vol.12
    • Woolfrey, K.M.1
  • 29
    • 0034617282 scopus 로고    scopus 로고
    • Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs
    • de Rooij J., et al. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J. Biol. Chem. 2000, 275:20829-20836.
    • (2000) J. Biol. Chem. , vol.275 , pp. 20829-20836
    • de Rooij, J.1
  • 30
    • 0032582646 scopus 로고    scopus 로고
    • Activation of the Rap1 GTPase by the B cell antigen receptor
    • McLeod S.J., et al. Activation of the Rap1 GTPase by the B cell antigen receptor. J. Biol. Chem. 1998, 273:29218-29223.
    • (1998) J. Biol. Chem. , vol.273 , pp. 29218-29223
    • McLeod, S.J.1
  • 31
    • 4644221351 scopus 로고    scopus 로고
    • CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation
    • Crittenden J.R., et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat. Med. 2004, 10:982-986.
    • (2004) Nat. Med. , vol.10 , pp. 982-986
    • Crittenden, J.R.1
  • 32
    • 19644386691 scopus 로고    scopus 로고
    • Diacylglycerol kinase ι regulates Ras guanyl-releasing protein 3 and inhibits Rap1 signaling
    • Regier D.S., et al. Diacylglycerol kinase ι regulates Ras guanyl-releasing protein 3 and inhibits Rap1 signaling. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:7595-7600.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 7595-7600
    • Regier, D.S.1
  • 33
    • 34548167778 scopus 로고    scopus 로고
    • Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs
    • Johnson J.E., et al. Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs. Biochem. J. 2007, 406:223-236.
    • (2007) Biochem. J. , vol.406 , pp. 223-236
    • Johnson, J.E.1
  • 34
    • 2442522320 scopus 로고    scopus 로고
    • F-actin-dependent translocation of the Rap1 GDP/GTP exchange factor RasGRP2
    • Caloca M.J., et al. F-actin-dependent translocation of the Rap1 GDP/GTP exchange factor RasGRP2. J. Biol. Chem. 2004, 279:20435-20446.
    • (2004) J. Biol. Chem. , vol.279 , pp. 20435-20446
    • Caloca, M.J.1
  • 35
    • 0034644772 scopus 로고    scopus 로고
    • Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor
    • Clyde-Smith J., et al. Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J. Biol. Chem. 2000, 275:32260-32267.
    • (2000) J. Biol. Chem. , vol.275 , pp. 32260-32267
    • Clyde-Smith, J.1
  • 36
    • 0042858184 scopus 로고    scopus 로고
    • Exchange factors of the RasGRP family mediate Ras activation in the Golgi
    • Caloca M.J., et al. Exchange factors of the RasGRP family mediate Ras activation in the Golgi. J. Biol. Chem. 2003, 278:33465-33473.
    • (2003) J. Biol. Chem. , vol.278 , pp. 33465-33473
    • Caloca, M.J.1
  • 37
    • 0041488671 scopus 로고    scopus 로고
    • Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1
    • Bivona T.G., et al. Phospholipase Cγ activates Ras on the Golgi apparatus by means of RasGRP1. Nature 2003, 424:694-698.
    • (2003) Nature , vol.424 , pp. 694-698
    • Bivona, T.G.1
  • 38
    • 52649163308 scopus 로고    scopus 로고
    • CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin αIIbβ3 in platelets
    • Cifuni S.M., et al. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin αIIbβ3 in platelets. Blood 2008, 112:1696-1703.
    • (2008) Blood , vol.112 , pp. 1696-1703
    • Cifuni, S.M.1
  • 39
    • 13144282666 scopus 로고    scopus 로고
    • A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia
    • Kawasaki H., et al. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:13278-13283.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 13278-13283
    • Kawasaki, H.1
  • 40
    • 0031784267 scopus 로고    scopus 로고
    • Regulation of RasGRP via a phorbol ester-responsive C1 domain
    • Tognon C.E., et al. Regulation of RasGRP via a phorbol ester-responsive C1 domain. Mol. Cell. Biol. 1998, 18:6995-7008.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6995-7008
    • Tognon, C.E.1
  • 41
    • 77956958636 scopus 로고    scopus 로고
    • C1 domain mediates CalDAGIII localization to the Golgi
    • Zhang M., et al. C1 domain mediates CalDAGIII localization to the Golgi. Mol. Biol. Rep. 2010, 37:3481-3485.
    • (2010) Mol. Biol. Rep. , vol.37 , pp. 3481-3485
    • Zhang, M.1
  • 42
    • 18244409902 scopus 로고    scopus 로고
    • Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells
    • Zheng Y., et al. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood 2005, 105:3648-3654.
    • (2005) Blood , vol.105 , pp. 3648-3654
    • Zheng, Y.1
  • 43
    • 3042630992 scopus 로고    scopus 로고
    • PKC δ associates with and is involved in the phosphorylation of RasGRP3 in response to phorbol esters
    • Brodie C., et al. PKC δ associates with and is involved in the phosphorylation of RasGRP3 in response to phorbol esters. Mol. Pharmacol. 2004, 66:76-84.
    • (2004) Mol. Pharmacol. , vol.66 , pp. 76-84
    • Brodie, C.1
  • 44
    • 0042237772 scopus 로고    scopus 로고
    • Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3
    • Teixeira C., et al. Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood 2003, 102:1414-1420.
    • (2003) Blood , vol.102 , pp. 1414-1420
    • Teixeira, C.1
  • 45
    • 18944383647 scopus 로고    scopus 로고
    • A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells
    • Roose J.P., et al. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol. Cell. Biol. 2005, 25:4426-4441.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 4426-4441
    • Roose, J.P.1
  • 46
    • 58149393273 scopus 로고    scopus 로고
    • PKC-θ selectively controls the adhesion-stimulating molecule Rap1
    • Letschka T., et al. PKC-θ selectively controls the adhesion-stimulating molecule Rap1. Blood 2008, 112:4617-4627.
    • (2008) Blood , vol.112 , pp. 4617-4627
    • Letschka, T.1
  • 47
    • 17844363949 scopus 로고    scopus 로고
    • Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis
    • Ohba Y., et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 2001, 20:3333-3341.
    • (2001) EMBO J. , vol.20 , pp. 3333-3341
    • Ohba, Y.1
  • 48
    • 7744232293 scopus 로고    scopus 로고
    • Activation of a signaling cascade by cytoskeleton stretch
    • Tamada M., et al. Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 2004, 7:709-718.
    • (2004) Dev. Cell , vol.7 , pp. 709-718
    • Tamada, M.1
  • 49
    • 44449172648 scopus 로고    scopus 로고
    • Sequential activation of Rap1 and Rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells
    • Takahashi M., et al. Sequential activation of Rap1 and Rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells. Genes Cells 2008, 13:549-569.
    • (2008) Genes Cells , vol.13 , pp. 549-569
    • Takahashi, M.1
  • 50
    • 0035912228 scopus 로고    scopus 로고
    • Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10
    • Chiang S.H., et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001, 410:944-948.
    • (2001) Nature , vol.410 , pp. 944-948
    • Chiang, S.H.1
  • 51
    • 0037900000 scopus 로고    scopus 로고
    • Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase
    • Shao Y., et al. Negative regulation of Rap1 activation by the Cbl E3 ubiquitin ligase. EMBO Rep. 2003, 4:425-431.
    • (2003) EMBO Rep. , vol.4 , pp. 425-431
    • Shao, Y.1
  • 52
    • 0033553561 scopus 로고    scopus 로고
    • Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504
    • Ichiba T., et al. Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504. J. Biol. Chem. 1999, 274:14376-14381.
    • (1999) J. Biol. Chem. , vol.274 , pp. 14376-14381
    • Ichiba, T.1
  • 53
    • 0034634534 scopus 로고    scopus 로고
    • Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction
    • Rebhun J.F., et al. Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction. J. Biol. Chem. 2000, 275:34901-34908.
    • (2000) J. Biol. Chem. , vol.275 , pp. 34901-34908
    • Rebhun, J.F.1
  • 54
    • 0035834649 scopus 로고    scopus 로고
    • Identification and characterization of RA-GEF-2, a Rap guanine nucleotide exchange factor that serves as a downstream target of M-Ras
    • Gao X., et al. Identification and characterization of RA-GEF-2, a Rap guanine nucleotide exchange factor that serves as a downstream target of M-Ras. J. Biol. Chem. 2001, 276:42219-42225.
    • (2001) J. Biol. Chem. , vol.276 , pp. 42219-42225
    • Gao, X.1
  • 55
    • 34547782677 scopus 로고    scopus 로고
    • The M-Ras-RA-GEF-2-Rap1 pathway mediates tumor necrosis factor-α-dependent regulation of integrin activation in splenocytes
    • Yoshikawa Y., et al. The M-Ras-RA-GEF-2-Rap1 pathway mediates tumor necrosis factor-α-dependent regulation of integrin activation in splenocytes. Mol. Biol. Cell 2007, 18:2949-2959.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2949-2959
    • Yoshikawa, Y.1
  • 56
    • 33646366678 scopus 로고    scopus 로고
    • The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane
    • Li Y., et al. The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J. Biol. Chem. 2006, 281:2506-2514.
    • (2006) J. Biol. Chem. , vol.281 , pp. 2506-2514
    • Li, Y.1
  • 57
    • 57349150591 scopus 로고    scopus 로고
    • Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2
    • Liu C., et al. Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2. Mol. Cell. Biol 2008, 28:7109-7125.
    • (2008) Mol. Cell. Biol , vol.28 , pp. 7109-7125
    • Liu, C.1
  • 58
    • 34548304291 scopus 로고    scopus 로고
    • Rap1-PDZ-GEF1 interacts with a neurotrophin receptor at late endosomes, leading to sustained activation of Rap1 and ERK and neurite outgrowth
    • Hisata S., et al. Rap1-PDZ-GEF1 interacts with a neurotrophin receptor at late endosomes, leading to sustained activation of Rap1 and ERK and neurite outgrowth. J. Cell Biol. 2007, 178:843-860.
    • (2007) J. Cell Biol. , vol.178 , pp. 843-860
    • Hisata, S.1
  • 59
    • 0035839496 scopus 로고    scopus 로고
    • Role of the CDC25 homology domain of phospholipase Ce{open} in amplification of Rap1-dependent signaling
    • Jin T.G., et al. Role of the CDC25 homology domain of phospholipase Ce{open} in amplification of Rap1-dependent signaling. J. Biol. Chem. 2001, 276:30301-30307.
    • (2001) J. Biol. Chem. , vol.276 , pp. 30301-30307
    • Jin, T.G.1
  • 60
    • 34247124160 scopus 로고    scopus 로고
    • 2+ mobilization in cardiac myocytes
    • 2+ mobilization in cardiac myocytes. J. Biol. Chem. 2007, 282:5488-5495.
    • (2007) J. Biol. Chem. , vol.282 , pp. 5488-5495
    • Oestreich, E.A.1
  • 61
    • 3242685086 scopus 로고    scopus 로고
    • Rap1 regulates the formation of E-cadherin-based cell-cell contacts
    • Hogan C., et al. Rap1 regulates the formation of E-cadherin-based cell-cell contacts. Mol. Cell. Biol. 2004, 24:6690-6700.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 6690-6700
    • Hogan, C.1
  • 62
    • 46849095863 scopus 로고    scopus 로고
    • The RapGEF PDZ-GEF2 is required for maturation of cell-cell junctions
    • Dube N., et al. The RapGEF PDZ-GEF2 is required for maturation of cell-cell junctions. Cell Signal. 2008, 20:1608-1615.
    • (2008) Cell Signal. , vol.20 , pp. 1608-1615
    • Dube, N.1
  • 63
    • 55549130515 scopus 로고    scopus 로고
    • E-cadherin dis-engagement activates the Rap1 GTPase
    • Asuri S., et al. E-cadherin dis-engagement activates the Rap1 GTPase. J. Cell. Biochem. 2008, 105:1027-1037.
    • (2008) J. Cell. Biochem. , vol.105 , pp. 1027-1037
    • Asuri, S.1
  • 64
    • 11144305139 scopus 로고    scopus 로고
    • Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway
    • Fukuhara S., et al. Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol. Cell. Biol. 2005, 25:136-146.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 136-146
    • Fukuhara, S.1
  • 65
    • 27844507514 scopus 로고    scopus 로고
    • E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function
    • Balzac F., et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J. Cell Sci. 2005, 118:4765-4783.
    • (2005) J. Cell Sci. , vol.118 , pp. 4765-4783
    • Balzac, F.1
  • 66
    • 15744364621 scopus 로고    scopus 로고
    • Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function
    • Wittchen E.S., et al. Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function. J. Biol. Chem. 2005, 280:11675-11682.
    • (2005) J. Biol. Chem. , vol.280 , pp. 11675-11682
    • Wittchen, E.S.1
  • 67
    • 31944446602 scopus 로고    scopus 로고
    • MAGI-1 is required for Rap1 activation upon cell-cell contact and for enhancement of vascular endothelial cadherin-mediated cell adhesion
    • Sakurai A., et al. MAGI-1 is required for Rap1 activation upon cell-cell contact and for enhancement of vascular endothelial cadherin-mediated cell adhesion. Mol. Biol. Cell 2006, 17:966-976.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 966-976
    • Sakurai, A.1
  • 68
    • 19944432451 scopus 로고    scopus 로고
    • Involvement of the c-Src-Crk-C3G-Rap1 signaling in the nectin-induced activation of Cdc42 and formation of adherens junctions
    • Fukuyama T., et al. Involvement of the c-Src-Crk-C3G-Rap1 signaling in the nectin-induced activation of Cdc42 and formation of adherens junctions. J. Biol. Chem. 2005, 280:815-825.
    • (2005) J. Biol. Chem. , vol.280 , pp. 815-825
    • Fukuyama, T.1
  • 69
    • 65249125248 scopus 로고    scopus 로고
    • Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1A, regulate β1 integrin levels, and enhance cell migration
    • Severson E.A., et al. Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1A, regulate β1 integrin levels, and enhance cell migration. Mol. Biol. Cell 2009, 20:1916-1925.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1916-1925
    • Severson, E.A.1
  • 71
    • 0033579209 scopus 로고    scopus 로고
    • Functional interaction between Gα(z) and Rap1GAP suggests a novel form of cellular cross-talk
    • Meng J., et al. Functional interaction between Gα(z) and Rap1GAP suggests a novel form of cellular cross-talk. J. Biol. Chem. 1999, 274:36663-36669.
    • (1999) J. Biol. Chem. , vol.274 , pp. 36663-36669
    • Meng, J.1
  • 72
    • 0037044577 scopus 로고    scopus 로고
    • Activation of Gz attenuates Rap1-mediated differentiation of PC12 cells
    • Meng J., Casey P.J. Activation of Gz attenuates Rap1-mediated differentiation of PC12 cells. J. Biol. Chem. 2002, 277:43417-43424.
    • (2002) J. Biol. Chem. , vol.277 , pp. 43417-43424
    • Meng, J.1    Casey, P.J.2
  • 73
    • 38449105906 scopus 로고    scopus 로고
    • The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases
    • Richter M., et al. The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases. J. Neurosci. 2007, 27:14205-14215.
    • (2007) J. Neurosci. , vol.27 , pp. 14205-14215
    • Richter, M.1
  • 74
    • 0038350597 scopus 로고    scopus 로고
    • AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1
    • Su L., et al. AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1. J. Biol. Chem. 2003, 278:15232-15238.
    • (2003) J. Biol. Chem. , vol.278 , pp. 15232-15238
    • Su, L.1
  • 75
    • 20144381647 scopus 로고    scopus 로고
    • o/i-triggered proteasomal degradation of Rap1GAPII
    • o/i-triggered proteasomal degradation of Rap1GAPII. J. Biol. Chem. 2005, 280:11413-11421.
    • (2005) J. Biol. Chem. , vol.280 , pp. 11413-11421
    • Jordan, J.D.1
  • 76
    • 33847231810 scopus 로고    scopus 로고
    • A Wnt-CKIvarepsilon-Rap1 pathway regulates gastrulation by modulating SIPA1L1, a Rap GTPase activating protein
    • Tsai I.C., et al. A Wnt-CKIvarepsilon-Rap1 pathway regulates gastrulation by modulating SIPA1L1, a Rap GTPase activating protein. Dev. Cell 2007, 12:335-347.
    • (2007) Dev. Cell , vol.12 , pp. 335-347
    • Tsai, I.C.1
  • 77
    • 1242294459 scopus 로고    scopus 로고
    • Thyroid-stimulating hormone/cAMP and glycogen synthase kinase 3β elicit opposing effects on Rap1GAP stability
    • Tsygankova O.M., et al. Thyroid-stimulating hormone/cAMP and glycogen synthase kinase 3β elicit opposing effects on Rap1GAP stability. J. Biol. Chem. 2004, 279:5501-5507.
    • (2004) J. Biol. Chem. , vol.279 , pp. 5501-5507
    • Tsygankova, O.M.1
  • 78
    • 0032952586 scopus 로고    scopus 로고
    • The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation
    • Gao Q., et al. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol. Cell. Biol. 1999, 19:733-744.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 733-744
    • Gao, Q.1
  • 79
    • 17044406762 scopus 로고    scopus 로고
    • Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets
    • Schultess J., et al. Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets. Blood 2005, 105:3185-3192.
    • (2005) Blood , vol.105 , pp. 3185-3192
    • Schultess, J.1
  • 80
    • 38349174744 scopus 로고    scopus 로고
    • Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating protein Rap1GAP2 in platelets
    • Hoffmeister M., et al. Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating protein Rap1GAP2 in platelets. J. Biol. Chem. 2008, 283:2297-2306.
    • (2008) J. Biol. Chem. , vol.283 , pp. 2297-2306
    • Hoffmeister, M.1
  • 81
    • 0035797521 scopus 로고    scopus 로고
    • Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP
    • Pak D.T., et al. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 2001, 31:289-303.
    • (2001) Neuron , vol.31 , pp. 289-303
    • Pak, D.T.1
  • 82
    • 0344443828 scopus 로고    scopus 로고
    • Targeted protein degradation and synapse remodeling by an inducible protein kinase
    • Pak D.T., Sheng M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science 2003, 302:1368-1373.
    • (2003) Science , vol.302 , pp. 1368-1373
    • Pak, D.T.1    Sheng, M.2
  • 83
    • 34548277955 scopus 로고    scopus 로고
    • Involvement of the Snk-SPAR pathway in glutamate-induced excitotoxicity in cultured hippocampal neurons
    • Wu L.X., et al. Involvement of the Snk-SPAR pathway in glutamate-induced excitotoxicity in cultured hippocampal neurons. Brain Res. 2007, 1168:38-45.
    • (2007) Brain Res. , vol.1168 , pp. 38-45
    • Wu, L.X.1
  • 84
    • 43649097642 scopus 로고    scopus 로고
    • Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity
    • Seeburg D.P., et al. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 2008, 58:571-583.
    • (2008) Neuron , vol.58 , pp. 571-583
    • Seeburg, D.P.1
  • 85
    • 33751264910 scopus 로고    scopus 로고
    • The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling
    • Yarwood S., et al. The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling. Biochem. Soc. Trans. 2006, 34:846-850.
    • (2006) Biochem. Soc. Trans. , vol.34 , pp. 846-850
    • Yarwood, S.1
  • 86
  • 87
    • 79957603293 scopus 로고    scopus 로고
    • 2+-dependent monomer and dimer formation switches capri between RasGAP and RapGAP activities
    • 2+-dependent monomer and dimer formation switches capri between RasGAP and RapGAP activities. J. Biol. Chem. 2011, 286:19905-19916.
    • (2011) J. Biol. Chem. , vol.286 , pp. 19905-19916
    • Dai, Y.1
  • 88
    • 0035963331 scopus 로고    scopus 로고
    • Spatio-temporal images of growth-factor-induced activation of Ras and Rap1
    • Mochizuki N., et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 2001, 411:1065-1068.
    • (2001) Nature , vol.411 , pp. 1065-1068
    • Mochizuki, N.1
  • 89
    • 69949104482 scopus 로고    scopus 로고
    • A genetically encoded photoactivatable Rac controls the motility of living cells
    • Wu Y.I., et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009, 461:104-108.
    • (2009) Nature , vol.461 , pp. 104-108
    • Wu, Y.I.1
  • 90
    • 33947398366 scopus 로고    scopus 로고
    • Central roles of small GTPases in the development of cell polarity in yeast and beyond
    • Park H.O., Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol. Mol. Biol. Rev. 2007, 71:48-96.
    • (2007) Microbiol. Mol. Biol. Rev. , vol.71 , pp. 48-96
    • Park, H.O.1    Bi, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.