-
1
-
-
36749001066
-
Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes
-
Rapoport T.A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007, 450:663-669.
-
(2007)
Nature
, vol.450
, pp. 663-669
-
-
Rapoport, T.A.1
-
2
-
-
0030968672
-
Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer
-
von Heijne G. Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. Mol. Microbiol. 1997, 24:249-253.
-
(1997)
Mol. Microbiol.
, vol.24
, pp. 249-253
-
-
von Heijne, G.1
-
3
-
-
70450171353
-
Signal peptides are allosteric activators of the protein translocase
-
Gouridis G., et al. Signal peptides are allosteric activators of the protein translocase. Nature 2009, 462:363-367.
-
(2009)
Nature
, vol.462
, pp. 363-367
-
-
Gouridis, G.1
-
4
-
-
27844485836
-
Protein translocation by the Sec61/SecY channel
-
Osborne A.R., et al. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 2005, 21:529-550.
-
(2005)
Annu. Rev. Cell Dev. Biol.
, vol.21
, pp. 529-550
-
-
Osborne, A.R.1
-
5
-
-
0025087853
-
The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation
-
Brundage L., et al. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 1990, 62:649-657.
-
(1990)
Cell
, vol.62
, pp. 649-657
-
-
Brundage, L.1
-
6
-
-
0027424601
-
Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane
-
Gorlich D., Rapoport T.A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 1993, 75:615-630.
-
(1993)
Cell
, vol.75
, pp. 615-630
-
-
Gorlich, D.1
Rapoport, T.A.2
-
7
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
Van den Berg B., et al. X-ray structure of a protein-conducting channel. Nature 2004, 427:36-44.
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van den Berg, B.1
-
8
-
-
0032544614
-
Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
-
Plath K., et al. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 1998, 94:795-807.
-
(1998)
Cell
, vol.94
, pp. 795-807
-
-
Plath, K.1
-
9
-
-
33947717366
-
Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
-
Osborne A.R., Rapoport T.A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 2007, 129:97-110.
-
(2007)
Cell
, vol.129
, pp. 97-110
-
-
Osborne, A.R.1
Rapoport, T.A.2
-
10
-
-
34848895197
-
Structural determinants of lateral gate opening in the protein translocon
-
Gumbart J., Schulten K. Structural determinants of lateral gate opening in the protein translocon. Biochemistry 2007, 46:11147-11157.
-
(2007)
Biochemistry
, vol.46
, pp. 11147-11157
-
-
Gumbart, J.1
Schulten, K.2
-
11
-
-
33646191829
-
Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes
-
Tian P., Andricioaei I. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 2006, 90:2718-2730.
-
(2006)
Biophys. J.
, vol.90
, pp. 2718-2730
-
-
Tian, P.1
Andricioaei, I.2
-
12
-
-
0033032483
-
Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking
-
Harris C.R., Silhavy T.J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 1999, 181:3438-3444.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 3438-3444
-
-
Harris, C.R.1
Silhavy, T.J.2
-
13
-
-
27144525002
-
Investigating the SecY plug movement at the SecYEG translocation channel
-
Tam P.C., et al. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 2005, 24:3380-3388.
-
(2005)
EMBO J.
, vol.24
, pp. 3380-3388
-
-
Tam, P.C.1
-
14
-
-
77954912142
-
Immobilization of the plug domain inside the SecY channel allows unrestricted protein translocation
-
Lycklama A., Nijeholt J.A., et al. Immobilization of the plug domain inside the SecY channel allows unrestricted protein translocation. J. Biol. Chem. 2010, 285:23747-23754.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 23747-23754
-
-
Lycklama, A.1
Nijeholt, J.A.2
-
15
-
-
33847698213
-
Deregulation of the SecYEG translocation channel upon removal of the plug domain
-
Maillard A.P., et al. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J. Biol. Chem. 2007, 282:1281-1287.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 1281-1287
-
-
Maillard, A.P.1
-
16
-
-
77954635029
-
Dynamics of SecY translocons with translocation-defective mutations
-
Bondar A.N., et al. Dynamics of SecY translocons with translocation-defective mutations. Structure 2010, 18:847-857.
-
(2010)
Structure
, vol.18
, pp. 847-857
-
-
Bondar, A.N.1
-
17
-
-
24944465005
-
Modeling the effects of prl mutations on the Escherichia coli SecY complex
-
Smith M.A., et al. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 2005, 187:6454-6465.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 6454-6465
-
-
Smith, M.A.1
-
18
-
-
30044437119
-
A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo
-
Huber D., et al. A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:18872-18877.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 18872-18877
-
-
Huber, D.1
-
19
-
-
79251576465
-
SecA Interacts with ribosomes in order to facilitate posttranslational translocation in bacteria
-
Huber D., et al. SecA Interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Mol. Cell 2011, 41:343-353.
-
(2011)
Mol. Cell
, vol.41
, pp. 343-353
-
-
Huber, D.1
-
20
-
-
36749011854
-
Direct observation of chaperone-induced changes in a protein folding pathway
-
Bechtluft P., et al. Direct observation of chaperone-induced changes in a protein folding pathway. Science 2007, 318:1458-1461.
-
(2007)
Science
, vol.318
, pp. 1458-1461
-
-
Bechtluft, P.1
-
21
-
-
77949765418
-
SecB--a chaperone dedicated to protein translocation
-
Bechtluft P., et al. SecB--a chaperone dedicated to protein translocation. Mol. Biosyst. 2010, 6:620-627.
-
(2010)
Mol. Biosyst.
, vol.6
, pp. 620-627
-
-
Bechtluft, P.1
-
22
-
-
36049046667
-
Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR
-
Gelis I., et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 2007, 131:756-769.
-
(2007)
Cell
, vol.131
, pp. 756-769
-
-
Gelis, I.1
-
23
-
-
75149188769
-
Mapping of the signal peptide-binding domain of Escherichia coli SecA using Forster resonance energy transfer
-
Auclair S.M., et al. Mapping of the signal peptide-binding domain of Escherichia coli SecA using Forster resonance energy transfer. Biochemistry 2010, 49:782-792.
-
(2010)
Biochemistry
, vol.49
, pp. 782-792
-
-
Auclair, S.M.1
-
24
-
-
70449534599
-
Conformational flexibility and peptide interaction of the translocation ATPase SecA
-
Zimmer J., Rapoport T.A. Conformational flexibility and peptide interaction of the translocation ATPase SecA. J. Mol. Biol. 2009, 394:606-612.
-
(2009)
J. Mol. Biol.
, vol.394
, pp. 606-612
-
-
Zimmer, J.1
Rapoport, T.A.2
-
25
-
-
77952850206
-
SecA: a tale of two protomers
-
Sardis M.F., Economou A. SecA: a tale of two protomers. Mol. Microbiol. 2010, 76:1070-1081.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 1070-1081
-
-
Sardis, M.F.1
Economou, A.2
-
26
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
Zimmer J., et al. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 2008, 455:936-943.
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
-
27
-
-
54049152377
-
Clamour for a Kiss
-
Economou A. Clamour for a Kiss. Nature 2008, 455:879-880.
-
(2008)
Nature
, vol.455
, pp. 879-880
-
-
Economou, A.1
-
28
-
-
34247214427
-
Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA
-
Alami M., et al. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 2007, 26:1995-2004.
-
(2007)
EMBO J.
, vol.26
, pp. 1995-2004
-
-
Alami, M.1
-
29
-
-
65249144552
-
Energy transduction in protein transport and the ATP hydrolytic cycle of SecA
-
Robson A., et al. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:5111-5116.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 5111-5116
-
-
Robson, A.1
-
30
-
-
77954733211
-
Reconstitution of the SecY translocon in nanodiscs
-
Dalal K., Duong F. Reconstitution of the SecY translocon in nanodiscs. Methods Mol. Biol. 2010, 619:145-156.
-
(2010)
Methods Mol. Biol.
, vol.619
, pp. 145-156
-
-
Dalal, K.1
Duong, F.2
-
31
-
-
73949146135
-
Mapping polypeptide interactions of the SecA ATPase during translocation
-
Bauer B.W., Rapoport T.A. Mapping polypeptide interactions of the SecA ATPase during translocation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:20800-20805.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 20800-20805
-
-
Bauer, B.W.1
Rapoport, T.A.2
-
32
-
-
54049142467
-
A role for the two-helix finger of the SecA ATPase in protein translocation
-
Erlandson K.J., et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 2008, 455:984-987.
-
(2008)
Nature
, vol.455
, pp. 984-987
-
-
Erlandson, K.J.1
-
33
-
-
0023878031
-
Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes
-
de Vrije T., et al. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 1988, 334:173-175.
-
(1988)
Nature
, vol.334
, pp. 173-175
-
-
de Vrije, T.1
-
34
-
-
0037009514
-
Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane
-
Or E., et al. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 2002, 21:4470-4479.
-
(2002)
EMBO J.
, vol.21
, pp. 4470-4479
-
-
Or, E.1
-
35
-
-
77953453090
-
The action of cardiolipin on the bacterial translocon
-
Gold V.A., et al. The action of cardiolipin on the bacterial translocon. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10044-10049.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 10044-10049
-
-
Gold, V.A.1
-
36
-
-
0025019705
-
The ATPase activity of SecA is regulated by acidic phospholipids SecY, and the leader and mature domains of precursor proteins
-
Lill R., et al. The ATPase activity of SecA is regulated by acidic phospholipids SecY, and the leader and mature domains of precursor proteins. Cell 1990, 60:271-280.
-
(1990)
Cell
, vol.60
, pp. 271-280
-
-
Lill, R.1
-
37
-
-
13844266603
-
The signal recognition particle and its interactions during protein targeting
-
Halic M., Beckmann R. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol. 2005, 15:116-125.
-
(2005)
Curr. Opin. Struct. Biol.
, vol.15
, pp. 116-125
-
-
Halic, M.1
Beckmann, R.2
-
38
-
-
79851515611
-
Protein translocation across the ER membrane
-
Zimmermann R., et al. Protein translocation across the ER membrane. Biochim. Biophys. Acta 2011, 1808:912-924.
-
(2011)
Biochim. Biophys. Acta
, vol.1808
, pp. 912-924
-
-
Zimmermann, R.1
-
40
-
-
34547929138
-
Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation
-
Shan S.O., et al. Conformational changes in the GTPase modules of the signal reception particle and its receptor drive initiation of protein translocation. J. Cell Biol. 2007, 178:611-620.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 611-620
-
-
Shan, S.O.1
-
41
-
-
36148937889
-
Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix
-
Parlitz R., et al. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J. Biol. Chem. 2007, 282:32176-32184.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 32176-32184
-
-
Parlitz, R.1
-
42
-
-
67549141512
-
Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor
-
Braig D., et al. Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J. Mol. Biol. 2009, 390:401-413.
-
(2009)
J. Mol. Biol.
, vol.390
, pp. 401-413
-
-
Braig, D.1
-
43
-
-
79953737877
-
The bacterial SRP Receptor SecA and the ribosome use overlapping binding sites on the SecY translocon
-
Kuhn P., et al. The bacterial SRP Receptor SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 2011, 12:563-578.
-
(2011)
Traffic
, vol.12
, pp. 563-578
-
-
Kuhn, P.1
-
44
-
-
77955881180
-
Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting
-
Lam V.Q., et al. Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J. Cell Biol. 2010, 190:623-635.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 623-635
-
-
Lam, V.Q.1
-
45
-
-
0031473345
-
Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex
-
Beckmann R., et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 1997, 278:2123-2126.
-
(1997)
Science
, vol.278
, pp. 2123-2126
-
-
Beckmann, R.1
-
46
-
-
0035798359
-
Architecture of the protein-conducting channel associated with the translating 80S ribosome
-
Beckmann R., et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 2001, 107:361-372.
-
(2001)
Cell
, vol.107
, pp. 361-372
-
-
Beckmann, R.1
-
47
-
-
16244373735
-
Architecture of the ribosome-channel complex derived from native membranes
-
Menetret J.F., et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 2005, 348:445-457.
-
(2005)
J. Mol. Biol.
, vol.348
, pp. 445-457
-
-
Menetret, J.F.1
-
48
-
-
71549167617
-
Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome
-
Becker T., et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 2009, 326:1369-1373.
-
(2009)
Science
, vol.326
, pp. 1369-1373
-
-
Becker, T.1
-
49
-
-
66849109240
-
The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins
-
Kramer G., et al. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 2009, 16:589-597.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 589-597
-
-
Kramer, G.1
-
50
-
-
37349107850
-
Ribosome binding of a single copy of the SecY complex: implications for protein translocation
-
Menetret J.F., et al. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol. Cell 2007, 28:1083-1092.
-
(2007)
Mol. Cell
, vol.28
, pp. 1083-1092
-
-
Menetret, J.F.1
-
51
-
-
78049253482
-
Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes
-
Egea P.F., Stroud R.M. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17182-17187.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 17182-17187
-
-
Egea, P.F.1
Stroud, R.M.2
-
52
-
-
0035873223
-
Projection structure and oligomeric properties of a bacterial core protein translocase
-
Collinson I., et al. Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J. 2001, 20:2462-2471.
-
(2001)
EMBO J.
, vol.20
, pp. 2462-2471
-
-
Collinson, I.1
-
53
-
-
0036500974
-
The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure
-
Bessonneau P., et al. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 2002, 21:995-1003.
-
(2002)
EMBO J.
, vol.21
, pp. 995-1003
-
-
Bessonneau, P.1
-
54
-
-
0034161573
-
SecYEG assembles into a tetramer to form the active protein translocation channel
-
Manting E.H., et al. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 2000, 19:852-861.
-
(2000)
EMBO J.
, vol.19
, pp. 852-861
-
-
Manting, E.H.1
-
55
-
-
0345196631
-
The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex
-
Meyer T.H., et al. The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. J. Mol. Biol. 1999, 285:1789-1800.
-
(1999)
J. Mol. Biol.
, vol.285
, pp. 1789-1800
-
-
Meyer, T.H.1
-
56
-
-
27644518797
-
The oligomeric distribution of SecYEG is altered by SecA and translocation ligands
-
Scheuring J., et al. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. J. Mol. Biol. 2005, 354:258-271.
-
(2005)
J. Mol. Biol.
, vol.354
, pp. 258-271
-
-
Scheuring, J.1
-
57
-
-
0037043724
-
Three-dimensional structure of the bacterial protein-translocation complex SecYEG
-
Breyton C., et al. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002, 418:662-665.
-
(2002)
Nature
, vol.418
, pp. 662-665
-
-
Breyton, C.1
-
58
-
-
54049151196
-
Conformational transition of Sec machinery inferred from bacterial SecYE structures
-
Tsukazaki T., et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 2008, 455:988-991.
-
(2008)
Nature
, vol.455
, pp. 988-991
-
-
Tsukazaki, T.1
-
59
-
-
0035980042
-
Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis
-
Veenendaal A.K., et al. Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J. Biol. Chem. 2001, 276:32559-32566.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 32559-32566
-
-
Veenendaal, A.K.1
-
60
-
-
79953022888
-
The oligomeric state and arrangement of the active bacterial translocon
-
Deville K., et al. The oligomeric state and arrangement of the active bacterial translocon. J. Biol. Chem. 2011, 286:4659-4669.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 4659-4669
-
-
Deville, K.1
-
61
-
-
33746905934
-
Identification of two interaction sites in SecY that are important for the functional interaction with SecA
-
van der Sluis E.O., et al. Identification of two interaction sites in SecY that are important for the functional interaction with SecA. J. Mol. Biol. 2006, 361:839-849.
-
(2006)
J. Mol. Biol.
, vol.361
, pp. 839-849
-
-
van der Sluis, E.O.1
-
62
-
-
27844444793
-
Structure of the E. coli protein-conducting channel bound to a translating ribosome
-
Mitra K., et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 2005, 438:318-324.
-
(2005)
Nature
, vol.438
, pp. 318-324
-
-
Mitra, K.1
-
63
-
-
79953302604
-
Mapping of the SecA-SecY and SecA-SecG interfaces by site-directed in vivo photocrosslinking
-
Das S., Oliver D.B. Mapping of the SecA-SecY and SecA-SecG interfaces by site-directed in vivo photocrosslinking. J. Biol. Chem. 2011, 286:12371-12380.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12371-12380
-
-
Das, S.1
Oliver, D.B.2
-
64
-
-
0026684458
-
Signal peptides open protein-conducting channels in E. coli
-
Simon S.M., Blobel G. Signal peptides open protein-conducting channels in E. coli. Cell 1992, 69:677-684.
-
(1992)
Cell
, vol.69
, pp. 677-684
-
-
Simon, S.M.1
Blobel, G.2
-
65
-
-
0026726165
-
Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane
-
Schiebel E., Wickner W. Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. J. Biol. Chem. 1992, 267:7505-7510.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 7505-7510
-
-
Schiebel, E.1
Wickner, W.2
-
66
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon K.S., et al. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 2005, 169:219-225.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
-
67
-
-
34248563028
-
Determining the conductance of the SecY protein translocation channel for small molecules
-
Saparov S.M., et al. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 2007, 26:501-509.
-
(2007)
Mol. Cell
, vol.26
, pp. 501-509
-
-
Saparov, S.M.1
-
68
-
-
67650077011
-
The SecY complex forms a channel capable of ionic discrimination
-
Dalal K., Duong F. The SecY complex forms a channel capable of ionic discrimination. EMBO Rep. 2009, 10:762-768.
-
(2009)
EMBO Rep.
, vol.10
, pp. 762-768
-
-
Dalal, K.1
Duong, F.2
-
69
-
-
77953669381
-
Modulation of the SecY channel permeability by pore mutations and trivalent cations
-
Dalal K., et al. Modulation of the SecY channel permeability by pore mutations and trivalent cations. Channels (Austin) 2010, 4:83-86.
-
(2010)
Channels (Austin)
, vol.4
, pp. 83-86
-
-
Dalal, K.1
-
70
-
-
34248523155
-
The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal
-
Li W., et al. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell 2007, 26:511-521.
-
(2007)
Mol. Cell
, vol.26
, pp. 511-521
-
-
Li, W.1
-
71
-
-
33748300566
-
The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability
-
Junne T., et al. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol. Biol. Cell 2006, 17:4063-4068.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 4063-4068
-
-
Junne, T.1
-
72
-
-
36349034451
-
Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology
-
Junne T., et al. Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology. J. Biol. Chem. 2007, 282:33201-33209.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 33201-33209
-
-
Junne, T.1
-
73
-
-
0742305352
-
The endoplasmic reticulum membrane is permeable to small molecules
-
Le Gall S., et al. The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol. Cell 2004, 15:447-455.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 447-455
-
-
Le Gall, S.1
-
74
-
-
58649116684
-
Constitutive, translation-independent opening of the protein-conducting channel in the endoplasmic reticulum
-
Wonderlin W.F. Constitutive, translation-independent opening of the protein-conducting channel in the endoplasmic reticulum. Pflugers Arch. 2009, 457:917-930.
-
(2009)
Pflugers Arch.
, vol.457
, pp. 917-930
-
-
Wonderlin, W.F.1
-
75
-
-
67650144829
-
Lanthanum ions inhibit the mammalian Sec61 complex in its channel dynamics and protein transport activity
-
Erdmann F., et al. Lanthanum ions inhibit the mammalian Sec61 complex in its channel dynamics and protein transport activity. FEBS Lett. 2009, 583:2359-2364.
-
(2009)
FEBS Lett.
, vol.583
, pp. 2359-2364
-
-
Erdmann, F.1
-
76
-
-
77953019740
-
The mammalian and yeast translocon complexes comprise a characteristic Sec61 channel
-
Erdmann F., et al. The mammalian and yeast translocon complexes comprise a characteristic Sec61 channel. Biochem. Biophys. Res. Commun. 2010, 396:714-720.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.396
, pp. 714-720
-
-
Erdmann, F.1
-
77
-
-
78650905148
-
Interaction of calmodulin with Sec61alpha limits Ca2+ leakage from the endoplasmic reticulum
-
Erdmann F., et al. Interaction of calmodulin with Sec61alpha limits Ca2+ leakage from the endoplasmic reticulum. EMBO J. 2011, 30:17-31.
-
(2011)
EMBO J.
, vol.30
, pp. 17-31
-
-
Erdmann, F.1
-
78
-
-
0032549767
-
BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation
-
Hamman B.D., et al. BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 1998, 92:747-758.
-
(1998)
Cell
, vol.92
, pp. 747-758
-
-
Hamman, B.D.1
-
79
-
-
0029017127
-
FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit
-
Kihara A., et al. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc. Natl. Acad. Sci. U.S.A. 1995, 92:4532-4536.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 4532-4536
-
-
Kihara, A.1
-
80
-
-
68449090734
-
Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY
-
van Stelten J., et al. Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 2009, 325:753-756.
-
(2009)
Science
, vol.325
, pp. 753-756
-
-
van Stelten, J.1
-
81
-
-
0028912195
-
Product of a new gene, syd, functionally interacts with SecY when overproduced in Escherichia coli
-
Shimoike T., et al. Product of a new gene, syd, functionally interacts with SecY when overproduced in Escherichia coli. J. Biol. Chem. 1995, 270:5519-5526.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 5519-5526
-
-
Shimoike, T.1
-
82
-
-
0032563219
-
Syd, a SecY-interacting protein, excludes SecA from the SecYE complex with an altered SecY24 subunit
-
Matsuo E., et al. Syd, a SecY-interacting protein, excludes SecA from the SecYE complex with an altered SecY24 subunit. J. Biol. Chem. 1998, 273:18835-18840.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 18835-18840
-
-
Matsuo, E.1
-
83
-
-
65549166427
-
Structure, binding, and activity of Syd, a SecY-interacting protein
-
Dalal K., et al. Structure, binding, and activity of Syd, a SecY-interacting protein. J. Biol. Chem. 2009, 284:7897-7902.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 7897-7902
-
-
Dalal, K.1
-
84
-
-
79955470189
-
Development of a high-throughput screening assay for the discovery of small-molecule SecA inhibitors
-
Segers K., et al. Development of a high-throughput screening assay for the discovery of small-molecule SecA inhibitors. Anal. Biochem. 2011, 413:90-96.
-
(2011)
Anal. Biochem.
, vol.413
, pp. 90-96
-
-
Segers, K.1
-
85
-
-
33751185584
-
Protein transport into the endoplasmic reticulum: mechanisms and pathologies
-
Zimmermann R., et al. Protein transport into the endoplasmic reticulum: mechanisms and pathologies. Trends Mol. Med. 2006, 12:567-573.
-
(2006)
Trends Mol. Med.
, vol.12
, pp. 567-573
-
-
Zimmermann, R.1
-
86
-
-
0030825974
-
Molecular mechanism of membrane protein integration into the endoplasmic reticulum
-
Mothes W., et al. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 1997, 89:523-533.
-
(1997)
Cell
, vol.89
, pp. 523-533
-
-
Mothes, W.1
-
87
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich S.U., et al. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 2000, 102:233-244.
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
-
88
-
-
13444262028
-
Recognition of transmembrane helices by the endoplasmic reticulum translocon
-
Hessa T., et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005, 433:377-381.
-
(2005)
Nature
, vol.433
, pp. 377-381
-
-
Hessa, T.1
-
89
-
-
77952378779
-
The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration
-
Junne T., et al. The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration. Mol. Biol. Cell 2010, 21:1662-1670.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 1662-1670
-
-
Junne, T.1
-
90
-
-
67650869802
-
Insertion of short transmembrane helices by the Sec61 translocon
-
Jaud S., et al. Insertion of short transmembrane helices by the Sec61 translocon. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:11588-11593.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 11588-11593
-
-
Jaud, S.1
-
91
-
-
74649086575
-
Membrane insertion of marginally hydrophobic transmembrane helices depends on sequence context
-
Hedin L.E., et al. Membrane insertion of marginally hydrophobic transmembrane helices depends on sequence context. J. Mol. Biol. 2010, 396:221-229.
-
(2010)
J. Mol. Biol.
, vol.396
, pp. 221-229
-
-
Hedin, L.E.1
-
92
-
-
0032472958
-
Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function
-
Duong F., Wickner W. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J. 1998, 17:696-705.
-
(1998)
EMBO J.
, vol.17
, pp. 696-705
-
-
Duong, F.1
Wickner, W.2
-
93
-
-
77950448361
-
Hydrophobically stabilized open state for the lateral gate of the Sec translocon
-
Zhang B., Miller T.F. Hydrophobically stabilized open state for the lateral gate of the Sec translocon. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:5399-5404.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 5399-5404
-
-
Zhang, B.1
Miller, T.F.2
-
94
-
-
0023676242
-
Topogenic signals in integral membrane proteins
-
von Heijne G., Gavel Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 1988, 174:671-678.
-
(1988)
Eur. J. Biochem.
, vol.174
, pp. 671-678
-
-
von Heijne, G.1
Gavel, Y.2
-
95
-
-
0042815085
-
Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane
-
Heinrich S.U., Rapoport T.A. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J. 2003, 22:3654-3663.
-
(2003)
EMBO J.
, vol.22
, pp. 3654-3663
-
-
Heinrich, S.U.1
Rapoport, T.A.2
-
96
-
-
38049058405
-
Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis
-
Kida Y., et al. Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis. J. Cell Biol. 2007, 179:1441-1452.
-
(2007)
J. Cell Biol.
, vol.179
, pp. 1441-1452
-
-
Kida, Y.1
-
97
-
-
0035942263
-
An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY
-
Mori H., Ito K. An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:5128-5133.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 5128-5133
-
-
Mori, H.1
Ito, K.2
|