메뉴 건너뛰기




Volumn 21, Issue 2, 2007, Pages 399-408

Forecasting surface water level fluctuations of lake van by artificial neural networks

Author keywords

Hydrologic budget; Lake level; Neural networks; Prediction

Indexed keywords

BACKPROPAGATION; MATHEMATICAL MODELS; NEURAL NETWORKS; WATER LEVELS;

EID: 33846458992     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-006-9022-6     Document Type: Article
Times cited : (155)

References (27)
  • 1
    • 0141750713 scopus 로고    scopus 로고
    • Triple diagram model of level fluctuations in Lake Van, Turkey
    • Altunkaynak A, Özger M, Şen Z (2003) Triple diagram model of level fluctuations in Lake Van, Turkey. Hydrol and Earth Sys Sci 7(2):235-244
    • (2003) Hydrol and Earth Sys Sci , vol.7 , Issue.2 , pp. 235-244
    • Altunkaynak, A.1    Özger, M.2    Şen, Z.3
  • 2
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A, Singh RD (2004) Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Water Resour Mngmt 18(3):285-300
    • (2004) Water Resour Mngmt , vol.18 , Issue.3 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artifical neural networks in hydrology I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artifical neural networks in hydrology I: Preliminary concepts. J Hydrol Engrg 5(2):115-123
    • (2000) J Hydrol Engrg , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artifical neural networks in hydrology I: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artifical neural networks in hydrology I: Hydrologic applications. J Hydrol Engrg 5(2):124-137
    • (2000) J Hydrol Engrg , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0036478261 scopus 로고    scopus 로고
    • A neural networks approach for deriving irrigation reservoir operating rules
    • Cancelliere A, Giuliano G, Ancarani A, Rossi G (2002) A neural networks approach for deriving irrigation reservoir operating rules. Water Resour Mngmt 16(1):71-88
    • (2002) Water Resour Mngmt , vol.16 , Issue.1 , pp. 71-88
    • Cancelliere, A.1    Giuliano, G.2    Ancarani, A.3    Rossi, G.4
  • 7
    • 0029309340 scopus 로고
    • Stress-straing modeling of sands using artificial neural networks
    • Ellis GW, Yao C, Zhao R, Penumadu D (1993) Stress-straing modeling of sands using artificial neural networks. J Geotech Engrg 121(5):429-435
    • (1993) J Geotech Engrg , vol.121 , Issue.5 , pp. 429-435
    • Ellis, G.W.1    Yao, C.2    Zhao, R.3    Penumadu, D.4
  • 8
    • 33846451887 scopus 로고    scopus 로고
    • Potential impacts on U.S. water resources, Climate change: Science, strategies, & solutions
    • Claussen E (ed) Virginia
    • Frederick KD, Gleick PH (2001) Potential impacts on U.S. water resources, Climate change: Science, strategies, & solutions, Claussen, E (ed), Pew center on global climate change, Virginia
    • (2001) Pew Center on Global Climate Change
    • Frederick, K.D.1    Gleick, P.H.2
  • 9
    • 0026838551 scopus 로고
    • Multiplicative seasonal ARIMA models for lake Erie and Lake Ontario water levels
    • Iruine KN, Eberthardt AK (1992) Multiplicative seasonal ARIMA models for lake Erie and Lake Ontario water levels. Water Resour Bull 28(3):385-396
    • (1992) Water Resour Bull , vol.28 , Issue.3 , pp. 385-396
    • Iruine, K.N.1    Eberthardt, A.K.2
  • 10
    • 0034306715 scopus 로고    scopus 로고
    • Setting up stage-discharge relations using ANN
    • Jain SK, Chalisgaonkar D (2000) Setting up stage-discharge relations using ANN. J Hydrol Engrg 5(4):428-433
    • (2000) J Hydrol Engrg , vol.5 , Issue.4 , pp. 428-433
    • Jain, S.K.1    Chalisgaonkar, D.2
  • 11
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks
    • Jain A, Varshney AK, Joshi UC (2001) Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks. Water Resour Managm 15(5):299-321
    • (2001) Water Resour Managm , vol.15 , Issue.5 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.C.3
  • 12
    • 0001500034 scopus 로고
    • Evaluation of hydrological forecasting system based on neural network model
    • International Association for Hydraulic Research, Delft, The Netherlands
    • Kang KW, Kim JH, Park CY, Ham KJ (1993) Evaluation of hydrological forecasting system based on neural network model. Proc. 25th Congress of Int. Assoc. for Hydr. Res., International Association for Hydraulic Research, Delft, The Netherlands, 257-264
    • (1993) Proc. 25th Congress of Int. Assoc. for Hydr. Res. , pp. 257-264
    • Kang, K.W.1    Kim, J.H.2    Park, C.Y.3    Ham, K.J.4
  • 13
    • 0342630961 scopus 로고    scopus 로고
    • The greatest soda-water lake in the world and how it is influenced by climatic change
    • Kadoǧlu M, Sen Z, Batur F (1997) The greatest soda-water lake in the world and how it is influenced by climatic change. Ann Geophysicae 15:1489-1497
    • (1997) Ann Geophysicae , vol.15 , pp. 1489-1497
    • Kadoǧlu, M.1    Sen, Z.2    Batur, F.3
  • 14
    • 0033167439 scopus 로고    scopus 로고
    • Cumulative departures model for lake-water fluctuations
    • Kadioǧlu M, Sen Z, Batur F (1999) Cumulative departures model for lake-water fluctuations. J Hydrol Engrg 4(3):245-250
    • (1999) J Hydrol Engrg , vol.4 , Issue.3 , pp. 245-250
    • Kadioǧlu, M.1    Sen, Z.2    Batur, F.3
  • 15
    • 0141849367 scopus 로고
    • Hydrography of lake Van and its drainage area
    • in the Geology of Lake Van, Degen ET, Kurtman F (eds) Rep. 169
    • Kempe S, Khoo F, Gürleyik V (1978) Hydrography of lake Van and its drainage area, pp. 30-45, in the Geology of Lake Van, Degen ET, Kurtman F (eds), The mineral research and exploration institute of Turkey, Rep. 169
    • (1978) The Mineral Research and Exploration Institute of Turkey , pp. 30-45
    • Kempe, S.1    Khoo, F.2    Gürleyik, V.3
  • 16
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural networks
    • Kumar DN, Raju KS, Sathish T (2004) River flow forecasting using recurrent neural networks. Water Resour Mngmt 18(2):143-161
    • (2004) Water Resour Mngmt , vol.18 , Issue.2 , pp. 143-161
    • Kumar, D.N.1    Raju, K.S.2    Sathish, T.3
  • 17
    • 0003220711 scopus 로고
    • Modeling the great lakes hydrologic-hydraulic system
    • Ph D Thesis, University of Wisconsin, Madison
    • Loucks FD (1989) Modeling the great lakes hydrologic-hydraulic system. Ph D Thesis, University of Wisconsin, Madison
    • (1989)
    • Loucks, F.D.1
  • 18
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch WS, Pitts W (1943) A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys 5:115-133
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 19
    • 12144278671 scopus 로고    scopus 로고
    • Decision support for watershed management using evolutionary algorithms
    • Muleta MK, Nicklow JW (2005) Decision support for watershed management using evolutionary algorithms. J Water Resour Plng and Mgmt 131(35):35-44
    • (2005) J Water Resour Plng and Mgmt , vol.131 , Issue.35 , pp. 35-44
    • Muleta, M.K.1    Nicklow, J.W.2
  • 20
    • 27744590254 scopus 로고    scopus 로고
    • Discharge rating curve extension - A new approach
    • Sivapragasam C, Muttil N (2005) Discharge rating curve extension - A new approach. Water Resour Mngmt 19(5):505-520
    • (2005) Water Resour Mngmt , vol.19 , Issue.5 , pp. 505-520
    • Sivapragasam, C.1    Muttil, N.2
  • 21
    • 0342333994 scopus 로고
    • Climatic changes during the 20th century on the Laurentian Great Lakes and their impacts on hydrologic regime
    • NATO Adv Study Inst, Deauaille, France
    • Slivitzky M, Mathier L (1993) Climatic changes during the 20th century on the Laurentian Great Lakes and their impacts on hydrologic regime, NATO Adv Study Inst, Deauaille, France
    • (1993)
    • Slivitzky, M.1    Mathier, L.2
  • 22
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks for modeling nitrate concentrations in rivers
    • Suen J, Eheart JW (2003) Evaluation of neural networks for modeling nitrate concentrations in rivers. J Water Resour Plan Manag 129(6):505-510
    • (2003) J Water Resour Plan Manag , vol.129 , Issue.6 , pp. 505-510
    • Suen, J.1    Eheart, J.W.2
  • 23
    • 0033484238 scopus 로고    scopus 로고
    • Cluster regression model and level fluctuation features of Van Lake, Turkey
    • Şen Z, Kadioǧlu M, Batur E (1999) Cluster regression model and level fluctuation features of Van Lake, Turkey. Ann Geophysicae 17:273-279
    • (1999) Ann Geophysicae , vol.17 , pp. 273-279
    • Şen, Z.1    Kadioǧlu, M.2    Batur, E.3
  • 24
    • 0342803821 scopus 로고    scopus 로고
    • Stochastic modeling of the Van Lake monthly fluctuations in Turkey
    • Şen Z, Kadioǧlu M, Batur E (2000) Stochastic modeling of the Van Lake monthly fluctuations in Turkey. Theor and Appl Climatol 65:99-110
    • (2000) Theor and Appl Climatol , vol.65 , pp. 99-110
    • Şen, Z.1    Kadioǧlu, M.2    Batur, E.3
  • 25
    • 4143056891 scopus 로고    scopus 로고
    • Sediment concentration and its prediction by perceptron kalman filtering procedure
    • Şen Z, Altunkaynak A, Özger M (2004) Sediment concentration and its prediction by perceptron kalman filtering procedure. J Hydr Engrg 130(8):816-826
    • (2004) J Hydr Engrg , vol.130 , Issue.8 , pp. 816-826
    • Şen, Z.1    Altunkaynak, A.2    Özger, M.3
  • 26
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation, Parallel disributed processing
    • Rumelhart DE, McClelland JL (eds), MIT Press, Cambridge, Mass
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation, Parallel disributed processing, Vol.1, Rumelhart DE, McClelland JL (eds), MIT Press, Cambridge, Mass, 318-362
    • (1986) , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 27
    • 0030778350 scopus 로고    scopus 로고
    • Predicting caspian sea surface water level by ANN and ARIMA models
    • Vaziri M (1997) Predicting caspian sea surface water level by ANN and ARIMA models. J Wtrwy, Port, Coast, Oc Engrg, 123(4):158-162
    • (1997) J Wtrwy, Port, Coast, Oc Engrg , vol.123 , Issue.4 , pp. 158-162
    • Vaziri, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.