-
1
-
-
0023510298
-
Evolutionary and somatic selection of tghe antibody repertoire in the mouse
-
Rajewsky K, Forster I, Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science. 1987;238:1088-94. (Pubitemid 18011949)
-
(1987)
Science
, vol.238
, Issue.4830
, pp. 1088-1094
-
-
Rajewsky, K.1
Forster, I.2
Cumano, A.3
-
2
-
-
42649123314
-
Mechanism and regulation of class switch recombination
-
DOI 10.1146/annurev.immunol.26.021607.090248
-
Stavnezer J, Guikema JE, Schrader CE. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 2008;26:261-92. (Pubitemid 351600377)
-
(2008)
Annual Review of Immunology
, vol.26
, pp. 261-292
-
-
Stavnezer, J.1
Guikema, J.E.J.2
Schrader, C.E.3
-
3
-
-
42649124572
-
The biochemistry of somatic hypermutation
-
DOI 10.1146/annurev.immunol.26.021607.090236
-
Peled JU, et al. The biochemistry of somatic hypermutation. Annu Rev Immunol. 2008;26:481-511. (Pubitemid 351600383)
-
(2008)
Annual Review of Immunology
, vol.26
, pp. 481-511
-
-
Peled, J.U.1
Fei, L.K.2
Iglesias-Ussel, M.D.3
Roa, S.4
Kalis, S.L.5
Goodman, M.F.6
Scharff, M.D.7
-
4
-
-
39049145798
-
Immunoglobulin somatic hypermutation
-
Teng G, Papavasiliou FN. Immunoglobulin somatic hypermutation. Annu Rev Genet. 2007;41:107-20.
-
(2007)
Annu Rev Genet
, vol.41
, pp. 107-120
-
-
Teng, G.1
Papavasiliou, F.N.2
-
5
-
-
34249790004
-
Molecular mechanisms of antibody somatic hypermutation
-
Di Noia JM, Neuberger MS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 2007;76:1-22.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 1-22
-
-
Di Noia, J.M.1
Neuberger, M.S.2
-
6
-
-
70350464349
-
A coming-of-age story: Activation-induced cytidine deaminase turns 10
-
Delker RK, Fugmann SD, Papavasiliou FN. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol. 2009;10:1147-53.
-
(2009)
Nat Immunol
, vol.10
, pp. 1147-1153
-
-
Delker, R.K.1
Fugmann, S.D.2
Papavasiliou, F.N.3
-
7
-
-
0000590741
-
Genes and antibodies
-
Lederberg J. Genes and antibodies. Science. 1959;129:1649-53.
-
(1959)
Science
, vol.129
, pp. 1649-1653
-
-
Lederberg, J.1
-
8
-
-
0014019617
-
Origin of antibody variation
-
Brenner S, Milstein C. Origin of antibody variation. Nature. 1966;211:242-3.
-
(1966)
Nature
, vol.211
, pp. 242-243
-
-
Brenner, S.1
Milstein, C.2
-
9
-
-
0033603340
-
Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells
-
Muramatsu M, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274:18470-6.
-
(1999)
J Biol Chem
, vol.274
, pp. 18470-18476
-
-
Muramatsu, M.1
-
10
-
-
0034268780
-
Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme
-
Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102:553-63.
-
(2000)
Cell
, vol.102
, pp. 553-563
-
-
Muramatsu, M.1
Kinoshita, K.2
Fagarasan, S.3
Yamada, S.4
Shinkai, Y.5
Honjo, T.6
-
11
-
-
0034264851
-
Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2)
-
Revy P, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell. 2000;102:565-75.
-
(2000)
Cell
, vol.102
, pp. 565-575
-
-
Revy, P.1
-
12
-
-
18644363009
-
HUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup
-
DOI 10.1074/jbc.M207107200
-
Kavli B, et al. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem. 2002;277:39926-36. (Pubitemid 35190979)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.42
, pp. 39926-39936
-
-
Kavli, B.1
Sundheim, O.2
Akbari, M.3
Otterlei, M.4
Nilsen, H.5
Skorpen, F.6
Aas, P.A.7
Hagen, L.8
Krokan, H.E.9
Slupphaug, G.10
-
13
-
-
60049089790
-
Review. Uracil in DNA and its processing by different DNA glycosylases
-
Visnes T, et al. Review. Uracil in DNA and its processing by different DNA glycosylases. Philos Trans R Soc Lond B Biol Sci. 2009;364:563-8.
-
(2009)
Philos Trans R Soc Lond B Biol Sci
, vol.364
, pp. 563-568
-
-
Visnes, T.1
-
14
-
-
58049166854
-
High-fidelity correction of genomic uracil by human mismatch repair activities
-
Larson ED, Bednarski DW, Maizels N. High-fidelity correction of genomic uracil by human mismatch repair activities. BMC Mol Biol. 2008;9:94.
-
(2008)
BMC Mol Biol
, vol.9
, pp. 94
-
-
Larson, E.D.1
Bednarski, D.W.2
Maizels, N.3
-
15
-
-
57649133954
-
Hypermutation at A/T sites during G.U mismatch repair in vitro by human B-cell lysates
-
Pham P, Zhang K, Goodman MF. Hypermutation at A/T sites during G.U mismatch repair in vitro by human B-cell lysates. J Biol Chem. 2008;283:31754-62.
-
(2008)
J Biol Chem
, vol.283
, pp. 31754-31762
-
-
Pham, P.1
Zhang, K.2
Goodman, M.F.3
-
16
-
-
41149153412
-
DNA polymerases in adaptive immunity
-
Weill JC, Reynaud CA. DNA polymerases in adaptive immunity. Nat Rev Immunol. 2008;8:302-12.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 302-312
-
-
Weill, J.C.1
Reynaud, C.A.2
-
17
-
-
22144485580
-
The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions
-
DOI 10.1038/ni1215
-
Yabuki M, Fujii MM, Maizels N. The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions. Nat Immunol. 2005;6:730-6. (Pubitemid 41716747)
-
(2005)
Nature Immunology
, vol.6
, Issue.7
, pp. 730-736
-
-
Yabuki, M.1
Fujii, M.M.2
Maizels, N.3
-
18
-
-
34548526067
-
Strand-biased spreading of mutations during somatic hypermutation
-
Unniraman S, Schatz DG. Strand-biased spreading of mutations during somatic hypermutation. Science. 2007;317:1227-30.
-
(2007)
Science
, vol.317
, pp. 1227-1230
-
-
Unniraman, S.1
Schatz, D.G.2
-
19
-
-
0037926476
-
Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation
-
DOI 10.1038/nature01760
-
Pham P, Bransteitter R, Petruska J, Goodman MF. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature. 2003;424:103-7. (Pubitemid 36834850)
-
(2003)
Nature
, vol.424
, Issue.6944
, pp. 103-107
-
-
Pham, P.1
Bransteitter, R.2
Petruska, J.3
Goodman, M.F.4
-
20
-
-
70249093627
-
The concerted action of Msh2 and UNG stimulates somatic hypermutation at A. T base pairs
-
Frieder D, Larijani M, Collins C, Shulman M, Martin A. The concerted action of Msh2 and UNG stimulates somatic hypermutation at A. T base pairs. Mol Cell Biol. 2009;29:5148-57.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 5148-5157
-
-
Frieder, D.1
Larijani, M.2
Collins, C.3
Shulman, M.4
Martin, A.5
-
21
-
-
63049129975
-
Pol zeta ablation in B cells impairs the germinal center reaction, class switch recombination, DNA break repair, and genome stability
-
Schenten D, et al. Pol zeta ablation in B cells impairs the germinal center reaction, class switch recombination, DNA break repair, and genome stability. J Exp Med. 2009;206:477-90.
-
(2009)
J Exp Med.
, vol.206
, pp. 477-490
-
-
Schenten, D.1
-
23
-
-
34447288912
-
Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination
-
DOI 10.1084/jem.20070255
-
Soulas-Sprauel P, et al. Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J Exp Med. 2007;204:1717-27. (Pubitemid 47048036)
-
(2007)
Journal of Experimental Medicine
, vol.204
, Issue.7
, pp. 1717-1727
-
-
Soulas-Sprauel, P.1
Le, G.G.2
Rivera-Munoz, P.3
Abramowski, V.4
Olivier-Martin, C.5
Goujet-Zalc, C.6
Charneau, P.7
De Villartay, J.-P.8
-
24
-
-
34748863465
-
IgH class switching and translocations use a robust non-classical end-joining pathway
-
DOI 10.1038/nature06020, PII NATURE06020
-
Yan CT, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007;449:478-82. (Pubitemid 47509538)
-
(2007)
Nature
, vol.449
, Issue.7161
, pp. 478-482
-
-
Yan, C.T.1
Boboila, C.2
Souza, E.K.3
Franco, S.4
Hickernell, T.R.5
Murphy, M.6
Gumaste, S.7
Geyer, M.8
Zarrin, A.A.9
Manis, J.P.10
Rajewsky, K.11
Alt, F.W.12
-
25
-
-
0037388165
-
Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase
-
DOI 10.1073/pnas.0730835100
-
Bransteitter R, Pham P, Scharff MD, Goodman MF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA. 2003;100:4102-7. (Pubitemid 36418164)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.7
, pp. 4102-4107
-
-
Bransteitter, R.1
Pham, P.2
Scharfft, M.D.3
Goodman, M.F.4
-
27
-
-
0037561998
-
AID mediates hypermutation by deaminating single stranded DNA
-
DOI 10.1084/jem.20030481
-
Dickerson SK, Market E, Besmer E, Papavasiliou FN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med. 2003;197:1291-6. (Pubitemid 36617775)
-
(2003)
Journal of Experimental Medicine
, vol.197
, Issue.10
, pp. 1291-1296
-
-
Dickerson, S.K.1
Market, E.2
Besmer, E.3
Papavasiliou, F.N.4
-
28
-
-
0037452080
-
Transcription-targeted DNA deamination by the AID antibody diversification enzyme
-
DOI 10.1038/nature01574
-
Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature. 2003;422:726-30. (Pubitemid 36514112)
-
(2003)
Nature
, vol.422
, Issue.6933
, pp. 726-730
-
-
Chaudhuri, J.1
Tian, M.2
Khuong, C.3
Chua, K.4
Pinaud, E.5
Alt, F.W.6
-
29
-
-
33646862623
-
The transcription elongation complex directs activation-induced cytidine deaminase-mediated DNA deamination
-
DOI 10.1128/MCB.02375-05
-
Besmer E, Market E, Papavasiliou FN. The transcription elongation complex directs activation-induced cytidine deaminase-mediated DNA deamination. Mol Cell Biol. 2006;26:4378-85. (Pubitemid 43788036)
-
(2006)
Molecular and Cellular Biology
, vol.26
, Issue.11
, pp. 4378-4385
-
-
Besmer, E.1
Market, E.2
Papavasiliou, F.N.3
-
30
-
-
66049129496
-
The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription
-
Shen HM, et al. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. J Exp Med. 2009;206:1057-71.
-
(2009)
J Exp Med
, vol.206
, pp. 1057-1071
-
-
Shen, H.M.1
-
31
-
-
0038293484
-
Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand
-
DOI 10.1038/ni920
-
Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol. 2003;4:452-6. (Pubitemid 36603291)
-
(2003)
Nature Immunology
, vol.4
, Issue.5
, pp. 452-456
-
-
Ramiro, A.R.1
Stavropoulos, P.2
Jankovic, M.3
Nussenzweig, M.C.4
-
32
-
-
0037076967
-
AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts
-
DOI 10.1126/science.1071556
-
Yoshikawa K, et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science. 2002;296:2033-6. (Pubitemid 34627527)
-
(2002)
Science
, vol.296
, Issue.5575
, pp. 2033-2036
-
-
Yoshikawa, K.1
Okazaki, I.-M.2
Eto, T.3
Kinoshita, K.4
Muramatsu, M.5
Nagaoka, H.6
Honjo, T.7
-
33
-
-
0037126038
-
Somatic hypermutation of the AID transgene in B and non-B cells
-
Martin A, Scharff MD. Somatic hypermutation of the AID transgene in B and non-B cells. Proc Natl Acad Sci USA. 2002;99:12304-8.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 12304-12308
-
-
Martin, A.1
Scharff, M.D.2
-
34
-
-
0037881911
-
Constitutive expression of AID leads to tumorigenesis
-
Okazaki IM, et al. Constitutive expression of AID leads to tumorigenesis. J Exp Med. 2003;197:1173-81.
-
(2003)
J Exp Med.
, vol.197
, pp. 1173-1181
-
-
Okazaki, I.M.1
-
35
-
-
0037650190
-
R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells
-
DOI 10.1038/ni919
-
Yu K, Chedin F, Hsieh CL, Wilson TE, Lieber MR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol. 2003;4:442-51. (Pubitemid 36592437)
-
(2003)
Nature Immunology
, vol.4
, Issue.5
, pp. 442-451
-
-
Yu, K.1
Chedin, F.2
Hsieh, C.-L.3
Wilson, T.E.4
Lieber, M.R.5
-
36
-
-
33645527783
-
Downstream boundary of chromosomal R-loops at murine switch regions: Implications for the mechanism of class switch recombination
-
Huang FT, Yu K, Hsieh CL, Lieber MR. Downstream boundary of chromosomal R-loops at murine switch regions: implications for the mechanism of class switch recombination. Proc Natl Acad Sci USA. 2006;103:5030-5.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 5030-5035
-
-
Huang, F.T.1
Yu, K.2
Hsieh, C.L.3
Lieber, M.R.4
-
37
-
-
34547873538
-
Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain Smu class switch region
-
Huang FT, et al. Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain Smu class switch region. Mol Cell Biol. 2007;27:5921-32.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 5921-5932
-
-
Huang, F.T.1
-
38
-
-
4344700569
-
Replication protein A interacts with AID to promote deamination of somatic hypermutation targets
-
DOI 10.1038/nature02821
-
Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature. 2004;430:992-8. (Pubitemid 39128379)
-
(2004)
Nature
, vol.430
, Issue.7003
, pp. 992-998
-
-
Chaudhuri, J.1
Khuong, C.2
Alt, F.W.3
-
39
-
-
0025630537
-
Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene
-
Lebecque SG, Gearhart PJ. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J Exp Med. 1990;172:1717-27.
-
(1990)
J Exp Med
, vol.172
, pp. 1717-1727
-
-
Lebecque, S.G.1
Gearhart, P.J.2
-
40
-
-
27944493275
-
The very 5′ end and the constant region of Ig genes are spared from somatic mutation because AID does not access these regions
-
DOI 10.1084/jem.20051604
-
Longerich S, Tanaka A, Bozek G, Nicolae D, Storb U. The very 5′ end and the constant region of Ig genes are spared from somatic mutation because AID does not access these regions. J Exp Med. 2005;202:1443-54. (Pubitemid 41668746)
-
(2005)
Journal of Experimental Medicine
, vol.202
, Issue.10
, pp. 1443-1454
-
-
Longerich, S.1
Tanaka, A.2
Bozek, G.3
Nicolae, D.4
Storb, U.5
-
41
-
-
0030063726
-
Somatic hypermutation of immunoglobulin genes is linked to transcription initiation
-
DOI 10.1016/S1074-7613(00)80298-8
-
Peters A, Storb U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity. 1996;4:57-65. (Pubitemid 26054936)
-
(1996)
Immunity
, vol.4
, Issue.1
, pp. 57-65
-
-
Peters, A.1
Storb, U.2
-
42
-
-
0035881820
-
The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially
-
DOI 10.1093/emboj/20.16.4570
-
Rada C, Milstein C. The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J. 2001;20:4570-6. (Pubitemid 32772050)
-
(2001)
EMBO Journal
, vol.20
, Issue.16
, pp. 4570-4576
-
-
Rada, C.1
Milstein, C.2
-
43
-
-
0346362489
-
Transcription-Coupled Events Associating with Immunoglobulin Switch Region Chromatin
-
DOI 10.1126/science.1092481
-
Nambu Y, et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science. 2003;302:2137-40. (Pubitemid 38017949)
-
(2003)
Science
, vol.302
, Issue.5653
, pp. 2137-2140
-
-
Nambu, Y.1
Sugai, M.2
Gonda, H.3
Lee, C.-G.4
Katakai, T.5
Agata, Y.6
Yokota, Y.7
Shimizu, A.8
-
44
-
-
33745309534
-
E2A expression stimulates Ig hypermutation
-
Schoetz U, Cervelli M, Wang YD, Fiedler P, Buerstedde JM. E2A expression stimulates Ig hypermutation. J Immunol. 2006;177:395-400. (Pubitemid 43939151)
-
(2006)
Journal of Immunology
, vol.177
, Issue.1
, pp. 395-400
-
-
Schoetz, U.1
Cervelli, M.2
Wang, Y.-D.3
Fiedler, P.4
Buerstedde, J.-M.5
-
45
-
-
0041931059
-
The e box motif CAGGTG enhances somatic hypermutation without enhancing transcription
-
DOI 10.1016/S1074-7613(03)00204-8
-
Michael N, Shen HM, Longerich S, Kim N, Longacre A, Storb U. The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity. 2003;19:235-42. (Pubitemid 37011338)
-
(2003)
Immunity
, vol.19
, Issue.2
, pp. 235-242
-
-
Michael, N.1
Shen, H.M.2
Longerich, S.3
Kim, N.4
Longacre, A.5
Storb, U.6
-
46
-
-
39149099085
-
Two levels of protection for the B cell genome during somatic hypermutation
-
DOI 10.1038/nature06547, PII NATURE06547
-
Liu M, et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature. 2008;451:841-5. (Pubitemid 351253166)
-
(2008)
Nature
, vol.451
, Issue.7180
, pp. 841-845
-
-
Liu, M.1
Duke, J.L.2
Richter, D.J.3
Vinuesa, C.G.4
Goodnow, C.C.5
Kleinstein, S.H.6
Schatz, D.G.7
-
47
-
-
77956345401
-
14-3-3 adaptor proteins recruit AID to 5′-AGCT-3′-rich switch regions for class switch recombination
-
Xu Z, et al. 14-3-3 adaptor proteins recruit AID to 5′-AGCT- 3′-rich switch regions for class switch recombination. Nat Struct Mol Biol. 2010;17:1124-35.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1124-1135
-
-
Xu, Z.1
-
48
-
-
77957239251
-
Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5
-
Pavri R, et al. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell. 2010;143:122-33.
-
(2010)
Cell
, vol.143
, pp. 122-133
-
-
Pavri, R.1
-
49
-
-
42149132725
-
Cutting edge: A cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus
-
Kothapalli N, Norton DD, Fugmann SD. Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J Immunol. 2008;180:2019-23.
-
(2008)
J Immunol
, vol.180
, pp. 2019-2023
-
-
Kothapalli, N.1
Norton, D.D.2
Fugmann, S.D.3
-
50
-
-
59249094658
-
A cis-acting diversification activator both necessary and sufficient for AIDmediated hypermutation
-
Blagodatski A, et al. A cis-acting diversification activator both necessary and sufficient for AIDmediated hypermutation. PLoS Genet. 2009;5:e1000332.
-
(2009)
PLoS Genet
, vol.5
-
-
Blagodatski, A.1
-
51
-
-
73349098453
-
Switch recombination and somatic hypermutation are controlled by the heavy chain 3' enhancer region
-
Dunnick WA, et al. Switch recombination and somatic hypermutation are controlled by the heavy chain 3' enhancer region. J Exp Med. 2009;206:2613-23.
-
(2009)
J Exp Med
, vol.206
, pp. 2613-2623
-
-
Dunnick, W.A.1
-
52
-
-
33748625711
-
AID and Igh switch region-Myc chromosomal translocations
-
DOI 10.1016/j.dnarep.2006.05.019, PII S1568786406001601, Mechanisms of Chromosomal Translocations
-
Unniraman S, Schatz DG. AID and Igh switch region-Myc chromosomal translocations. DNA Repair (Amst). 2006;5:1259-64. (Pubitemid 44376450)
-
(2006)
DNA Repair
, vol.5
, Issue.9-10
, pp. 1259-1264
-
-
Unniraman, S.1
Schatz, D.G.2
-
53
-
-
0033547310
-
Cellular origin of human B-cell lymphomas
-
DOI 10.1056/NEJM199911113412007
-
Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341:1520-9. (Pubitemid 29526356)
-
(1999)
New England Journal of Medicine
, vol.341
, Issue.20
, pp. 1520-1529
-
-
Kuppers, R.1
Klein, U.2
Hansmann, M.-L.3
Rajewsky, K.4
-
54
-
-
63149179802
-
Balancing AID and DNA repair during somatic hypermutation
-
Liu M, Schatz DG. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 2009;30:173-81.
-
(2009)
Trends Immunol
, vol.30
, pp. 173-181
-
-
Liu, M.1
Schatz, D.G.2
-
55
-
-
77955921194
-
Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination
-
Hasham MG, et al. Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol. 2010;11:820-6.
-
(2010)
Nat Immunol
, vol.11
, pp. 820-826
-
-
Hasham, M.G.1
-
56
-
-
67349255210
-
CpG islands - 'a rough guide'
-
Illingworth RS, Bird AP. CpG islands - 'a rough guide'. FEBS Lett. 2009;583:1713-20.
-
(2009)
FEBS Lett
, vol.583
, pp. 1713-1720
-
-
Illingworth, R.S.1
Bird, A.P.2
-
57
-
-
33751505540
-
DNA methylation profiling of human chromosomes 6, 20 and 22
-
Eckhardt F, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38:1378-85.
-
(2006)
Nat Genet
, vol.38
, pp. 1378-1385
-
-
Eckhardt, F.1
-
58
-
-
23044514626
-
Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells
-
DOI 10.1038/ng1598
-
Weber M, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37:853-62. (Pubitemid 41077111)
-
(2005)
Nature Genetics
, vol.37
, Issue.8
, pp. 853-862
-
-
Weber, M.1
Davies, J.J.2
Wittig, D.3
Oakeley, E.J.4
Haase, M.5
Lam, W.L.6
Schubeler, D.7
-
59
-
-
2042437650
-
Initial sequencing and analysis of the human genome
-
DOI 10.1038/35057062
-
Lander ES, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860-921. (Pubitemid 32165345)
-
(2001)
Nature
, vol.409
, Issue.6822
, pp. 860-921
-
-
Lander, E.S.1
Linton, L.M.2
Birren, B.3
Nusbaum, C.4
Zody, M.C.5
Baldwin, J.6
Devon, K.7
Dewar, K.8
Doyle, M.9
Fitzhugh, W.10
Funke, R.11
Gage, D.12
Harris, K.13
Heaford, A.14
Howland, J.15
Kann, L.16
Lehoczky, J.17
Levine, R.18
McEwan, P.19
McKernan, K.20
Meldrim, J.21
Mesirov, J.P.22
Miranda, C.23
Morris, W.24
Naylor, J.25
Raymond, C.26
Rosetti, M.27
Santos, R.28
Sheridan, A.29
Sougnez, C.30
Stange-Thomann, N.31
Stojanovic, N.32
Subramanian, A.33
Wyman, D.34
Rogers, J.35
Sulston, J.36
Ainscough, R.37
Beck, S.38
Bentley, D.39
Burton, J.40
Clee, C.41
Carter, N.42
Coulson, A.43
Deadman, R.44
Deloukas, P.45
Dunham, A.46
Dunham, I.47
Durbin, R.48
French, L.49
Grafham, D.50
Gregory, S.51
Hubbard, T.52
Humphray, S.53
Hunt, A.54
Jones, M.55
Lloyd, C.56
McMurray, A.57
Matthews, L.58
Mercer, S.59
Milne, S.60
Mullikin, J.C.61
Mungall, A.62
Plumb, R.63
Ross, M.64
Shownkeen, R.65
Sims, S.66
Waterston, R.H.67
Wilson, R.K.68
Hillier, L.W.69
McPherson, J.D.70
Marra, M.A.71
Mardis, E.R.72
Fulton, L.A.73
Chinwalla, A.T.74
Pepin, K.H.75
Gish, W.R.76
Chissoe, S.L.77
Wendl, M.C.78
Delehaunty, K.D.79
Miner, T.L.80
Delehaunty, A.81
Kramer, J.B.82
Cook, L.L.83
Fulton, R.S.84
Johnson, D.L.85
Minx, P.J.86
Clifton, S.W.87
Hawkins, T.88
Branscomb, E.89
Predki, P.90
Richardson, P.91
Wenning, S.92
Slezak, T.93
Doggett, N.94
Cheng, J.-F.95
Olsen, A.96
Lucas, S.97
Elkin, C.98
Uberbacher, E.99
more..
-
61
-
-
0022000776
-
A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA
-
Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40:91-9.
-
(1985)
Cell
, vol.40
, pp. 91-99
-
-
Bird, A.1
Taggart, M.2
Frommer, M.3
Miller, O.J.4
Macleod, D.5
-
62
-
-
31944432339
-
A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters
-
Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA. 2006;103:1412-7.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 1412-1417
-
-
Saxonov, S.1
Berg, P.2
Brutlag, D.L.3
-
63
-
-
45449114804
-
The Colorful History of Active DNA Demethylation
-
DOI 10.1016/j.cell.2008.06.009, PII S0092867408007617
-
Ooi SK, Bestor TH. The colorful history of active DNA demethylation. Cell. 2008;133:1145-8. (Pubitemid 351852922)
-
(2008)
Cell
, vol.133
, Issue.7
, pp. 1145-1148
-
-
Ooi, S.K.T.1
Bestor, T.H.2
-
64
-
-
77956095231
-
Active DNA demethylation: Many roads lead to Rome
-
Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11:607-20.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 607-620
-
-
Wu, S.C.1
Zhang, Y.2
-
65
-
-
0032188992
-
Modulation of plasmid DNA methylation and expression in zebrafish embryos
-
DOI 10.1093/nar/26.19.4454
-
Collas P. Modulation of plasmid DNA methylation and expression in zebrafish embryos. Nucleic Acids Res. 1998;26:4454-61. (Pubitemid 28442139)
-
(1998)
Nucleic Acids Research
, vol.26
, Issue.19
, pp. 4454-4461
-
-
Collas, P.1
-
66
-
-
10644282845
-
Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: Implications for epigenetic reprogramming
-
DOI 10.1074/jbc.M407695200
-
Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem. 2004;279:52353-60. (Pubitemid 39656611)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.50
, pp. 52353-52360
-
-
Morgan, H.D.1
Dean, W.2
Coker, H.A.3
Reik, W.4
Petersen-Mahrt, S.K.5
-
67
-
-
57649196594
-
DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45
-
Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008;135:1201-12.
-
(2008)
Cell
, vol.135
, pp. 1201-1212
-
-
Rai, K.1
Huggins, I.J.2
James, S.R.3
Karpf, A.R.4
Jones, D.A.5
Cairns, B.R.6
-
68
-
-
66449083819
-
Conserved DNA methylation in Gadd45a(-/-) mice
-
Engel N, et al. Conserved DNA methylation in Gadd45a(-/-) mice. Epigenetics. 2009;4:98-9.
-
(2009)
Epigenetics
, vol.4
, pp. 98-99
-
-
Engel, N.1
-
69
-
-
0037135130
-
Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice
-
DOI 10.1126/science.1073354
-
Millar CB, et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science. 2002;297:403-5. (Pubitemid 34790770)
-
(2002)
Science
, vol.297
, Issue.5580
, pp. 403-405
-
-
Millar, C.B.1
Guy, J.2
Sansom, O.J.3
Selfridge, J.4
MacDougall, E.5
Hendrich, B.6
Keightley, P.D.7
Bishop, S.M.8
Clarke, A.R.9
Bird, A.10
-
70
-
-
77649104794
-
Reprogramming towards pluripotency requires AID-dependent DNA demethylation
-
Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463:1042-7.
-
(2010)
Nature
, vol.463
, pp. 1042-1047
-
-
Bhutani, N.1
Brady, J.J.2
Damian, M.3
Sacco, A.4
Corbel, S.Y.5
Blau, H.M.6
-
71
-
-
77249148019
-
Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency
-
Popp C, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463:1101-5.
-
(2010)
Nature
, vol.463
, pp. 1101-1105
-
-
Popp, C.1
-
72
-
-
77954345408
-
Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway
-
Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science. 2010;329:78-82.
-
(2010)
Science
, vol.329
, pp. 78-82
-
-
Hajkova, P.1
Jeffries, S.J.2
Lee, C.3
Miller, N.4
Jackson, S.P.5
Ma, S.6
-
73
-
-
77953466536
-
Nuclear reprogramming to a pluripotent state by three approaches
-
Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature. 2010;465:704-12.
-
(2010)
Nature
, vol.465
, pp. 704-712
-
-
Yamanaka, S.1
Blau, H.M.2
-
74
-
-
33747195353
-
Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors
-
DOI 10.1016/j.cell.2006.07.024, PII S0092867406009767
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-76. (Pubitemid 44233629)
-
(2006)
Cell
, vol.126
, Issue.4
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
|