메뉴 건너뛰기




Volumn 18, Issue 3, 2011, Pages 364-371

Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins

Author keywords

[No Author keywords available]

Indexed keywords

CLOSTRIDIUM DIFFICILE TOXIN A; CLOSTRIDIUM DIFFICILE TOXIN B; CYSTEINE PROTEINASE; PHYTIC ACID; TRYPTOPHAN;

EID: 79952360670     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.1990     Document Type: Article
Times cited : (55)

References (60)
  • 1
    • 20344370764 scopus 로고    scopus 로고
    • Allosteric mechanisms of signal transduction
    • DOI 10.1126/science.1108595
    • Changeux, J.P. & Edelstein, S.J. Allosteric mechanisms of signal transduction. Science 308, 1424-1428 (2005). (Pubitemid 40791288)
    • (2005) Science , vol.308 , Issue.5727 , pp. 1424-1428
    • Changeux, J.-P.1    Edelstein, S.J.2
  • 2
    • 68149157248 scopus 로고    scopus 로고
    • The origin of allosteric functional modulation: Multiple pre-existing pathways
    • del Sol, A., Tsai, C.J., Ma, B. & Nussinov, R. The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 17, 1042-1050 (2009).
    • (2009) Structure , vol.17 , pp. 1042-1050
    • Del Sol, A.1    Tsai, C.J.2    Ma, B.3    Nussinov, R.4
  • 3
    • 47649125643 scopus 로고    scopus 로고
    • Allosteric regulation and catalysis emerge via a common route
    • DOI 10.1038/nchembio.98, PII NCHEMBIO98
    • Goodey, N.M. & Benkovic, S.J. Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474-482 (2008). (Pubitemid 352019763)
    • (2008) Nature Chemical Biology , vol.4 , Issue.8 , pp. 474-482
    • Goodey, N.M.1    Benkovic, S.J.2
  • 4
    • 60649109828 scopus 로고    scopus 로고
    • Protein allostery, signal transmission and dynamics: A classifcation scheme of allosteric mechanisms
    • Tsai, C.J., Del Sol, A. & Nussinov, R. Protein allostery, signal transmission and dynamics: a classifcation scheme of allosteric mechanisms. Mol. Biosyst. 5, 207-216 (2009).
    • (2009) Mol. Biosyst. , vol.5 , pp. 207-216
    • Tsai, C.J.1    Del Sol, A.2    Nussinov, R.3
  • 5
    • 63649106579 scopus 로고    scopus 로고
    • Autocatalytic processing of Clostridium diffcile toxin B. Binding of inositol hexakisphosphate
    • Egerer, M., Giesemann, T., Herrmann, C. & Aktories, K. Autocatalytic processing of Clostridium diffcile toxin B. Binding of inositol hexakisphosphate. J. Biol. Chem. 284, 3389-3395 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 3389-3395
    • Egerer, M.1    Giesemann, T.2    Herrmann, C.3    Aktories, K.4
  • 6
    • 77957667396 scopus 로고    scopus 로고
    • Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins
    • Egerer, M. & Satchell, K.J. Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins. PLoS Pathog. 6, e1000942 (2010).
    • (2010) PLoS Pathog. , vol.6
    • Egerer, M.1    Satchell, K.J.2
  • 8
    • 77954600981 scopus 로고    scopus 로고
    • Allosteric regulation of protease activity by small molecules
    • Shen, A. Allosteric regulation of protease activity by small molecules. Mol. Biosyst. 6, 1431-1443 (2010).
    • (2010) Mol. Biosyst. , vol.6 , pp. 1431-1443
    • Shen, A.1
  • 9
    • 38549132277 scopus 로고    scopus 로고
    • Inositol derivatives: Evolution and functions
    • DOI 10.1038/nrm2334, PII NRM2334
    • Michell, R.H. Inositol derivatives: evolution and functions. Nat. Rev. Mol. Cell Biol. 9, 151-161 (2008). (Pubitemid 351158916)
    • (2008) Nature Reviews Molecular Cell Biology , vol.9 , Issue.2 , pp. 151-161
    • Michell, R.H.1
  • 10
    • 34548472183 scopus 로고    scopus 로고
    • Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity
    • DOI 10.1074/jbc.M703062200
    • Egerer, M., Giesemann, T., Jank, T., Satchell, K.J. & Aktories, K. Auto-catalytic cleavage of Clostridium diffcile toxins A and B depends on cysteine protease activity. J. Biol. Chem. 282, 25314-25321 (2007). (Pubitemid 47372781)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.35 , pp. 25314-25321
    • Egerer, M.1    Giesemann, T.2    Jank, T.3    Fullner Satchell, K.J.4    Aktories, K.5
  • 11
    • 70350351548 scopus 로고    scopus 로고
    • Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites
    • Prochazkova, K. et al. Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites. J. Biol. Chem. 284, 26557-26568 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 26557-26568
    • Prochazkova, K.1
  • 12
    • 13444261172 scopus 로고    scopus 로고
    • Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells
    • DOI 10.1099/mic.0.27474-0
    • Rupnik, M. et al. Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium diffcile toxin B (TcdB) by host cells. Microbiology 151, 199-208 (2005). (Pubitemid 40214335)
    • (2005) Microbiology , vol.151 , Issue.1 , pp. 199-208
    • Rupnik, M.1    Pabst, S.2    Rupnik, M.3    Von Eichel-Streiber, C.4    Urlaub, H.5    Soling, H.-D.6
  • 13
    • 67650290548 scopus 로고    scopus 로고
    • Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin
    • Shen, A. et al. Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat. Chem. Biol. 5, 469-478 (2009).
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 469-478
    • Shen, A.1
  • 14
    • 53749083462 scopus 로고    scopus 로고
    • Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain
    • Lupardus, P.J., Shen, A., Bogyo, M. & Garcia, K.C. Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322, 265-268 (2008).
    • (2008) Science , vol.322 , pp. 265-268
    • Lupardus, P.J.1    Shen, A.2    Bogyo, M.3    Garcia, K.C.4
  • 15
    • 69249090956 scopus 로고    scopus 로고
    • Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium diffcile toxin A
    • Pruitt, R.N. et al. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium diffcile toxin A. J. Biol. Chem. 284, 21934-21940 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 21934-21940
    • Pruitt, R.N.1
  • 16
    • 0242414631 scopus 로고    scopus 로고
    • Cellular uptake of Clostridium difficile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells
    • DOI 10.1074/jbc.M307540200
    • Pfeifer, G. et al. Cellular uptake of Clostridium diffcile toxin B. Translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J. Biol. Chem. 278, 44535-44541 (2003). (Pubitemid 37377206)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.45 , pp. 44535-44541
    • Pfeifer, G.1    Schirmer, J.2    Leemhuis, J.3    Busch, C.4    Meyer, D.K.5    Aktories, K.6    Barth, H.7
  • 17
    • 39649088950 scopus 로고    scopus 로고
    • Clostridium diffcile toxins: More than mere inhibitors of Rho proteins
    • Genth, H., Dreger, S.C., Huelsenbeck, J. & Just, I. Clostridium diffcile toxins: more than mere inhibitors of Rho proteins. Int. J. Biochem. Cell Biol. 40, 592-597 (2008).
    • (2008) Int. J. Biochem. Cell Biol. , vol.40 , pp. 592-597
    • Genth, H.1    Dreger, S.C.2    Huelsenbeck, J.3    Just, I.4
  • 18
    • 42749095602 scopus 로고    scopus 로고
    • Structure and mode of action of clostridial glucosylating toxins: The ABCD model
    • Jank, T. & Aktories, K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 16, 222-229 (2008)
    • (2008) Trends Microbiol. , vol.16 , pp. 222-229
    • Jank, T.1    Aktories, K.2
  • 19
    • 17444366186 scopus 로고    scopus 로고
    • Clostridium difficile toxins: Mechanism of action and role in disease
    • DOI 10.1128/CMR.18.2.247-263.2005
    • Voth, D.E. & Ballard, J.D. Clostridium diffcile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247-263 (2005). (Pubitemid 40548293)
    • (2005) Clinical Microbiology Reviews , vol.18 , Issue.2 , pp. 247-263
    • Voth, D.E.1    Ballard, J.D.2
  • 20
    • 55249105923 scopus 로고    scopus 로고
    • Clostridium diffcile-more diffcult than ever
    • Kelly, C.P. & LaMont, J.T. Clostridium diffcile-more diffcult than ever. N. Engl. J. Med. 359, 1932-1940 (2008).
    • (2008) N. Engl. J. Med. , vol.359 , pp. 1932-1940
    • Kelly, C.P.1    Lamont, J.T.2
  • 21
    • 67649391053 scopus 로고    scopus 로고
    • Clostridium diffcile infection: New developments in epidemiology and pathogenesis
    • Rupnik, M., Wilcox, M.H. & Gerding, D.N. Clostridium diffcile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526-536 (2009).
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 526-536
    • Rupnik, M.1    Wilcox, M.H.2    Gerding, D.N.3
  • 22
    • 67349114409 scopus 로고    scopus 로고
    • Toxin B is essential for virulence of Clostridium diffcile
    • Lyras, D. et al. Toxin B is essential for virulence of Clostridium diffcile. Nature 458, 1176-1179 (2009).
    • (2009) Nature , vol.458 , pp. 1176-1179
    • Lyras, D.1
  • 23
    • 77957988127 scopus 로고    scopus 로고
    • The role of toxin A and toxin B in Clostridium diffcile infection
    • Kuehne, S.A. et al. The role of toxin A and toxin B in Clostridium diffcile infection. Nature 467, 711-713 (2010).
    • (2010) Nature , vol.467 , pp. 711-713
    • Kuehne, S.A.1
  • 24
    • 34248525164 scopus 로고    scopus 로고
    • Self-cutting to kill: New insights into the processing of Clostridium difficile toxins
    • DOI 10.1021/cb7000654
    • Aktories, K. Self-cutting to kill: new insights into the processing of Clostridium diffcile toxins. ACS Chem. Biol. 2, 228-230 (2007). (Pubitemid 47629208)
    • (2007) ACS Chemical Biology , vol.2 , Issue.4 , pp. 228-230
    • Aktories, K.1
  • 25
    • 78649357145 scopus 로고    scopus 로고
    • Rational design of inhibitors and activity-based probes targeting Clostridium diffcile virulence factor TcdB
    • Puri, A.W. et al. Rational design of inhibitors and activity-based probes targeting Clostridium diffcile virulence factor TcdB. Chem. Biol. 17, 1201-1211 (2010).
    • (2010) Chem. Biol. , vol.17 , pp. 1201-1211
    • Puri, A.W.1
  • 26
    • 33748595526 scopus 로고    scopus 로고
    • Mechanism-based profling of enzyme families
    • Evans, M.J. & Cravatt, B.F. Mechanism-based profling of enzyme families. Chem. Rev. 106, 3279-3301 (2006).
    • (2006) Chem. Rev. , vol.106 , pp. 3279-3301
    • Evans, M.J.1    Cravatt, B.F.2
  • 29
    • 29444460784 scopus 로고    scopus 로고
    • Activity-based probes that target diverse cysteine protease families
    • Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33-38 (2005).
    • (2005) Nat. Chem. Biol. , vol.1 , pp. 33-38
    • Kato, D.1
  • 30
    • 0036882396 scopus 로고    scopus 로고
    • Irreversible inhibitors of serine, cysteine, and threonine proteases
    • Powers, J.C., Asgian, J.L., Ekici, O.D. & James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639-4750 (2002).
    • (2002) Chem. Rev. , vol.102 , pp. 4639-4750
    • Powers, J.C.1    Asgian, J.L.2    Ekici, O.D.3    James, K.E.4
  • 31
    • 53049108644 scopus 로고    scopus 로고
    • Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin
    • Prochazkova, K. & Satchell, K.J. Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J. Biol. Chem. 283, 23656-23664 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 23656-23664
    • Prochazkova, K.1    Satchell, K.J.2
  • 32
    • 34249058418 scopus 로고    scopus 로고
    • Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain
    • DOI 10.1038/sj.emboj.7601700, PII 7601700
    • Sheahan, K.L., Cordero, C.L. & Satchell, K.J. Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J. 26, 2552-2561 (2007). (Pubitemid 46788325)
    • (2007) EMBO Journal , vol.26 , Issue.10 , pp. 2552-2561
    • Sheahan, K.-L.1    Cordero, C.L.2    Satchell, K.J.F.3
  • 33
    • 0035798361 scopus 로고    scopus 로고
    • Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding
    • DOI 10.1016/S0092-8674(01)00544-X
    • Chai, J. et al. Crystal structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107, 399-407 (2001). (Pubitemid 33049982)
    • (2001) Cell , vol.107 , Issue.3 , pp. 399-407
    • Chai, J.1    Wu, Q.2    Shiozaki, E.3    Srinivasula, S.M.4    Alnemri, E.S.5    Shi, Y.6
  • 34
    • 4143096903 scopus 로고    scopus 로고
    • Crystal structures of a ligand-free and malonate-bound human caspase-1: Implications for the mechanism of substrate binding
    • DOI 10.1016/j.str.2004.05.010, PII S0969212604002114
    • Romanowski, M.J., Scheer, J.M., O'Brien, T. & McDowell, R.S. Crystal structures of a ligand-free and malonate-bound human caspase-1: implications for the mechanism of substrate binding. Structure 12, 1361-1371 (2004). (Pubitemid 39092081)
    • (2004) Structure , vol.12 , Issue.8 , pp. 1361-1371
    • Romanowski, M.J.1    Scheer, J.M.2    O'Brien, T.3    McDowell, R.S.4
  • 35
    • 33646918845 scopus 로고    scopus 로고
    • Probing protein folding and conformational transitions with fluorescence
    • DOI 10.1021/cr0404390
    • Royer, C.A. Probing protein folding and conformational transitions with fuorescence. Chem. Rev. 106, 1769-1784 (2006). (Pubitemid 43792780)
    • (2006) Chemical Reviews , vol.106 , Issue.5 , pp. 1769-1784
    • Royer, C.A.1
  • 38
    • 0037219686 scopus 로고    scopus 로고
    • Evolutionarily conserved networks of residues mediate allosteric communication in proteins
    • DOI 10.1038/nsb881
    • Süel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59-69 (2003). (Pubitemid 36034178)
    • (2003) Nature Structural Biology , vol.10 , Issue.1 , pp. 59-69
    • Suel, G.M.1    Lockless, S.W.2    Wall, M.A.3    Ranganathan, R.4
  • 39
    • 0035937443 scopus 로고    scopus 로고
    • Two-state allosteric behavior in a single-domain signaling protein
    • DOI 10.1126/science.291.5512.2429
    • Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429-2433 (2001). (Pubitemid 32231808)
    • (2001) Science , vol.291 , Issue.5512 , pp. 2429-2433
    • Volkman, B.F.1    Lipson, D.2    Wemmer, D.E.3    Kern, D.4
  • 40
    • 10644282148 scopus 로고    scopus 로고
    • The protein structures that shape caspase activity, specificity, activation and inhibition
    • DOI 10.1042/BJ20041142
    • Fuentes-Prior, P. & Salvesen, G.S. The protein structures that shape caspase activity, specifcity, activation and inhibition. Biochem. J. 384, 201-232 (2004). (Pubitemid 39656233)
    • (2004) Biochemical Journal , vol.384 , Issue.2 , pp. 201-232
    • Fuentes-Prior, P.1    Salvesen, G.S.2
  • 42
    • 71449103005 scopus 로고    scopus 로고
    • Hidden alternative structures of proline isomerase essential for catalysis
    • Fraser, J.S. et al. Hidden alternative structures of proline isomerase essential for catalysis. Nature 462, 669-673 (2009).
    • (2009) Nature , vol.462 , pp. 669-673
    • Fraser, J.S.1
  • 43
    • 77956279561 scopus 로고    scopus 로고
    • NMR resonance assignments of thrombin reveal the conformational and dynamic effects of ligation
    • Lechtenberg, B.C., Johnson, D.J., Freund, S.M. & Huntington, J.A. NMR resonance assignments of thrombin reveal the conformational and dynamic effects of ligation. Proc. Natl. Acad. Sci. USA 107, 14087-14092 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 14087-14092
    • Lechtenberg, B.C.1    Johnson, D.J.2    Freund, S.M.3    Huntington, J.A.4
  • 44
    • 64849113665 scopus 로고    scopus 로고
    • Trapping moving targets with small molecules
    • Lee, G.M. & Craik, C.S. Trapping moving targets with small molecules. Science 324, 213-215 (2009).
    • (2009) Science , vol.324 , pp. 213-215
    • Lee, G.M.1    Craik, C.S.2
  • 45
    • 69249156893 scopus 로고    scopus 로고
    • Inhibition of a viral enzyme by a small-molecule dimer disruptor
    • Shahian, T. et al. Inhibition of a viral enzyme by a small-molecule dimer disruptor. Nat. Chem. Biol. 5, 640-646 (2009).
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 640-646
    • Shahian, T.1
  • 48
    • 77955782233 scopus 로고    scopus 로고
    • Structural organization of the functional domains of Clostridium diffcile toxins A and B
    • Pruitt, R.N., Chambers, M.G., Ng, K.K., Ohi, M.D. & Lacy, D.B. Structural organization of the functional domains of Clostridium diffcile toxins A and B. Proc. Natl. Acad. Sci. USA 107, 13467-13472 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 13467-13472
    • Pruitt, R.N.1    Chambers, M.G.2    Ng, K.K.3    Ohi, M.D.4    Lacy, D.B.5
  • 49
    • 0034114105 scopus 로고    scopus 로고
    • PH-induced conformational changes in Clostridium difficile toxin B
    • DOI 10.1128/IAI.68.5.2470-2474.2000
    • Qa'Dan, M., Spyres, L.M. & Ballard, J.D. pH-induced conformational changes in Clostridium diffcile toxin B. Infect. Immun. 68, 2470-2474 (2000). (Pubitemid 30253815)
    • (2000) Infection and Immunity , vol.68 , Issue.5 , pp. 2470-2474
    • Qa'dan, M.1    Spyres, L.M.2    Ballard, J.D.3
  • 50
    • 77953782586 scopus 로고    scopus 로고
    • The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate
    • Mittal, R., Peak-Chew, S.Y., Sade, R.S., Vallis, Y. & McMahon, H.T. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J. Biol. Chem. 285, 19927-19934 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 19927-19934
    • Mittal, R.1    Peak-Chew, S.Y.2    Sade, R.S.3    Vallis, Y.4    McMahon, H.T.5
  • 51
    • 0034664805 scopus 로고    scopus 로고
    • Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair
    • Hanakahi, L.A., Bartlet-Jones, M., Chappell, C., Pappin, D. & West, S.C. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102, 721-729 (2000).
    • (2000) Cell , vol.102 , pp. 721-729
    • Hanakahi, L.A.1    Bartlet-Jones, M.2    Chappell, C.3    Pappin, D.4    West, S.C.5
  • 52
    • 24644519954 scopus 로고    scopus 로고
    • Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing
    • Macbeth, M.R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534-1539 (2005).
    • (2005) Science , vol.309 , pp. 1534-1539
    • MacBeth, M.R.1
  • 54
    • 0003076963 scopus 로고
    • Recent changes to the MOSFLM package for processing flm and image plate data
    • Leslie, A.G. Recent changes to the MOSFLM package for processing flm and image plate data. Joint CCP4 ESF-EAMCB Newslett. Protein Crystallogr. 26 (1992).
    • (1992) Joint CCP4 ESF-EAMCB Newslett. Protein Crystallogr. , vol.26
    • Leslie, A.G.1
  • 59
    • 34547592557 scopus 로고    scopus 로고
    • MolProbity: All-atom contacts and structure validation for proteins and nucleic acids
    • Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375-W383 (2007).
    • (2007) Nucleic Acids Res. , vol.35
    • Davis, I.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.