-
1
-
-
0024849520
-
Efficiency of the logistic regression and Cox proportional hazards models in longitudinal studies
-
Annesi, I., Moreau, T. and Lellouch, J. (1989). Efficiency of the logistic regression and Cox proportional hazards models in longitudinal studies. Statistics in Medicine 8, 1515-1521.
-
(1989)
Statistics in Medicine
, vol.8
, pp. 1515-1521
-
-
Annesi, I.1
Moreau, T.2
Lellouch, J.3
-
2
-
-
78349291870
-
The Dantzig selector in Cox's proportional hazards model
-
DOI:10.1111/j.1467-9469.2009.00685.x.
-
Antoniadis, A., Fryzlewicz, P. and Letué, F. (2010). The Dantzig selector in Cox's proportional hazards model. Scandinavian Journal of Statistics 37, 531-52. DOI:10.1111/j.1467-9469.2009.00685.x.
-
(2010)
Scandinavian Journal of Statistics
, vol.37
, pp. 531-552
-
-
Antoniadis, A.1
Fryzlewicz, P.2
Letué, F.3
-
3
-
-
0034069495
-
Gene ontology: tool for the unification of biology
-
DOI:10.1038/75556.
-
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000). Gene ontology: tool for the unification of biology. Nature Genetics 25, 25-29. DOI:10.1038/75556.
-
(2000)
Nature Genetics
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
Cherry, J.M.6
Davis, A.P.7
Dolinski, K.8
Dwight, S.S.9
Eppig, J.T.10
Harris, M.A.11
Hill, D.P.12
Issel-Tarver, L.13
Kasarskis, A.14
Lewis, S.15
Matese, J.C.16
Richardson, J.E.17
Ringwald, M.18
Rubin, G.M.19
Sherlock, G.20
more..
-
4
-
-
77952566299
-
High-dimensional Cox models: the choice of penalty as part of the model building process
-
DOI:10.1002/bimj.200900064.
-
Benner, A., Zucknick, M., Hielscher, T., Ittrich, C. and Mansmann, U. (2010). High-dimensional Cox models: the choice of penalty as part of the model building process. Biometrical Journal 52, 50-69. DOI:10.1002/bimj.200900064.
-
(2010)
Biometrical Journal
, vol.52
, pp. 50-69
-
-
Benner, A.1
Zucknick, M.2
Hielscher, T.3
Ittrich, C.4
Mansmann, U.5
-
5
-
-
38849093192
-
A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards
-
DOI:10.1002/sim.3006.
-
Beyersmann, J., Dettenkofer, M., Bertz, H. and Schumacher, M. (2007). A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards. Statistics in Medicine 26, 5360-5369. DOI:10.1002/sim.3006.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 5360-5369
-
-
Beyersmann, J.1
Dettenkofer, M.2
Bertz, H.3
Schumacher, M.4
-
6
-
-
63549089131
-
Boosting for high-dimensional time-to-event data with competing risks
-
DOI:10.1093/bioinformatics/btp088.
-
Binder, H., Allignol, A., Schumacher, M. and Beyersmann, J. (2009). Boosting for high-dimensional time-to-event data with competing risks. Bioinformatics 25, 890-896. DOI:10.1093/bioinformatics/btp088.
-
(2009)
Bioinformatics
, vol.25
, pp. 890-896
-
-
Binder, H.1
Allignol, A.2
Schumacher, M.3
Beyersmann, J.4
-
7
-
-
48849102758
-
Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples
-
Article 12.
-
Binder, H. and Schumacher, M. (2008a). Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular Biology 7, Article 12.
-
(2008)
Statistical Applications in Genetics and Molecular Biology
, vol.7
-
-
Binder, H.1
Schumacher, M.2
-
8
-
-
39449093646
-
Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
-
DOI:10.1186/1471-2105-9-14.
-
Binder, H. and Schumacher, M. (2008b). Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinformatics 9, 14. DOI:10.1186/1471-2105-9-14.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 14
-
-
Binder, H.1
Schumacher, M.2
-
9
-
-
61449157892
-
Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
-
DOI:10.1186/1471-2105-10-18.
-
Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics 10, 18. DOI:10.1186/1471-2105-10-18.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 18
-
-
Binder, H.1
Schumacher, M.2
-
10
-
-
39849102639
-
Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
-
DOI:10.1111/j.1541-0420.2007.00843.x.
-
Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 64, 115-123. DOI:10.1111/j.1541-0420.2007.00843.x.
-
(2008)
Biometrics
, vol.64
, pp. 115-123
-
-
Bondell, H.D.1
Reich, B.J.2
-
11
-
-
77949535610
-
Over-optimism in bioinformatics research
-
DOI:10.1093/bioinformatics/btp648.
-
Boulesteix, A.-L. (2010). Over-optimism in bioinformatics research. Bioinformatics 26, 437-439. DOI:10.1093/bioinformatics/btp648.
-
(2010)
Bioinformatics
, vol.26
, pp. 437-439
-
-
Boulesteix, A.-L.1
-
12
-
-
48249110665
-
Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value
-
DOI:10.1093/bioinformatics/btn262.
-
Boulesteix, A.-L., Porzelius, C. and Daumer, M. (2008). Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics 24, 1698-1706. DOI:10.1093/bioinformatics/btn262.
-
(2008)
Bioinformatics
, vol.24
, pp. 1698-1706
-
-
Boulesteix, A.-L.1
Porzelius, C.2
Daumer, M.3
-
13
-
-
79952261591
-
Assessment of evaluation criteria for survival prediction from genomic data
-
DOI: 10.1002/bimj.201000048
-
Bøvelstad, H. M. and Borgan, Ø. (2011). Assessment of evaluation criteria for survival prediction from genomic data. Biometrical Journal 53, DOI: 10.1002/bimj.201000048
-
(2011)
Biometrical Journal
, vol.53
-
-
Bøvelstad, H.M.1
Borgan, O.2
-
14
-
-
75649118862
-
Survival prediction from clinico-genomic models - a comparative study
-
DOI:10.1186/1471-2105-10-413.
-
Bøvelstad, H. M., Nygård, S. and Borgan, Ø. (2009). Survival prediction from clinico-genomic models - a comparative study. BMC Bioinformatics 10, 413. DOI:10.1186/1471-2105-10-413.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 413
-
-
Bøvelstad, H.M.1
Nygård, S.2
Borgan, O.3
-
15
-
-
34548565944
-
Predicting survival from microarray data - a comparative study
-
Bøvelstad, H. M., Nygård, S., Størvold, H. L., Aldrin, M., Borgan, Ø., Frigessi, A. and Lingjærde, O. C. (2007). Predicting survival from microarray data - a comparative study. Bioinformatics 23, 2080-2087.
-
(2007)
Bioinformatics
, vol.23
, pp. 2080-2087
-
-
Bøvelstad, H.M.1
Nygård, S.2
Størvold, H.L.3
Aldrin, M.4
Borgan, O.5
Frigessi, A.6
Lingjærde, O.C.7
-
16
-
-
41549141939
-
Boosting algorithms: regularization, prediction and model fitting
-
DOI:10.1214/07-STS242.
-
Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting. Statistical Science 22, 477-505. DOI:10.1214/07-STS242.
-
(2007)
Statistical Science
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
17
-
-
77953318018
-
Twin boosting: improved feature selection and prediction
-
DOI:10.1007/s11222-009-9148-5.
-
Bühlmann, P. and Hothorn, T. (2010). Twin boosting: improved feature selection and prediction. Statistics and Computing 20, 119-138. DOI:10.1007/s11222-009-9148-5.
-
(2010)
Statistics and Computing
, vol.20
, pp. 119-138
-
-
Bühlmann, P.1
Hothorn, T.2
-
19
-
-
66949149020
-
Regularized estimation for the accelerated failure time model
-
DOI:10.1111/j.1541-0420.2008.01074.x.
-
Cai, T., Huang, J. and Tian, K. (2009). Regularized estimation for the accelerated failure time model. Biometrics 65, 394-404. DOI:10.1111/j.1541-0420.2008.01074.x.
-
(2009)
Biometrics
, vol.65
, pp. 394-404
-
-
Cai, T.1
Huang, J.2
Tian, K.3
-
20
-
-
0021958612
-
The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model
-
DOI:10.1002/sim.4780040107.
-
Chen, C.-H. and George, S. L. (1985). The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model. Statistics in Medicine 4, 39-46. DOI:10.1002/sim.4780040107.
-
(1985)
Statistics in Medicine
, vol.4
, pp. 39-46
-
-
Chen, C.-H.1
George, S.L.2
-
21
-
-
0000336139
-
Regression models and life tables (with discussion)
-
Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society B 34, 187-220.
-
(1972)
Journal of the Royal Statistical Society B
, vol.34
, pp. 187-220
-
-
Cox, D.R.1
-
22
-
-
34247259498
-
Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO
-
Datta, S., Le-Rademacher, J. and Datta, S. (2007). Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO. Biometrics 63, 259-271.
-
(2007)
Biometrics
, vol.63
, pp. 259-271
-
-
Datta, S.1
Le-Rademacher, J.2
Datta, S.3
-
23
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
DOI:10.1186/1471-2105-7-3.
-
Díaz-Uriarte, R. and Alvarez de Andrés, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3. DOI:10.1186/1471-2105-7-3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
Alvarez de Andrés, S.2
-
24
-
-
33846978784
-
Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
-
DOI:10.1093/jnci/djk018.
-
Dupuy, A. and Simon, R. M. (2007). Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute 99, 147-157. DOI:10.1093/jnci/djk018.
-
(2007)
Journal of the National Cancer Institute
, vol.99
, pp. 147-157
-
-
Dupuy, A.1
Simon, R.M.2
-
25
-
-
34250738489
-
Gene expression signatures predict outcome in non-muscle-invasive bladder carcinoma: a multicenter validation study
-
DOI:10.1158/1078-0432.CCR-06-2940.
-
Dyrskjøt, L., Zieger, K., Real, F. X., Malats, N., Carrato, A., Hurst, C., Kotwal, S., Knowles, M., Malmstrom, P.-U., de la Torre, M., Wester, K., Allory, Y., Vordos, D., Caillault, A., Radvanyi, F., Hein, A.-M. K., Jensen, J. L., Jensen, K. M. E., Marcussen, N. and Orntoft, T. F. (2007). Gene expression signatures predict outcome in non-muscle-invasive bladder carcinoma: a multicenter validation study. Clinical Cancer Research 13, 3545-3551. DOI:10.1158/1078-0432.CCR-06-2940.
-
(2007)
Clinical Cancer Research
, vol.13
, pp. 3545-3551
-
-
Dyrskjøt, L.1
Zieger, K.2
Real, F.X.3
Malats, N.4
Carrato, A.5
Hurst, C.6
Kotwal, S.7
Knowles, M.8
Malmstrom, P.-U.9
de la Torre, M.10
Wester, K.11
Allory, Y.12
Vordos, D.13
Caillault, A.14
Radvanyi, F.15
Hein, A.-M.K.16
Jensen, J.L.17
Jensen, K.M.E.18
Marcussen, N.19
Orntoft, T.F.20
more..
-
26
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. The Annals of Statistics 32, 407-499.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
28
-
-
62449212467
-
Survival analysis with high-dimensional covariates: an application in microarray studies
-
Article 14. DOI:10.2202/1544-6115.1423.
-
Engler, D. and Li, Y. (2009). Survival analysis with high-dimensional covariates: an application in microarray studies. Statistical Applications in Genetics and Molecular Biology 8, Article 14. DOI:10.2202/1544-6115.1423.
-
(2009)
Statistical Applications in Genetics and Molecular Biology
, vol.8
-
-
Engler, D.1
Li, Y.2
-
29
-
-
47049127967
-
Sparse kernel methods for high-dimensional survival data
-
DOI:10.1093/bioinformatics/btn253.
-
Evers, L. and Messow, C.-M. (2008). Sparse kernel methods for high-dimensional survival data. Bioinformatics 24, 1632-1638. DOI:10.1093/bioinformatics/btn253.
-
(2008)
Bioinformatics
, vol.24
, pp. 1632-1638
-
-
Evers, L.1
Messow, C.-M.2
-
30
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
31
-
-
0036117466
-
Variable selections for Cox's proportional hazards model and frailty model
-
Fan, J. and Li, R. (2002). Variable selections for Cox's proportional hazards model and frailty model. Annals of Statistics 30, 74-99.
-
(2002)
Annals of Statistics
, vol.30
, pp. 74-99
-
-
Fan, J.1
Li, R.2
-
32
-
-
1542532754
-
A proportional hazards model for the subdistribution of a competing risk
-
Fine, J. P. and Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 94, 496-509.
-
(1999)
Journal of the American Statistical Association
, vol.94
, pp. 496-509
-
-
Fine, J.P.1
Gray, R.J.2
-
33
-
-
45849107328
-
Pathwise coordinate optimization
-
DOI:10.1214/07-AOAS131.
-
Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R. (2007). Pathwise coordinate optimization. The Annals of Applied Statistics 1, 302-332. DOI:10.1214/07-AOAS131.
-
(2007)
The Annals of Applied Statistics
, vol.1
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
35
-
-
33846223169
-
Consistent estimation of the expected Brier score in general survival models with right-censored event times
-
Gerds, T. A. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal 48, 1029-1040.
-
(2006)
Biometrical Journal
, vol.48
, pp. 1029-1040
-
-
Gerds, T.A.1
Schumacher, M.2
-
36
-
-
34547892291
-
Efron-type measures of prediction error for survival analysis
-
DOI:10.1111/j.1541-0420.2007.00832.x.
-
Gerds, T. A. and Schumacher, M. (2007). Efron-type measures of prediction error for survival analysis. Biometrics 63, 1283-1287. DOI:10.1111/j.1541-0420.2007.00832.x.
-
(2007)
Biometrics
, vol.63
, pp. 1283-1287
-
-
Gerds, T.A.1
Schumacher, M.2
-
37
-
-
77952568988
-
L1 penalized estimation in the Cox proportional hazards model
-
DOI:10.1002/bimj.200900028.
-
Goeman, J. J. (2010). L1 penalized estimation in the Cox proportional hazards model. Biometrical Journal 52, 70-84. DOI:10.1002/bimj.200900028.
-
(2010)
Biometrical Journal
, vol.52
, pp. 70-84
-
-
Goeman, J.J.1
-
38
-
-
0033619170
-
Assessment and comparison of prognostic classification schemes for survival data
-
Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18, 2529-2545.
-
(1999)
Statistics in Medicine
, vol.18
, pp. 2529-2545
-
-
Graf, E.1
Schmoor, C.2
Sauerbrei, W.3
Schumacher, M.4
-
39
-
-
0003732572
-
Regression Modeling Strategies
-
Springer, New York.
-
Harrell, F. E. (2001). Regression Modeling Strategies. Springer, New York.
-
(2001)
-
-
Harrell, F.E.1
-
40
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
41
-
-
84865398750
-
A study of pre-validation
-
DOI:10.1214/08-AOAS152SUPP.
-
Höfling, H. and Tibshirani, R. (2008). A study of pre-validation. Annals of Applied Statistics 2, 643-664. DOI:10.1214/08-AOAS152SUPP.
-
(2008)
Annals of Applied Statistics
, vol.2
, pp. 643-664
-
-
Höfling, H.1
Tibshirani, R.2
-
42
-
-
33745466826
-
Survival ensembles
-
Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. and van der Laan, M. J. (2006). Survival ensembles. Biostatistics 7, 355-373.
-
(2006)
Biostatistics
, vol.7
, pp. 355-373
-
-
Hothorn, T.1
Bühlmann, P.2
Dudoit, S.3
Molinaro, A.4
van der Laan, M.J.5
-
43
-
-
33748771184
-
Regularized estimation in the accelerated failure time model with high-dimensional covariates
-
Huang, J., Ma, S. and Xie, H. (2006). Regularized estimation in the accelerated failure time model with high-dimensional covariates. Biometrics 62, 813-820.
-
(2006)
Biometrics
, vol.62
, pp. 813-820
-
-
Huang, J.1
Ma, S.2
Xie, H.3
-
44
-
-
57449111248
-
Random survival forests
-
DOI:10.1214/08-AOAS169.
-
Ishwaran, H., Kogular, U. B., Blackstone, E. H. and Lauer, M. S. (2008). Random survival forests. Annals of Applied Statistics 2, 841-860. DOI:10.1214/08-AOAS169.
-
(2008)
Annals of Applied Statistics
, vol.2
, pp. 841-860
-
-
Ishwaran, H.1
Kogular, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
45
-
-
85088938629
-
The Statistical Analysis of Failure Time Data
-
(2nd edn). Wiley, Hoboken, NJ.
-
Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd edn). Wiley, Hoboken, NJ.
-
(2002)
-
-
Kalbfleisch, J.D.1
Prentice, R.L.2
-
46
-
-
38549126643
-
KEGG for linking genomes to life and the enviroment
-
DOI:10.1093/nar/gkm882.
-
Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T. and Yamanishi, Y. (2008). KEGG for linking genomes to life and the enviroment. Nucleic Acids Research 36, D480-D484. DOI:10.1093/nar/gkm882.
-
(2008)
Nucleic Acids Research
, vol.36
-
-
Kanehisa, M.1
Araki, M.2
Goto, S.3
Hattori, M.4
Hirakawa, M.5
Itoh, M.6
Katayama, T.7
Kawashima, S.8
Okuda, S.9
Tokimatsu, T.10
Yamanishi, Y.11
-
47
-
-
42649140560
-
Network-constrained regularization and variable selection for analysis of genomic data
-
DOI:10.1093/bioinformatics/btn081.
-
Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1182. DOI:10.1093/bioinformatics/btn081.
-
(2008)
Bioinformatics
, vol.24
, pp. 1175-1182
-
-
Li, C.1
Li, H.2
-
48
-
-
0011880482
-
Semiparametric analysis of the additive risk model
-
Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika 81, 61-71.
-
(1994)
Biometrika
, vol.81
, pp. 61-71
-
-
Lin, D.Y.1
Ying, Z.2
-
49
-
-
34347398269
-
Additive risk survival model with microarray data
-
Ma, S. and Huang, J. (2007). Additive risk survival model with microarray data. BMC Bioinformatics 8, 192.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 192
-
-
Ma, S.1
Huang, J.2
-
50
-
-
77955026459
-
Semiparametric prognosis models in genomic studies
-
DOI:10.1093/bib/bbp070.
-
Ma, S., Huang, J., Shi, M., Li, Y. and Shia, B.-C. (2010). Semiparametric prognosis models in genomic studies. Briefings in Bioinformatics 11, 385-393. DOI:10.1093/bib/bbp070.
-
(2010)
Briefings in Bioinformatics
, vol.11
, pp. 385-393
-
-
Ma, S.1
Huang, J.2
Shi, M.3
Li, Y.4
Shia, B.-C.5
-
51
-
-
33947425580
-
Supervised group Lasso with applications to microarray data analysis
-
DOI:10.1186/1471-2105-8-60.
-
Ma, S., Son, X. and Huang, J. (2007). Supervised group Lasso with applications to microarray data analysis. BMC Bioinformatics 8, 60. DOI:10.1186/1471-2105-8-60.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 60
-
-
Ma, S.1
Son, X.2
Huang, J.3
-
52
-
-
70350508367
-
Covariate selection for the semiparametric additive risk model
-
DOI:10.1111/j.1467-9469.2009.00650.x.
-
Martinussen, T. and Scheike, T. H. (2009). Covariate selection for the semiparametric additive risk model. Scandinavian Journal of Statistics 36, 602-619. DOI:10.1111/j.1467-9469.2009.00650.x.
-
(2009)
Scandinavian Journal of Statistics
, vol.36
, pp. 602-619
-
-
Martinussen, T.1
Scheike, T.H.2
-
53
-
-
13444249852
-
Prediction of cancer outcome with microarrays: a multiple random validation strategy
-
Michiels, S., Koscielny, S. and Hill, C. (2005). Prediction of cancer outcome with microarrays: a multiple random validation strategy. The Lancet 365, 488-492.
-
(2005)
The Lancet
, vol.365
, pp. 488-492
-
-
Michiels, S.1
Koscielny, S.2
Hill, C.3
-
54
-
-
77952976255
-
Incorporating predictor network in penalized regression with application to microarray data
-
DOI:10.1111/j.1541-0420.2009.01296.x.
-
Pan, W., Xie, B. and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66, 474-484. DOI:10.1111/j.1541-0420.2009.01296.x.
-
(2010)
Biometrics
, vol.66
, pp. 474-484
-
-
Pan, W.1
Xie, B.2
Shen, X.3
-
55
-
-
34547849507
-
1-regularization path algorithms for generalized linear models
-
DOI:10.1111/j.1467-9868.2007.00607.x.
-
1-regularization path algorithms for generalized linear models. Journal of the Royal Statistical Society B 69, 659-677. DOI:10.1111/j.1467-9868.2007.00607.x.
-
(2007)
Journal of the Royal Statistical Society B
, vol.69
, pp. 659-677
-
-
Park, M.Y.1
Hastie, T.2
-
56
-
-
34147177060
-
Averaged gene expression for regression
-
Park, M. Y., Hastie, T. and Tibshirani, R. (2007). Averaged gene expression for regression. Biostatistics 8, 212-227.
-
(2007)
Biostatistics
, vol.8
, pp. 212-227
-
-
Park, M.Y.1
Hastie, T.2
Tibshirani, R.3
-
57
-
-
62549119132
-
Parallelized prediction error estimation for evaluation of high-dimensional models
-
DOI:10.1093/bioinformatics/btp062.
-
Porzelius, C., Binder, H. and Schumacher, M. (2009). Parallelized prediction error estimation for evaluation of high-dimensional models. Bioinformatics 25, 827-829. DOI:10.1093/bioinformatics/btp062.
-
(2009)
Bioinformatics
, vol.25
, pp. 827-829
-
-
Porzelius, C.1
Binder, H.2
Schumacher, M.3
-
58
-
-
77953325160
-
Sparse regression techniques in low-dimensional survival settings
-
DOI:10.1007/s11222-009-9155-6.
-
Porzelius, C., Schumacher, M. and Binder, H. (2010). Sparse regression techniques in low-dimensional survival settings. Statistics and Computing 20, 151-163. DOI:10.1007/s11222-009-9155-6.
-
(2010)
Statistics and Computing
, vol.20
, pp. 151-163
-
-
Porzelius, C.1
Schumacher, M.2
Binder, H.3
-
59
-
-
33645024314
-
Assessing stability of gene selection in microarray data analysis
-
Qiu, X., Xiao, Y., Gordon, A. and Yakovlev, A. (2006). Assessing stability of gene selection in microarray data analysis. BMC Bioinformatics 7, 50.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 50
-
-
Qiu, X.1
Xiao, Y.2
Gordon, A.3
Yakovlev, A.4
-
60
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
-
Rosenwald, A., Wright, G., Chan, W. C., Connors, J. M., Campo, E., Fisher, R. I., Gascoyna, R. D., Muller-Hermelink, H. K., Smeland, E. B. and Staudt, L. M. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. The New England Journal of Medicine 346, 1937-1946.
-
(2002)
The New England Journal of Medicine
, vol.346
, pp. 1937-1946
-
-
Rosenwald, A.1
Wright, G.2
Chan, W.C.3
Connors, J.M.4
Campo, E.5
Fisher, R.I.6
Gascoyna, R.D.7
Muller-Hermelink, H.K.8
Smeland, E.B.9
Staudt, L.M.10
-
61
-
-
0033426505
-
The use of resampling methods to simplify regression models in medical statistics
-
Sauerbrei, W. (1999). The use of resampling methods to simplify regression models in medical statistics. Applied Statistics 48, 313-329.
-
(1999)
Applied Statistics
, vol.48
, pp. 313-329
-
-
Sauerbrei, W.1
-
62
-
-
0027081755
-
A bootstrap resampling procedure for model building: application to the Cox regression model
-
DOI:10.1002/sim.4780111607.
-
Sauerbrei, W. and Schumacher, M. (1992). A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 11, 2093-2190. DOI:10.1002/sim.4780111607.
-
(1992)
Statistics in Medicine
, vol.11
, pp. 2093-2190
-
-
Sauerbrei, W.1
Schumacher, M.2
-
63
-
-
47349125398
-
Flexible boosting of accelerated failure time models
-
DOI:10.1186/1471-2105-9-269.
-
Schmid, M. and Hothorn, T. (2008). Flexible boosting of accelerated failure time models. BMC Bioinformatics 9, 269. DOI:10.1186/1471-2105-9-269.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 269
-
-
Schmid, M.1
Hothorn, T.2
-
64
-
-
34547863496
-
Assessment of survival prediction models based on microarray data
-
Schumacher, M., Binder, H. and Gerds, T. A. (2007). Assessment of survival prediction models based on microarray data. Bioinformatics 23, 1768-1774.
-
(2007)
Bioinformatics
, vol.23
, pp. 1768-1774
-
-
Schumacher, M.1
Binder, H.2
Gerds, T.A.3
-
65
-
-
33645581993
-
Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited
-
Segal, M. (2006). Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited. Biostatistics 7, 268-285.
-
(2006)
Biostatistics
, vol.7
, pp. 268-285
-
-
Segal, M.1
-
67
-
-
0031015557
-
The lasso method for variable selection in the Cox model
-
Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine 16, 385-395.
-
(1997)
Statistics in Medicine
, vol.16
, pp. 385-395
-
-
Tibshirani, R.1
-
68
-
-
33845509035
-
Generalized additive modelling with implicit variable selection by likelihood based boosting
-
Tutz, G. and Binder, H. (2006). Generalized additive modelling with implicit variable selection by likelihood based boosting. Biometrics 62, 961-971.
-
(2006)
Biometrics
, vol.62
, pp. 961-971
-
-
Tutz, G.1
Binder, H.2
-
70
-
-
67650653486
-
Penalized regression with correlation-based penalty
-
DOI:10.1007/s11222-008-9088-5.
-
Tutz, G. and Ulbricht, J. (2009). Penalized regression with correlation-based penalty. Statistics and Computing 19, 239-253. DOI:10.1007/s11222-008-9088-5.
-
(2009)
Statistics and Computing
, vol.19
, pp. 239-253
-
-
Tutz, G.1
Ulbricht, J.2
-
71
-
-
33748631068
-
Cross-validated Cox regression on microarray gene expression data
-
van Houwelingen, H. C., Bruinsma, T., Hart, A. A. N., van't Veer, L. J. and Wessels, L. F. A. (2006). Cross-validated Cox regression on microarray gene expression data. Statistics in Medicine 25, 3201-3216.
-
(2006)
Statistics in Medicine
, vol.25
, pp. 3201-3216
-
-
van Houwelingen, H.C.1
Bruinsma, T.2
Hart, A.A.N.3
van't Veer, L.J.4
Wessels, L.F.A.5
-
72
-
-
60349120810
-
Survival prediction using gene expression data: a review and comparison
-
van Wieringen, W., Kun, D., Hampel, R. and Boulesteix, A.-L. (2009). Survival prediction using gene expression data: a review and comparison. Computational Statistics & Data Analysis 53, 1590-1603.
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, pp. 1590-1603
-
-
van Wieringen, W.1
Kun, D.2
Hampel, R.3
Boulesteix, A.-L.4
-
73
-
-
0027765563
-
Cross-validation in survival analysis
-
DOI:10.1002/sim.4780122407.
-
Verweij, P. J. M. and van Houwelingen, H. C. (1993). Cross-validation in survival analysis. Statistics in Medicine 12, 2305-2314. DOI:10.1002/sim.4780122407.
-
(1993)
Statistics in Medicine
, vol.12
, pp. 2305-2314
-
-
Verweij, P.J.M.1
van Houwelingen, H.C.2
-
75
-
-
77954378998
-
Buckley-James boosting for survival analysis with high-dimensional biomarker data
-
Article 24. DOI:10.2202/1544-6115.1550.
-
Wang, Z. and Wang, C. Y. (2010). Buckley-James boosting for survival analysis with high-dimensional biomarker data. Statistical Applications in Genetics and Molecular Biology 9, Article 24. DOI:10.2202/1544-6115.1550.
-
(2010)
Statistical Applications in Genetics and Molecular Biology
, vol.9
-
-
Wang, Z.1
Wang, C.Y.2
-
76
-
-
76649133296
-
Survival analysis with high-dimensional covariates
-
DOI:10.1177/0962280209105024.
-
Witten, D. M. and Tibshirani, R. (2010). Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19, 29-51. DOI:10.1177/0962280209105024.
-
(2010)
Statistical Methods in Medical Research
, vol.19
, pp. 29-51
-
-
Witten, D.M.1
Tibshirani, R.2
-
77
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society B 68, 49-67.
-
(2006)
Journal of the Royal Statistical Society B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
78
-
-
34548151636
-
Adaptive Lasso for Cox's proportional hazards model
-
DOI:10.1093/biomet/asm037.
-
Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox's proportional hazards model. Biometrika 94, 691-703. DOI:10.1093/biomet/asm037.
-
(2007)
Biometrika
, vol.94
, pp. 691-703
-
-
Zhang, H.H.1
Lu, W.2
-
80
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B 67, 301-320.
-
(2005)
Journal of the Royal Statistical Society B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|