메뉴 건너뛰기




Volumn 53, Issue 2, 2011, Pages 170-189

An overview of techniques for linking high-dimensional molecular data to time-to-event endpoints by risk prediction models

Author keywords

Added value; Boosting; Gene expression; Regularization; Survival analysis

Indexed keywords

BIOMARKERS; RISK ASSESSMENT;

EID: 79952253172     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201000152     Document Type: Article
Times cited : (21)

References (80)
  • 1
    • 0024849520 scopus 로고
    • Efficiency of the logistic regression and Cox proportional hazards models in longitudinal studies
    • Annesi, I., Moreau, T. and Lellouch, J. (1989). Efficiency of the logistic regression and Cox proportional hazards models in longitudinal studies. Statistics in Medicine 8, 1515-1521.
    • (1989) Statistics in Medicine , vol.8 , pp. 1515-1521
    • Annesi, I.1    Moreau, T.2    Lellouch, J.3
  • 2
    • 78349291870 scopus 로고    scopus 로고
    • The Dantzig selector in Cox's proportional hazards model
    • DOI:10.1111/j.1467-9469.2009.00685.x.
    • Antoniadis, A., Fryzlewicz, P. and Letué, F. (2010). The Dantzig selector in Cox's proportional hazards model. Scandinavian Journal of Statistics 37, 531-52. DOI:10.1111/j.1467-9469.2009.00685.x.
    • (2010) Scandinavian Journal of Statistics , vol.37 , pp. 531-552
    • Antoniadis, A.1    Fryzlewicz, P.2    Letué, F.3
  • 4
    • 77952566299 scopus 로고    scopus 로고
    • High-dimensional Cox models: the choice of penalty as part of the model building process
    • DOI:10.1002/bimj.200900064.
    • Benner, A., Zucknick, M., Hielscher, T., Ittrich, C. and Mansmann, U. (2010). High-dimensional Cox models: the choice of penalty as part of the model building process. Biometrical Journal 52, 50-69. DOI:10.1002/bimj.200900064.
    • (2010) Biometrical Journal , vol.52 , pp. 50-69
    • Benner, A.1    Zucknick, M.2    Hielscher, T.3    Ittrich, C.4    Mansmann, U.5
  • 5
    • 38849093192 scopus 로고    scopus 로고
    • A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards
    • DOI:10.1002/sim.3006.
    • Beyersmann, J., Dettenkofer, M., Bertz, H. and Schumacher, M. (2007). A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards. Statistics in Medicine 26, 5360-5369. DOI:10.1002/sim.3006.
    • (2007) Statistics in Medicine , vol.26 , pp. 5360-5369
    • Beyersmann, J.1    Dettenkofer, M.2    Bertz, H.3    Schumacher, M.4
  • 6
    • 63549089131 scopus 로고    scopus 로고
    • Boosting for high-dimensional time-to-event data with competing risks
    • DOI:10.1093/bioinformatics/btp088.
    • Binder, H., Allignol, A., Schumacher, M. and Beyersmann, J. (2009). Boosting for high-dimensional time-to-event data with competing risks. Bioinformatics 25, 890-896. DOI:10.1093/bioinformatics/btp088.
    • (2009) Bioinformatics , vol.25 , pp. 890-896
    • Binder, H.1    Allignol, A.2    Schumacher, M.3    Beyersmann, J.4
  • 7
    • 48849102758 scopus 로고    scopus 로고
    • Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples
    • Article 12.
    • Binder, H. and Schumacher, M. (2008a). Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular Biology 7, Article 12.
    • (2008) Statistical Applications in Genetics and Molecular Biology , vol.7
    • Binder, H.1    Schumacher, M.2
  • 8
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    • DOI:10.1186/1471-2105-9-14.
    • Binder, H. and Schumacher, M. (2008b). Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinformatics 9, 14. DOI:10.1186/1471-2105-9-14.
    • (2008) BMC Bioinformatics , vol.9 , pp. 14
    • Binder, H.1    Schumacher, M.2
  • 9
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • DOI:10.1186/1471-2105-10-18.
    • Binder, H. and Schumacher, M. (2009). Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics 10, 18. DOI:10.1186/1471-2105-10-18.
    • (2009) BMC Bioinformatics , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 10
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • DOI:10.1111/j.1541-0420.2007.00843.x.
    • Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 64, 115-123. DOI:10.1111/j.1541-0420.2007.00843.x.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 11
    • 77949535610 scopus 로고    scopus 로고
    • Over-optimism in bioinformatics research
    • DOI:10.1093/bioinformatics/btp648.
    • Boulesteix, A.-L. (2010). Over-optimism in bioinformatics research. Bioinformatics 26, 437-439. DOI:10.1093/bioinformatics/btp648.
    • (2010) Bioinformatics , vol.26 , pp. 437-439
    • Boulesteix, A.-L.1
  • 12
    • 48249110665 scopus 로고    scopus 로고
    • Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value
    • DOI:10.1093/bioinformatics/btn262.
    • Boulesteix, A.-L., Porzelius, C. and Daumer, M. (2008). Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics 24, 1698-1706. DOI:10.1093/bioinformatics/btn262.
    • (2008) Bioinformatics , vol.24 , pp. 1698-1706
    • Boulesteix, A.-L.1    Porzelius, C.2    Daumer, M.3
  • 13
    • 79952261591 scopus 로고    scopus 로고
    • Assessment of evaluation criteria for survival prediction from genomic data
    • DOI: 10.1002/bimj.201000048
    • Bøvelstad, H. M. and Borgan, Ø. (2011). Assessment of evaluation criteria for survival prediction from genomic data. Biometrical Journal 53, DOI: 10.1002/bimj.201000048
    • (2011) Biometrical Journal , vol.53
    • Bøvelstad, H.M.1    Borgan, O.2
  • 14
    • 75649118862 scopus 로고    scopus 로고
    • Survival prediction from clinico-genomic models - a comparative study
    • DOI:10.1186/1471-2105-10-413.
    • Bøvelstad, H. M., Nygård, S. and Borgan, Ø. (2009). Survival prediction from clinico-genomic models - a comparative study. BMC Bioinformatics 10, 413. DOI:10.1186/1471-2105-10-413.
    • (2009) BMC Bioinformatics , vol.10 , pp. 413
    • Bøvelstad, H.M.1    Nygård, S.2    Borgan, O.3
  • 16
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting
    • DOI:10.1214/07-STS242.
    • Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting. Statistical Science 22, 477-505. DOI:10.1214/07-STS242.
    • (2007) Statistical Science , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 17
    • 77953318018 scopus 로고    scopus 로고
    • Twin boosting: improved feature selection and prediction
    • DOI:10.1007/s11222-009-9148-5.
    • Bühlmann, P. and Hothorn, T. (2010). Twin boosting: improved feature selection and prediction. Statistics and Computing 20, 119-138. DOI:10.1007/s11222-009-9148-5.
    • (2010) Statistics and Computing , vol.20 , pp. 119-138
    • Bühlmann, P.1    Hothorn, T.2
  • 19
    • 66949149020 scopus 로고    scopus 로고
    • Regularized estimation for the accelerated failure time model
    • DOI:10.1111/j.1541-0420.2008.01074.x.
    • Cai, T., Huang, J. and Tian, K. (2009). Regularized estimation for the accelerated failure time model. Biometrics 65, 394-404. DOI:10.1111/j.1541-0420.2008.01074.x.
    • (2009) Biometrics , vol.65 , pp. 394-404
    • Cai, T.1    Huang, J.2    Tian, K.3
  • 20
    • 0021958612 scopus 로고
    • The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model
    • DOI:10.1002/sim.4780040107.
    • Chen, C.-H. and George, S. L. (1985). The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model. Statistics in Medicine 4, 39-46. DOI:10.1002/sim.4780040107.
    • (1985) Statistics in Medicine , vol.4 , pp. 39-46
    • Chen, C.-H.1    George, S.L.2
  • 21
    • 0000336139 scopus 로고
    • Regression models and life tables (with discussion)
    • Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society B 34, 187-220.
    • (1972) Journal of the Royal Statistical Society B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 22
    • 34247259498 scopus 로고    scopus 로고
    • Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO
    • Datta, S., Le-Rademacher, J. and Datta, S. (2007). Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO. Biometrics 63, 259-271.
    • (2007) Biometrics , vol.63 , pp. 259-271
    • Datta, S.1    Le-Rademacher, J.2    Datta, S.3
  • 23
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • DOI:10.1186/1471-2105-7-3.
    • Díaz-Uriarte, R. and Alvarez de Andrés, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3. DOI:10.1186/1471-2105-7-3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez de Andrés, S.2
  • 24
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • DOI:10.1093/jnci/djk018.
    • Dupuy, A. and Simon, R. M. (2007). Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute 99, 147-157. DOI:10.1093/jnci/djk018.
    • (2007) Journal of the National Cancer Institute , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 28
    • 62449212467 scopus 로고    scopus 로고
    • Survival analysis with high-dimensional covariates: an application in microarray studies
    • Article 14. DOI:10.2202/1544-6115.1423.
    • Engler, D. and Li, Y. (2009). Survival analysis with high-dimensional covariates: an application in microarray studies. Statistical Applications in Genetics and Molecular Biology 8, Article 14. DOI:10.2202/1544-6115.1423.
    • (2009) Statistical Applications in Genetics and Molecular Biology , vol.8
    • Engler, D.1    Li, Y.2
  • 29
    • 47049127967 scopus 로고    scopus 로고
    • Sparse kernel methods for high-dimensional survival data
    • DOI:10.1093/bioinformatics/btn253.
    • Evers, L. and Messow, C.-M. (2008). Sparse kernel methods for high-dimensional survival data. Bioinformatics 24, 1632-1638. DOI:10.1093/bioinformatics/btn253.
    • (2008) Bioinformatics , vol.24 , pp. 1632-1638
    • Evers, L.1    Messow, C.-M.2
  • 30
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 31
    • 0036117466 scopus 로고    scopus 로고
    • Variable selections for Cox's proportional hazards model and frailty model
    • Fan, J. and Li, R. (2002). Variable selections for Cox's proportional hazards model and frailty model. Annals of Statistics 30, 74-99.
    • (2002) Annals of Statistics , vol.30 , pp. 74-99
    • Fan, J.1    Li, R.2
  • 32
    • 1542532754 scopus 로고    scopus 로고
    • A proportional hazards model for the subdistribution of a competing risk
    • Fine, J. P. and Gray, R. J. (1999). A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association 94, 496-509.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 496-509
    • Fine, J.P.1    Gray, R.J.2
  • 35
    • 33846223169 scopus 로고    scopus 로고
    • Consistent estimation of the expected Brier score in general survival models with right-censored event times
    • Gerds, T. A. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. Biometrical Journal 48, 1029-1040.
    • (2006) Biometrical Journal , vol.48 , pp. 1029-1040
    • Gerds, T.A.1    Schumacher, M.2
  • 36
    • 34547892291 scopus 로고    scopus 로고
    • Efron-type measures of prediction error for survival analysis
    • DOI:10.1111/j.1541-0420.2007.00832.x.
    • Gerds, T. A. and Schumacher, M. (2007). Efron-type measures of prediction error for survival analysis. Biometrics 63, 1283-1287. DOI:10.1111/j.1541-0420.2007.00832.x.
    • (2007) Biometrics , vol.63 , pp. 1283-1287
    • Gerds, T.A.1    Schumacher, M.2
  • 37
    • 77952568988 scopus 로고    scopus 로고
    • L1 penalized estimation in the Cox proportional hazards model
    • DOI:10.1002/bimj.200900028.
    • Goeman, J. J. (2010). L1 penalized estimation in the Cox proportional hazards model. Biometrical Journal 52, 70-84. DOI:10.1002/bimj.200900028.
    • (2010) Biometrical Journal , vol.52 , pp. 70-84
    • Goeman, J.J.1
  • 38
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18, 2529-2545.
    • (1999) Statistics in Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 39
    • 0003732572 scopus 로고    scopus 로고
    • Regression Modeling Strategies
    • Springer, New York.
    • Harrell, F. E. (2001). Regression Modeling Strategies. Springer, New York.
    • (2001)
    • Harrell, F.E.1
  • 40
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 41
    • 84865398750 scopus 로고    scopus 로고
    • A study of pre-validation
    • DOI:10.1214/08-AOAS152SUPP.
    • Höfling, H. and Tibshirani, R. (2008). A study of pre-validation. Annals of Applied Statistics 2, 643-664. DOI:10.1214/08-AOAS152SUPP.
    • (2008) Annals of Applied Statistics , vol.2 , pp. 643-664
    • Höfling, H.1    Tibshirani, R.2
  • 43
    • 33748771184 scopus 로고    scopus 로고
    • Regularized estimation in the accelerated failure time model with high-dimensional covariates
    • Huang, J., Ma, S. and Xie, H. (2006). Regularized estimation in the accelerated failure time model with high-dimensional covariates. Biometrics 62, 813-820.
    • (2006) Biometrics , vol.62 , pp. 813-820
    • Huang, J.1    Ma, S.2    Xie, H.3
  • 45
    • 85088938629 scopus 로고    scopus 로고
    • The Statistical Analysis of Failure Time Data
    • (2nd edn). Wiley, Hoboken, NJ.
    • Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd edn). Wiley, Hoboken, NJ.
    • (2002)
    • Kalbfleisch, J.D.1    Prentice, R.L.2
  • 47
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • DOI:10.1093/bioinformatics/btn081.
    • Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1182. DOI:10.1093/bioinformatics/btn081.
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 48
    • 0011880482 scopus 로고
    • Semiparametric analysis of the additive risk model
    • Lin, D. Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika 81, 61-71.
    • (1994) Biometrika , vol.81 , pp. 61-71
    • Lin, D.Y.1    Ying, Z.2
  • 49
    • 34347398269 scopus 로고    scopus 로고
    • Additive risk survival model with microarray data
    • Ma, S. and Huang, J. (2007). Additive risk survival model with microarray data. BMC Bioinformatics 8, 192.
    • (2007) BMC Bioinformatics , vol.8 , pp. 192
    • Ma, S.1    Huang, J.2
  • 50
    • 77955026459 scopus 로고    scopus 로고
    • Semiparametric prognosis models in genomic studies
    • DOI:10.1093/bib/bbp070.
    • Ma, S., Huang, J., Shi, M., Li, Y. and Shia, B.-C. (2010). Semiparametric prognosis models in genomic studies. Briefings in Bioinformatics 11, 385-393. DOI:10.1093/bib/bbp070.
    • (2010) Briefings in Bioinformatics , vol.11 , pp. 385-393
    • Ma, S.1    Huang, J.2    Shi, M.3    Li, Y.4    Shia, B.-C.5
  • 51
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group Lasso with applications to microarray data analysis
    • DOI:10.1186/1471-2105-8-60.
    • Ma, S., Son, X. and Huang, J. (2007). Supervised group Lasso with applications to microarray data analysis. BMC Bioinformatics 8, 60. DOI:10.1186/1471-2105-8-60.
    • (2007) BMC Bioinformatics , vol.8 , pp. 60
    • Ma, S.1    Son, X.2    Huang, J.3
  • 52
    • 70350508367 scopus 로고    scopus 로고
    • Covariate selection for the semiparametric additive risk model
    • DOI:10.1111/j.1467-9469.2009.00650.x.
    • Martinussen, T. and Scheike, T. H. (2009). Covariate selection for the semiparametric additive risk model. Scandinavian Journal of Statistics 36, 602-619. DOI:10.1111/j.1467-9469.2009.00650.x.
    • (2009) Scandinavian Journal of Statistics , vol.36 , pp. 602-619
    • Martinussen, T.1    Scheike, T.H.2
  • 53
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: a multiple random validation strategy
    • Michiels, S., Koscielny, S. and Hill, C. (2005). Prediction of cancer outcome with microarrays: a multiple random validation strategy. The Lancet 365, 488-492.
    • (2005) The Lancet , vol.365 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 54
    • 77952976255 scopus 로고    scopus 로고
    • Incorporating predictor network in penalized regression with application to microarray data
    • DOI:10.1111/j.1541-0420.2009.01296.x.
    • Pan, W., Xie, B. and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66, 474-484. DOI:10.1111/j.1541-0420.2009.01296.x.
    • (2010) Biometrics , vol.66 , pp. 474-484
    • Pan, W.1    Xie, B.2    Shen, X.3
  • 55
    • 34547849507 scopus 로고    scopus 로고
    • 1-regularization path algorithms for generalized linear models
    • DOI:10.1111/j.1467-9868.2007.00607.x.
    • 1-regularization path algorithms for generalized linear models. Journal of the Royal Statistical Society B 69, 659-677. DOI:10.1111/j.1467-9868.2007.00607.x.
    • (2007) Journal of the Royal Statistical Society B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 56
    • 34147177060 scopus 로고    scopus 로고
    • Averaged gene expression for regression
    • Park, M. Y., Hastie, T. and Tibshirani, R. (2007). Averaged gene expression for regression. Biostatistics 8, 212-227.
    • (2007) Biostatistics , vol.8 , pp. 212-227
    • Park, M.Y.1    Hastie, T.2    Tibshirani, R.3
  • 57
    • 62549119132 scopus 로고    scopus 로고
    • Parallelized prediction error estimation for evaluation of high-dimensional models
    • DOI:10.1093/bioinformatics/btp062.
    • Porzelius, C., Binder, H. and Schumacher, M. (2009). Parallelized prediction error estimation for evaluation of high-dimensional models. Bioinformatics 25, 827-829. DOI:10.1093/bioinformatics/btp062.
    • (2009) Bioinformatics , vol.25 , pp. 827-829
    • Porzelius, C.1    Binder, H.2    Schumacher, M.3
  • 58
    • 77953325160 scopus 로고    scopus 로고
    • Sparse regression techniques in low-dimensional survival settings
    • DOI:10.1007/s11222-009-9155-6.
    • Porzelius, C., Schumacher, M. and Binder, H. (2010). Sparse regression techniques in low-dimensional survival settings. Statistics and Computing 20, 151-163. DOI:10.1007/s11222-009-9155-6.
    • (2010) Statistics and Computing , vol.20 , pp. 151-163
    • Porzelius, C.1    Schumacher, M.2    Binder, H.3
  • 59
    • 33645024314 scopus 로고    scopus 로고
    • Assessing stability of gene selection in microarray data analysis
    • Qiu, X., Xiao, Y., Gordon, A. and Yakovlev, A. (2006). Assessing stability of gene selection in microarray data analysis. BMC Bioinformatics 7, 50.
    • (2006) BMC Bioinformatics , vol.7 , pp. 50
    • Qiu, X.1    Xiao, Y.2    Gordon, A.3    Yakovlev, A.4
  • 61
    • 0033426505 scopus 로고    scopus 로고
    • The use of resampling methods to simplify regression models in medical statistics
    • Sauerbrei, W. (1999). The use of resampling methods to simplify regression models in medical statistics. Applied Statistics 48, 313-329.
    • (1999) Applied Statistics , vol.48 , pp. 313-329
    • Sauerbrei, W.1
  • 62
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: application to the Cox regression model
    • DOI:10.1002/sim.4780111607.
    • Sauerbrei, W. and Schumacher, M. (1992). A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 11, 2093-2190. DOI:10.1002/sim.4780111607.
    • (1992) Statistics in Medicine , vol.11 , pp. 2093-2190
    • Sauerbrei, W.1    Schumacher, M.2
  • 63
    • 47349125398 scopus 로고    scopus 로고
    • Flexible boosting of accelerated failure time models
    • DOI:10.1186/1471-2105-9-269.
    • Schmid, M. and Hothorn, T. (2008). Flexible boosting of accelerated failure time models. BMC Bioinformatics 9, 269. DOI:10.1186/1471-2105-9-269.
    • (2008) BMC Bioinformatics , vol.9 , pp. 269
    • Schmid, M.1    Hothorn, T.2
  • 64
    • 34547863496 scopus 로고    scopus 로고
    • Assessment of survival prediction models based on microarray data
    • Schumacher, M., Binder, H. and Gerds, T. A. (2007). Assessment of survival prediction models based on microarray data. Bioinformatics 23, 1768-1774.
    • (2007) Bioinformatics , vol.23 , pp. 1768-1774
    • Schumacher, M.1    Binder, H.2    Gerds, T.A.3
  • 65
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited
    • Segal, M. (2006). Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited. Biostatistics 7, 268-285.
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.1
  • 67
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine 16, 385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 68
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modelling with implicit variable selection by likelihood based boosting
    • Tutz, G. and Binder, H. (2006). Generalized additive modelling with implicit variable selection by likelihood based boosting. Biometrics 62, 961-971.
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 70
    • 67650653486 scopus 로고    scopus 로고
    • Penalized regression with correlation-based penalty
    • DOI:10.1007/s11222-008-9088-5.
    • Tutz, G. and Ulbricht, J. (2009). Penalized regression with correlation-based penalty. Statistics and Computing 19, 239-253. DOI:10.1007/s11222-008-9088-5.
    • (2009) Statistics and Computing , vol.19 , pp. 239-253
    • Tutz, G.1    Ulbricht, J.2
  • 73
    • 0027765563 scopus 로고
    • Cross-validation in survival analysis
    • DOI:10.1002/sim.4780122407.
    • Verweij, P. J. M. and van Houwelingen, H. C. (1993). Cross-validation in survival analysis. Statistics in Medicine 12, 2305-2314. DOI:10.1002/sim.4780122407.
    • (1993) Statistics in Medicine , vol.12 , pp. 2305-2314
    • Verweij, P.J.M.1    van Houwelingen, H.C.2
  • 75
    • 77954378998 scopus 로고    scopus 로고
    • Buckley-James boosting for survival analysis with high-dimensional biomarker data
    • Article 24. DOI:10.2202/1544-6115.1550.
    • Wang, Z. and Wang, C. Y. (2010). Buckley-James boosting for survival analysis with high-dimensional biomarker data. Statistical Applications in Genetics and Molecular Biology 9, Article 24. DOI:10.2202/1544-6115.1550.
    • (2010) Statistical Applications in Genetics and Molecular Biology , vol.9
    • Wang, Z.1    Wang, C.Y.2
  • 76
    • 76649133296 scopus 로고    scopus 로고
    • Survival analysis with high-dimensional covariates
    • DOI:10.1177/0962280209105024.
    • Witten, D. M. and Tibshirani, R. (2010). Survival analysis with high-dimensional covariates. Statistical Methods in Medical Research 19, 29-51. DOI:10.1177/0962280209105024.
    • (2010) Statistical Methods in Medical Research , vol.19 , pp. 29-51
    • Witten, D.M.1    Tibshirani, R.2
  • 77
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society B 68, 49-67.
    • (2006) Journal of the Royal Statistical Society B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 78
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazards model
    • DOI:10.1093/biomet/asm037.
    • Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox's proportional hazards model. Biometrika 94, 691-703. DOI:10.1093/biomet/asm037.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 80
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B 67, 301-320.
    • (2005) Journal of the Royal Statistical Society B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.