메뉴 건너뛰기




Volumn 53, Issue 5, 2009, Pages 1590-1603

Survival prediction using gene expression data: A review and comparison

Author keywords

[No Author keywords available]

Indexed keywords

BIOACTIVITY; GENE EXPRESSION;

EID: 60349120810     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.05.021     Document Type: Article
Times cited : (105)

References (63)
  • 2
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O., Brown P.O., and Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. PNAS 97 (2000) 10101-10106
    • (2000) PNAS , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 3
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair E., and Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biology 2 (2004) 511-522
    • (2004) PLoS Biology , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 7
    • 33745558659 scopus 로고    scopus 로고
    • Reader's reaction to "Dimension reduction for classification with microarray gene expression data" by Dai et al. (2006)
    • Boulesteix A.-L. Reader's reaction to "Dimension reduction for classification with microarray gene expression data" by Dai et al. (2006). Statistical Applications in Genetics and Molecular Biology 5 (2006) 16
    • (2006) Statistical Applications in Genetics and Molecular Biology , vol.5 , pp. 16
    • Boulesteix, A.-L.1
  • 8
    • 34547852206 scopus 로고    scopus 로고
    • WilcoxCV: An efficient R package for variable selection in cross-validation
    • Boulesteix A.L. WilcoxCV: An efficient R package for variable selection in cross-validation. Bioinformatics 23 (2007) 1702-1704
    • (2007) Bioinformatics , vol.23 , pp. 1702-1704
    • Boulesteix, A.L.1
  • 9
    • 33846515112 scopus 로고    scopus 로고
    • Partial Least Squares: A versatile tool for the analysis of high-dimensional genomic data
    • Boulesteix A.L., and Strimmer K. Partial Least Squares: A versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics 8 (2007) 24-32
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 24-32
    • Boulesteix, A.L.1    Strimmer, K.2
  • 11
    • 34548565944 scopus 로고    scopus 로고
    • Predicting survival from microarray data - A comparative study
    • 10.1093/bioinformatics/btm305 Available at:
    • Bovelstad H.M., Nygard S., Storvold H.L., Aldrin M., Borgan O., Frigessi A., and Lingjaerde O.C. Predicting survival from microarray data - A comparative study. Bioinformatics (2007). http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/16/2080 10.1093/bioinformatics/btm305 Available at:
    • (2007) Bioinformatics
    • Bovelstad, H.M.1    Nygard, S.2    Storvold, H.L.3    Aldrin, M.4    Borgan, O.5    Frigessi, A.6    Lingjaerde, O.C.7
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 14
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • Brown P.O., and Botstein D. Exploring the new world of the genome with DNA microarrays. Nature Genetics 21 (1999) 33-37
    • (1999) Nature Genetics , vol.21 , pp. 33-37
    • Brown, P.O.1    Botstein, D.2
  • 16
    • 0034355177 scopus 로고    scopus 로고
    • The peculiar shrinkage properties of partial least squares regression
    • Butler N.A., and Denham M.C. The peculiar shrinkage properties of partial least squares regression. Journal of the Royal Statistical Society B 62 (2000) 585-593
    • (2000) Journal of the Royal Statistical Society B , vol.62 , pp. 585-593
    • Butler, N.A.1    Denham, M.C.2
  • 18
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J., and Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97 (2002) 77-87
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 19
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy A., and Simon R.M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute 99 (2007) 147-157
    • (2007) Journal of the National Cancer Institute , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 21
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf E., Schmoor C., Sauerbrei W., and Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18 (1999) 2529-2545
    • (1999) Statistics in Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 22
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui J., and Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21 (2005) 3001-3008
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 24
    • 15944419638 scopus 로고    scopus 로고
    • Efficient quadratic regularization for expression arrays
    • Hastie T., and Tibshirani R. Efficient quadratic regularization for expression arrays. Biostatistics 5 (2004) 329-340
    • (2004) Biostatistics , vol.5 , pp. 329-340
    • Hastie, T.1    Tibshirani, R.2
  • 28
    • 84868034550 scopus 로고    scopus 로고
    • Microarrays and molecular research: Noise discovery
    • Ioannidis J.P. Microarrays and molecular research: Noise discovery. The Lancet 365 (2005) 488-492
    • (2005) The Lancet , vol.365 , pp. 488-492
    • Ioannidis, J.P.1
  • 29
    • 0036820527 scopus 로고    scopus 로고
    • Associations between gene expressions in beast cancer and patient survival
    • Jenssen T.K., Kuo W.P., Stokke T., and Hovig E. Associations between gene expressions in beast cancer and patient survival. Human Genetics 111 (2002) 411-420
    • (2002) Human Genetics , vol.111 , pp. 411-420
    • Jenssen, T.K.1    Kuo, W.P.2    Stokke, T.3    Hovig, E.4
  • 30
    • 33745605205 scopus 로고    scopus 로고
    • CASPAR: A hierarchical bayesian approach to predict survival times in cancer from gene expression data
    • Kaderali L., Zander T., Faigle U., Wolf J., Schultze J.L., and Schrade R. CASPAR: A hierarchical bayesian approach to predict survival times in cancer from gene expression data. Bioinformatics 22 (2006) 1495-1502
    • (2006) Bioinformatics , vol.22 , pp. 1495-1502
    • Kaderali, L.1    Zander, T.2    Faigle, U.3    Wolf, J.4    Schultze, J.L.5    Schrade, R.6
  • 31
    • 0037196187 scopus 로고    scopus 로고
    • Residual-based tree-structured survival analysis
    • Keles S., and Segal M.R. Residual-based tree-structured survival analysis. Statistics in Medicine 21 (2002) 313-326
    • (2002) Statistics in Medicine , vol.21 , pp. 313-326
    • Keles, S.1    Segal, M.R.2
  • 33
    • 34347207585 scopus 로고    scopus 로고
    • An overview on the shrinkage properties of partial least squares regression
    • Krämer N. An overview on the shrinkage properties of partial least squares regression. Computational Statistics 22 (2007) 249-273
    • (2007) Computational Statistics , vol.22 , pp. 249-273
    • Krämer, N.1
  • 35
    • 12344271032 scopus 로고    scopus 로고
    • Dimension reduction methods for microarrays with application to censored survival data
    • Li L., and Li H. Dimension reduction methods for microarrays with application to censored survival data. Bioinformatics 20 (2004) 3406-3412
    • (2004) Bioinformatics , vol.20 , pp. 3406-3412
    • Li, L.1    Li, H.2
  • 36
    • 0043130665 scopus 로고    scopus 로고
    • Kernel Cox model for relating gene expression profiles to censored survival data
    • Li H., and Luan Y. Kernel Cox model for relating gene expression profiles to censored survival data. Pacific Symposium on Biocomputing 8 (2004) 65-76
    • (2004) Pacific Symposium on Biocomputing , vol.8 , pp. 65-76
    • Li, H.1    Luan, Y.2
  • 37
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression for high-dimensional microarray gene expression data
    • Li H., and Gui J. Partial Cox regression for high-dimensional microarray gene expression data. Bioinformatics 20 (2004) i208-i215
    • (2004) Bioinformatics , vol.20
    • Li, H.1    Gui, J.2
  • 38
    • 24044482296 scopus 로고    scopus 로고
    • Use of extreme patient samples for outcome from gene expression data
    • Liu H., Li J., and Wong L. Use of extreme patient samples for outcome from gene expression data. Bioinformatics 21 (2004) 3377-3384
    • (2004) Bioinformatics , vol.21 , pp. 3377-3384
    • Liu, H.1    Li, J.2    Wong, L.3
  • 39
    • 53149122391 scopus 로고    scopus 로고
    • Principal component analysis in linear regression survival model with microarray data
    • Ma S. Principal component analysis in linear regression survival model with microarray data. Journal of Data Science 5 (2007) 183-198
    • (2007) Journal of Data Science , vol.5 , pp. 183-198
    • Ma, S.1
  • 40
    • 0035965481 scopus 로고    scopus 로고
    • Reliable and relevant modelling of real world data: A personal account of the development of PLS regression
    • Martens H. Reliable and relevant modelling of real world data: A personal account of the development of PLS regression. Chemometrics and Intelligent Laboratory Systems 58 (2001) 85-95
    • (2001) Chemometrics and Intelligent Laboratory Systems , vol.58 , pp. 85-95
    • Martens, H.1
  • 41
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • Nagelkerke N.J.S. A note on a general definition of the coefficient of determination. Biometrika 78 (1991) 691-692
    • (1991) Biometrika , vol.78 , pp. 691-692
    • Nagelkerke, N.J.S.1
  • 42
    • 12244284624 scopus 로고    scopus 로고
    • DNA microarray experiments: Biological and technological aspects
    • Nguyen D.V., Arpat A.B., Wang N., and Carroll R.J. DNA microarray experiments: Biological and technological aspects. Biometrics 58 (2002) 701-717
    • (2002) Biometrics , vol.58 , pp. 701-717
    • Nguyen, D.V.1    Arpat, A.B.2    Wang, N.3    Carroll, R.J.4
  • 43
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen D.V., and Rocke D.M. Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics 18 (2002) 1625-1632
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.V.1    Rocke, D.M.2
  • 44
    • 12944279216 scopus 로고    scopus 로고
    • Partial least squares dimension reduction for microarray gene expression data with a censored response
    • Nguyen D.V. Partial least squares dimension reduction for microarray gene expression data with a censored response. Mathematical Biosciences 193 (2005) 119-137
    • (2005) Mathematical Biosciences , vol.193 , pp. 119-137
    • Nguyen, D.V.1
  • 45
    • 0242634343 scopus 로고    scopus 로고
    • Linking expression data with patient survival times using partial least squares
    • Park P.J., Tian L., and Kohane I.S. Linking expression data with patient survival times using partial least squares. Bioinformatics 18 (2002) S120-S127
    • (2002) Bioinformatics , vol.18
    • Park, P.J.1    Tian, L.2    Kohane, I.S.3
  • 51
    • 31344435149 scopus 로고    scopus 로고
    • Dichotomizing continuous predictors in multiple regression: A bad idea
    • Royston P., Altman D.G., and Sauerbrei W. Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine 25 (2006) 127-141
    • (2006) Statistics in Medicine , vol.25 , pp. 127-141
    • Royston, P.1    Altman, D.G.2    Sauerbrei, W.3
  • 52
    • 34547863496 scopus 로고    scopus 로고
    • Assessment of survival prediction models based on microarray data
    • 10.1093/bioinformatics/btm232 Advance Access
    • Schumacher M., Binder H., and Gerds T. Assessment of survival prediction models based on microarray data. Bioinformatics (2007). http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm232v1 10.1093/bioinformatics/btm232 Advance Access
    • (2007) Bioinformatics
    • Schumacher, M.1    Binder, H.2    Gerds, T.3
  • 53
    • 0023942063 scopus 로고    scopus 로고
    • Regression trees for censored data
    • Segal M.R. Regression trees for censored data. Biometrics 48 (1998) 35-47
    • (1998) Biometrics , vol.48 , pp. 35-47
    • Segal, M.R.1
  • 55
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival phenotypes: Diffuse large B-cell lymphoma revisited
    • Segal M. Microarray gene expression data with linked survival phenotypes: Diffuse large B-cell lymphoma revisited. Biostatistics 7 (2006) 268-285
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.1
  • 56
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., and Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21 (2005) 631-643
    • (2005) Bioinformatics , vol.21 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 57
    • 20744438777 scopus 로고    scopus 로고
    • Bayesian error-in-variable survival model for the analysis of GeneChip arrays
    • Tadesse M.G., Ibrahim J.G., Gentleman R., Chiaretti S., Ritz J., and Foa R. Bayesian error-in-variable survival model for the analysis of GeneChip arrays. Biometrics 61 (2005) 488-497
    • (2005) Biometrics , vol.61 , pp. 488-497
    • Tadesse, M.G.1    Ibrahim, J.G.2    Gentleman, R.3    Chiaretti, S.4    Ritz, J.5    Foa, R.6
  • 58
    • 0031015557 scopus 로고    scopus 로고
    • The LASSO method for variable selection in the Cox model
    • Tibshirani R. The LASSO method for variable selection in the Cox model. Statistics in Medicine 16 (1997) 385-395
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 62
    • 16344373053 scopus 로고    scopus 로고
    • Survival analysis of microarray expression data by transformation models
    • Xu J., Yang Y., and Ott J. Survival analysis of microarray expression data by transformation models. Computational Biology and Chemistry 29 (2005) 91-94
    • (2005) Computational Biology and Chemistry , vol.29 , pp. 91-94
    • Xu, J.1    Yang, Y.2    Ott, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.