메뉴 건너뛰기




Volumn 63, Issue 1, 2007, Pages 259-271

Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO

Author keywords

Cancer; Gene expression; Partial least squares; Right censoring; Survival

Indexed keywords

DATA HANDLING; DISEASES; FORECASTING; LEAST SQUARES APPROXIMATIONS; TUMORS;

EID: 34247259498     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2006.00660.x     Document Type: Review
Times cited : (72)

References (34)
  • 1
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair, E. and Tibshirani, R. (2004). Semi-supervised methods to predict patient survival from gene expression data. PLoS Biology 2, 511-522.
    • (2004) PLoS Biology , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 2
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer, D. G., Kardia, S. L., Huang, C., et al. (2002). Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Medicine 8, 816-824.
    • (2002) Nature Medicine , vol.8 , pp. 816-824
    • Beer, D.G.1    Kardia, S.L.2    Huang, C.3
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289-300.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 5
    • 0018668029 scopus 로고
    • Linear regression with censored data
    • Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika 66, 429-436.
    • (1979) Biometrika , vol.66 , pp. 429-436
    • Buckley, J.1    James, I.2
  • 7
    • 0035184506 scopus 로고    scopus 로고
    • Exploring relationships in gene expressions: A partial least squares approach
    • Datta, S. (2001). Exploring relationships in gene expressions: A partial least squares approach. Gene Expression 9, 249-255.
    • (2001) Gene Expression , vol.9 , pp. 249-255
    • Datta, S.1
  • 8
    • 33644785045 scopus 로고    scopus 로고
    • Estimating the mean life time using right censored data
    • Datta, S. (2005). Estimating the mean life time using right censored data. Statistical Methodology 2, 65-69.
    • (2005) Statistical Methodology , vol.2 , pp. 65-69
    • Datta, S.1
  • 10
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression tools (with discussion). Technometrics 35, 109-148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 13
    • 14944352943 scopus 로고    scopus 로고
    • Iterative partial least squares with right-censored data analysis: A comparison to other dimension reduction techniques
    • Huang, J. and Harrington, D. (2005). Iterative partial least squares with right-censored data analysis: A comparison to other dimension reduction techniques. Biometrics 61, 17-24.
    • (2005) Biometrics , vol.61 , pp. 17-24
    • Huang, J.1    Harrington, D.2
  • 16
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • Knight, K. and Fu, W. (2000). Asymptotics for Lasso-type estimators. Annals of Statistics 28, 1356-1378.
    • (2000) Annals of Statistics , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 17
    • 0001021449 scopus 로고
    • Regression analysis with randomly right-censored data
    • Koul, H., Susarla, V., and Van Ryzin, J. (1981). Regression analysis with randomly right-censored data. Annals of Statistics 9, 1276-1288.
    • (1981) Annals of Statistics , vol.9 , pp. 1276-1288
    • Koul, H.1    Susarla, V.2    Van Ryzin, J.3
  • 18
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional microarray gene expression data
    • Li, H. and Gui, J. (2004). Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics 20 (suppl. 1), i208-i215.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Li, H.1    Gui, J.2
  • 21
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • Marx, B. D. (1996). Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38, 374-381.
    • (1996) Technometrics , vol.38 , pp. 374-381
    • Marx, B.D.1
  • 22
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen, D. V. and Rocke, D. M. (2002a). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18, 39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 23
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen, D. V. and Rocke, D. M. (2002b). Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics 18, 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.V.1    Rocke, D.M.2
  • 24
    • 0242634343 scopus 로고    scopus 로고
    • Linking gene expression data with patient survival times using partial least squares
    • Park, P. J., Tian, L., and Kohane, I. S. (2002). Linking gene expression data with patient survival times using partial least squares. Bioinformatics 18, 120-127.
    • (2002) Bioinformatics , vol.18 , pp. 120-127
    • Park, P.J.1    Tian, L.2    Kohane, I.S.3
  • 25
    • 0141743615 scopus 로고    scopus 로고
    • Discriminant models for high-throughput proteomics mass spectrometer data
    • Purohit, P. and Rocke, D. M. (2003). Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics 3, 1699-1703.
    • (2003) Proteomics , vol.3 , pp. 1699-1703
    • Purohit, P.1    Rocke, D.M.2
  • 26
    • 0033864536 scopus 로고    scopus 로고
    • Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests
    • Robins, J. and Finkelstein, D. (2000). Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics 56, 779-788.
    • (2000) Biometrics , vol.56 , pp. 779-788
    • Robins, J.1    Finkelstein, D.2
  • 27
    • 0001425735 scopus 로고
    • Recovery of information and adjustment for dependent censoring using surrogate markers
    • N. Jewell, K. Dietz, and V. Farewell eds, Boston: Birkhauser
    • Robins, J. M. and Rotnitzky, A. (1992). Recovery of information and adjustment for dependent censoring using surrogate markers. In AIDS Epidemiology - Methodological Issues, N. Jewell, K. Dietz, and V. Farewell (eds), 297-331. Boston: Birkhauser.
    • (1992) AIDS Epidemiology - Methodological Issues , pp. 297-331
    • Robins, J.M.1    Rotnitzky, A.2
  • 28
    • 0035596127 scopus 로고    scopus 로고
    • The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted average
    • Satten, G. A. and Datta, S. (2001). The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted average. American Statistician 55, 207-210.
    • (2001) American Statistician , vol.55 , pp. 207-210
    • Satten, G.A.1    Datta, S.2
  • 29
    • 0012768876 scopus 로고    scopus 로고
    • An estimator for the survival function when data are subject to dependent censoring
    • Satten, G. A., Datta, S., and Robins, J. M. (2001). An estimator for the survival function when data are subject to dependent censoring. Statistics and Probability Letters 54, 397-403.
    • (2001) Statistics and Probability Letters , vol.54 , pp. 397-403
    • Satten, G.A.1    Datta, S.2    Robins, J.M.3
  • 31
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine 16, 385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 32
    • 85153186061 scopus 로고    scopus 로고
    • Tobias, R. D. (1997). An Introduction to Partial Least Squares Regression. TS-509. Cary, North Carolina: SAS Institute. Available at http://support.sas.com/techsup/technote/ts509.pdf.
    • Tobias, R. D. (1997). An Introduction to Partial Least Squares Regression. TS-509. Cary, North Carolina: SAS Institute. Available at http://support.sas.com/techsup/technote/ts509.pdf.
  • 33
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • P. R. Krishnaiah ed, New York: Academic Press
    • Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In Multivariate Analysis, P. R. Krishnaiah (ed), 391-420. New York: Academic Press.
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 34
    • 0002692783 scopus 로고
    • Soft modeling by latent variables: The nonlinear iterative partial least squares (NIPALS) approach
    • J. Gani ed, London: Academic Press
    • Wold, H. (1975). Soft modeling by latent variables: The nonlinear iterative partial least squares (NIPALS) approach. In Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett, J. Gani (ed), 117-144. London: Academic Press.
    • (1975) Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett , pp. 117-144
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.