메뉴 건너뛰기




Volumn 37, Issue 4, 2010, Pages 531-552

The Dantzig Selector in Cox's Proportional Hazards Model

Author keywords

Dantzig selector; Generalized linear models; LASSO; Penalized partial likelihood; Proportional hazards model; Variable selection

Indexed keywords


EID: 78349291870     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2009.00685.x     Document Type: Article
Times cited : (67)

References (40)
  • 1
    • 0001646484 scopus 로고
    • Cox's regression model for counting processes: a large sample study
    • Andersen, P. K. & Gill, R. D. (1982). Cox's regression model for counting processes: a large sample study. Ann. Statist. 10, 1100-1120.
    • (1982) Ann. Statist. , vol.10 , pp. 1100-1120
    • Andersen, P.K.1    Gill, R.D.2
  • 2
    • 0003572485 scopus 로고
    • Statistical models based on counting processes
    • Springer-Verlag, New York.
    • Andersen, P. K., Borgan, Ø., Gill, R. D. & Keiding, N. (1993). Statistical models based on counting processes. Springer-Verlag, New York.
    • (1993)
    • Andersen, P.K.1    Borgan Ø2    Gill, R.D.3    Keiding, N.4
  • 4
    • 0002274551 scopus 로고
    • Residuals for relative risk regression
    • Barlow, W. E. & Prentice, R. L. (1988). Residuals for relative risk regression. Biometrika 75, 65-74.
    • (1988) Biometrika , vol.75 , pp. 65-74
    • Barlow, W.E.1    Prentice, R.L.2
  • 5
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel, P., Ritov, Y. & Tsybakov, A. (2009). Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37, 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 6
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: a versatile tool for the analysis of high-dimensional genomic data
    • Boulesteix, A. & Strimmer, K. (2007). Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform. 8, 24-32.
    • (2007) Brief. Bioinform. , vol.8 , pp. 24-32
    • Boulesteix, A.1    Strimmer, K.2
  • 8
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candès, E. & Tao, T. (2007). The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist. 35, 2313-2351.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 9
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven, P. & Wahba, G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31, 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 10
    • 0000990762 scopus 로고
    • Efficient computation of subset selection probabilities with application to Cox regression
    • Delong, D., Guirguis, G. & So, Y. (1994). Efficient computation of subset selection probabilities with application to Cox regression. Biometrika 81, 607-611.
    • (1994) Biometrika , vol.81 , pp. 607-611
    • Delong, D.1    Guirguis, G.2    So, Y.3
  • 11
    • 0036117466 scopus 로고    scopus 로고
    • Variable selection for Cox's proportional hazards model and frailty model
    • Fan, J. & Li, R. (2002). Variable selection for Cox's proportional hazards model and frailty model. Ann. Statist. 30, 74-99.
    • (2002) Ann. Statist. , vol.30 , pp. 74-99
    • Fan, J.1    Li, R.2
  • 12
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space (with discussion)
    • Fan, J. & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space (with discussion). J. Roy. Statist. Soc. Ser. B Stat. Methodol. 70, 849-911.
    • (2008) J. Roy. Statist. Soc. Ser. B Stat. Methodol. , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 13
    • 0032442458 scopus 로고    scopus 로고
    • Bayesian variable selection method for censored survival data
    • Faraggi, D. & Simon, R. (1998). Bayesian variable selection method for censored survival data. Biometrics 54, 1475-1485.
    • (1998) Biometrics , vol.54 , pp. 1475-1485
    • Faraggi, D.1    Simon, R.2
  • 14
    • 21344465088 scopus 로고
    • Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes
    • Van De Geer, S. (1995). Exponential inequalities for martingales, with application to maximum likelihood estimation for counting processes. Ann. Statist. 23, 1779-1801.
    • (1995) Ann. Statist. , vol.23 , pp. 1779-1801
    • Van De Geer, S.1
  • 15
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf, E., Schmoor, C., Sauerbrei, W. & Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 18, 2529-2545.
    • (1999) Stat. Med. , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 16
    • 15944409959 scopus 로고    scopus 로고
    • Threshold gradient descent method for censored data regression with applications in pharmacogenomics
    • Gui, J. & Li, H. (2005). Threshold gradient descent method for censored data regression with applications in pharmacogenomics. Pac. Symp. Biocomput. 10, 272-283.
    • (2005) Pac. Symp. Biocomput. , vol.10 , pp. 272-283
    • Gui, J.1    Li, H.2
  • 17
    • 0003732572 scopus 로고    scopus 로고
    • Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis
    • Springer-Verlag, New York.
    • Harrell, F. E. (2001). Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer-Verlag, New York.
    • (2001)
    • Harrell, F.E.1
  • 18
    • 0004151494 scopus 로고
    • Matrix analysis
    • Cambridge University Press, Cambridge.
    • Horn, R. A. & Johnson, C. R. (1985). Matrix analysis. Cambridge University Press, Cambridge.
    • (1985)
    • Horn, R.A.1    Johnson, C.R.2
  • 19
  • 20
    • 0030501199 scopus 로고    scopus 로고
    • Efficient estimation for the Cox model with interval censoring
    • Huang, J. (1996). Efficient estimation for the Cox model with interval censoring. Ann. Statist. 24, 540-568.
    • (1996) Ann. Statist. , vol.24 , pp. 540-568
    • Huang, J.1
  • 21
    • 55949129314 scopus 로고    scopus 로고
    • Bayesian variable selection for the Cox regression model with missing covariates
    • Ibrahim, J., Chen, M.-H. & Kim, S. (2008). Bayesian variable selection for the Cox regression model with missing covariates. Lifetime Data Anal. 14, 496-520.
    • (2008) Lifetime Data Anal. , vol.14 , pp. 496-520
    • Ibrahim, J.1    Chen, M.2    Kim, S.3
  • 22
    • 66249085882 scopus 로고    scopus 로고
    • A generalized Dantzig selector with shrinkage tuning
    • James, G. & Radchenko, P. (2009). A generalized Dantzig selector with shrinkage tuning. Biometrika 96, 323-337.
    • (2009) Biometrika , vol.96 , pp. 323-337
    • James, G.1    Radchenko, P.2
  • 23
    • 0036820527 scopus 로고    scopus 로고
    • Associations between gene expressions in beast cancer and patient survival
    • Jenssen, T., Kuo, W., Stokke, T. & Hovig, E. (2002). Associations between gene expressions in beast cancer and patient survival. Hum. Genet. 111, 411-420.
    • (2002) Hum. Genet. , vol.111 , pp. 411-420
    • Jenssen, T.1    Kuo, W.2    Stokke, T.3    Hovig, E.4
  • 24
    • 0029504028 scopus 로고
    • Equivalence of several methods for efficient best subsets selection in generalized linear models
    • Jovanovic, B. D., Hosmer, D. & Buonaccorsi, J. P. (1995). Equivalence of several methods for efficient best subsets selection in generalized linear models. Comput. Statist. Data Anal. 20, 59-64.
    • (1995) Comput. Statist. Data Anal. , vol.20 , pp. 59-64
    • Jovanovic, B.D.1    Hosmer, D.2    Buonaccorsi, J.P.3
  • 25
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    • Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electron. J. Stat. 2, 90-102.
    • (2008) Electron. J. Stat. , vol.2 , pp. 90-102
    • Lounici, K.1
  • 26
    • 67949089821 scopus 로고    scopus 로고
    • The Aalen additive hazards model with high dimensional regressors
    • Martinussen, T. & Scheike, T. H. (2009a). The Aalen additive hazards model with high dimensional regressors. Lifetime Data Anal. 15, 330-342.
    • (2009) Lifetime Data Anal. , vol.15 , pp. 330-342
    • Martinussen, T.1    Scheike, T.H.2
  • 27
    • 70350508367 scopus 로고    scopus 로고
    • Covariate selection for the semiparametric additive risk model
    • Martinussen, T. & Scheike, T. H. (2009b). Covariate selection for the semiparametric additive risk model. Scand. J. Statist. 36, 602-619.
    • (2009) Scand. J. Statist. , vol.36 , pp. 602-619
    • Martinussen, T.1    Scheike, T.H.2
  • 28
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • Marx, B. D. (1996). Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38, 374-381.
    • (1996) Technometrics , vol.38 , pp. 374-381
    • Marx, B.D.1
  • 29
    • 0003663926 scopus 로고
    • Generalized linear models, 2nd edn
    • Chapman and Hall, London.
    • McCullagh, P. & Nelder, J. (1989). Generalized linear models, 2nd edn. Chapman and Hall, London.
    • (1989)
    • McCullagh, P.1    Nelder, J.2
  • 30
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen, D. V. & Rocke, D. M. (2002). Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics 18, 1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.V.1    Rocke, D.M.2
  • 31
  • 32
    • 0242634343 scopus 로고    scopus 로고
    • Linking expression data with patient survival times using partial least squares
    • Park, P., Tian, L. & Kohane, I. (2002). Linking expression data with patient survival times using partial least squares. Bioinformatics 18, 120-127.
    • (2002) Bioinformatics , vol.18 , pp. 120-127
    • Park, P.1    Tian, L.2    Kohane, I.3
  • 33
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • Rosset, S. & Zhu, J. (2007). Piecewise linear regularized solution paths. Ann. Statist. 35, 1012-1030.
    • (2007) Ann. Statist. , vol.35 , pp. 1012-1030
    • Rosset, S.1    Zhu, J.2
  • 34
    • 0003746145 scopus 로고
    • Empirical processes with applications to statistics
    • Wiley, New York.
    • Shorack, G. R. & Wellner, J. A. (1986). Empirical processes with applications to statistics. Wiley, New York.
    • (1986)
    • Shorack, G.R.1    Wellner, J.A.2
  • 35
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Stat. Med. 16, 385-395.
    • (1997) Stat. Med. , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 37
    • 35348879976 scopus 로고    scopus 로고
    • Unified LASSO estimation by least squares approximation
    • Wang, H. & Leng, C. (2007). Unified LASSO estimation by least squares approximation. J. Amer. Statist. Assoc. 102, 1039-1048.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 1039-1048
    • Wang, H.1    Leng, C.2
  • 38
    • 60349120810 scopus 로고    scopus 로고
    • Survival prediction using gene expression data: a review and comparison
    • Van Wieringen, D., Kun, D., Hampel, R. & Boulesteix, A.-L. (2009). Survival prediction using gene expression data: a review and comparison. Comput. Statist. Data Anal. 53, 1590-1603.
    • (2009) Comput. Statist. Data Anal. , vol.53 , pp. 1590-1603
    • Van Wieringen, D.1    Kun, D.2    Hampel, R.3    Boulesteix, A.4
  • 39
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazards model
    • Zhang, H. H. & Lu, W. (2007). Adaptive Lasso for Cox's proportional hazards model. Biometrika 94, 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 40
    • 40249107663 scopus 로고    scopus 로고
    • A note on path-based variable selection in the penalized proportional hazards model
    • Zou, H. (2008). A note on path-based variable selection in the penalized proportional hazards model. Biometrika 95, 241-247.
    • (2008) Biometrika , vol.95 , pp. 241-247
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.