메뉴 건너뛰기




Volumn 53, Issue 2, 2011, Pages 202-216

Assessment of evaluation criteria for survival prediction from genomic data

Author keywords

AUC; Brier Score; Cox regression; Explained variation; Microarray gene expression data

Indexed keywords

GENE EXPRESSION; LEAST SQUARES APPROXIMATIONS; REGRESSION ANALYSIS;

EID: 79952261591     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201000048     Document Type: Article
Times cited : (17)

References (39)
  • 1
    • 21844511145 scopus 로고
    • Nearest neighbor estimation of a bivariate distribution under random censoring
    • Akritas, M. G. (1994). Nearest neighbor estimation of a bivariate distribution under random censoring. The Annals of Statistics 22, 1299-1327.
    • (1994) The Annals of Statistics , vol.22 , pp. 1299-1327
    • Akritas, M.G.1
  • 3
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair, E. and Tibshirani, R. (2004). Semi-supervised methods to predict patient survival from gene expression data. PLoS Biology 2, 511-522.
    • (2004) PLoS Biology , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 4
    • 75649118862 scopus 로고    scopus 로고
    • Survival prediction from clinico-genomic models - a comparative study
    • Bøvelstad, H. M., Nygård, S. and Borgan, Ø. (2009). Survival prediction from clinico-genomic models - a comparative study. BMC Bioinformatics 10, 413.
    • (2009) BMC Bioinformatics , vol.10 , pp. 413
    • Bøvelstad, H.M.1    Nygård, S.2    Borgan, O.3
  • 7
    • 34247259498 scopus 로고    scopus 로고
    • Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and lasso
    • Datta, S., Le-Rademacher, J. and Datta, S. (2007). Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and lasso. Biometrics 63, 259-271.
    • (2007) Biometrics , vol.63 , pp. 259-271
    • Datta, S.1    Le-Rademacher, J.2    Datta, S.3
  • 8
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf, E., Schmoor, C., Sauerbrei, W. and Schumacher, M. (1999). Assessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine 18, 2529-2545.
    • (1999) Statistics in Medicine , vol.18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 9
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui, J. and Li, H. (2005). Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 10
    • 85163228262 scopus 로고    scopus 로고
    • Encyclopedia of Biostatistics
    • Armitage, P. and Colton, T. (Eds.). Wiley, Chichester
    • Hanley, J. A. (2005). Receiver operating characteristic (ROC) curves. In: Armitage, P. and Colton, T. (Eds.). Encyclopedia of Biostatistics. Wiley, Chichester, 4523-4529.
    • (2005) Receiver operating characteristic (ROC) curves , pp. 4523-4529
    • Hanley, J.A.1
  • 11
    • 0003684449 scopus 로고    scopus 로고
    • Elements of Statistical Learning, Data Mining, Inference, and Prediction
    • (2 edn). Springer, New York.
    • Hastie, T., Tibshirani, R. and Friedman, J. (2009). Elements of Statistical Learning, Data Mining, Inference, and Prediction (2 edn). Springer, New York.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 12
    • 0033936550 scopus 로고    scopus 로고
    • Time-dependent ROC curves for censored survival data and a diagnostic marker
    • Heagerty, P. J., Lumley, T. and Pepe, M. S. (2000). Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56, 337-344.
    • (2000) Biometrics , vol.56 , pp. 337-344
    • Heagerty, P.J.1    Lumley, T.2    Pepe, M.S.3
  • 13
    • 29544445940 scopus 로고    scopus 로고
    • Individual survival time prediction using statistical models
    • Henderson, R. and Keiding, N. (2005). Individual survival time prediction using statistical models. Clinical Ethics 31, 703-706.
    • (2005) Clinical Ethics , vol.31 , pp. 703-706
    • Henderson, R.1    Keiding, N.2
  • 14
    • 77949347679 scopus 로고    scopus 로고
    • On the prognostic value of survival models with application to gene expression signatures
    • Hielscher, T., Zucknick, M., Werft, W. and Benner, A. (2010). On the prognostic value of survival models with application to gene expression signatures. Statistics in Medicine 29, 818-829.
    • (2010) Statistics in Medicine , vol.29 , pp. 818-829
    • Hielscher, T.1    Zucknick, M.2    Werft, W.3    Benner, A.4
  • 15
    • 33748771184 scopus 로고    scopus 로고
    • Regularized estimation in the accelerated failure time model with high-dimensional covariates
    • Huang, J., Ma, S. and Xie, H. (2006). Regularized estimation in the accelerated failure time model with high-dimensional covariates. Biometrics 62, 813-820.
    • (2006) Biometrics , vol.62 , pp. 813-820
    • Huang, J.1    Ma, S.2    Xie, H.3
  • 16
    • 0003440032 scopus 로고    scopus 로고
    • Survival Analysis. Techniques for Censored and Truncated Data
    • (2 edn). Springer, New York.
    • Klein, J. P. and Moeschberger, M. L. (2003). Survival Analysis. Techniques for Censored and Truncated Data (2 edn). Springer, New York.
    • (2003)
    • Klein, J.P.1    Moeschberger, M.L.2
  • 17
    • 34347398269 scopus 로고    scopus 로고
    • Additive risk survival model with microarray data
    • Ma, S. and Huang, J. (2007). Additive risk survival model with microarray data. BMC Bioinformatics 8, 192.
    • (2007) BMC Bioinformatics , vol.8 , pp. 192
    • Ma, S.1    Huang, J.2
  • 18
    • 33645092633 scopus 로고    scopus 로고
    • Additive risk models for survival data with high-dimensional covariates
    • Ma, S., Kosorok, M. R. and Fine, J. P. (2006). Additive risk models for survival data with high-dimensional covariates. Biometrics 62, 202-210.
    • (2006) Biometrics , vol.62 , pp. 202-210
    • Ma, S.1    Kosorok, M.R.2    Fine, J.P.3
  • 19
    • 67949089821 scopus 로고    scopus 로고
    • The additive hazards model with high-dimensional regressors
    • Martinussen, T. and Scheike, T. H. (2009). The additive hazards model with high-dimensional regressors. Lifetime Data Analysis 15, 330-342.
    • (2009) Lifetime Data Analysis , vol.15 , pp. 330-342
    • Martinussen, T.1    Scheike, T.H.2
  • 20
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika 78, 691-692.
    • (1991) Biometrika , vol.78 , pp. 691-692
    • Nagelkerke, N.J.D.1
  • 24
    • 77949414926 scopus 로고    scopus 로고
    • A general, prediction error-based criterion for selecting model complexity for high-dimensional survival models
    • Porzelius, C., Schumacher, M. and Binder, H. (2010). A general, prediction error-based criterion for selecting model complexity for high-dimensional survival models. Statistics in Medicine 23, 830-838.
    • (2010) Statistics in Medicine , vol.23 , pp. 830-838
    • Porzelius, C.1    Schumacher, M.2    Binder, H.3
  • 26
    • 0029785607 scopus 로고    scopus 로고
    • Explained variation in survival analysis
    • Schemper, M. and Stare, J. (1996). Explained variation in survival analysis. Statistics in Medicine 15, 1999-2012.
    • (1996) Statistics in Medicine , vol.15 , pp. 1999-2012
    • Schemper, M.1    Stare, J.2
  • 27
    • 34547863496 scopus 로고    scopus 로고
    • Assessment of survival prediction models based on microarray data
    • Schumacher, M., Binder, H. and Gerds, T. (2007). Assessment of survival prediction models based on microarray data. Bioinformatics 23, 1768-1774.
    • (2007) Bioinformatics , vol.23 , pp. 1768-1774
    • Schumacher, M.1    Binder, H.2    Gerds, T.3
  • 28
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited
    • Segal, M. R. (2006). Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited. Biostatistics 7, 268-285.
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.R.1
  • 31
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine 16, 385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.