-
1
-
-
0031122029
-
-
Goldhaber-Gordon, D.; Montemerlo, M. S.; Love, J. C.; Opiteck, G. J.; Ellenbogen, J. C. Proc. IEEE 1997, 85, 521-540
-
(1997)
Proc. IEEE
, vol.85
, pp. 521-540
-
-
Goldhaber-Gordon, D.1
Montemerlo, M.S.2
Love, J.C.3
Opiteck, G.J.4
Ellenbogen, J.C.5
-
2
-
-
0031122158
-
-
Taur, Y.; Buchanan, D. A.; Chen, W.; Frank, D. J.; Ismail, K. E.; Lo, S.-H.; Sai-Halasz, G. A.; Viswanathan, R. G.; Wann, H.-J. C.; Wind, S. J.; Wong, H.-S. Proc. IEEE 1997, 85, 486-504
-
(1997)
Proc. IEEE
, vol.85
, pp. 486-504
-
-
Taur, Y.1
Buchanan, D.A.2
Chen, W.3
Frank, D.J.4
Ismail, K.E.5
Lo, S.-H.6
Sai-Halasz, G.A.7
Viswanathan, R.G.8
Wann, H.-J.C.9
Wind, S.J.10
Wong, H.-S.11
-
4
-
-
0034738980
-
-
Peercy, P. S. Nature 2000, 406, 1023-1026
-
(2000)
Nature
, vol.406
, pp. 1023-1026
-
-
Peercy, P.S.1
-
5
-
-
0001097795
-
-
Wada, Y. Proc. IEEE 2001, 89, 1147-1171
-
(2001)
Proc. IEEE
, vol.89
, pp. 1147-1171
-
-
Wada, Y.1
-
7
-
-
0033051026
-
-
Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435-445
-
(1999)
Acc. Chem. Res.
, vol.32
, pp. 435-445
-
-
Hu, J.1
Odom, T.W.2
Lieber, C.M.3
-
9
-
-
0033737136
-
-
Cui, Y.; Duan, X.; Hu, J.; Lieber, C. M. J. Phys. Chem. B 2000, 104, 5213-5216
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 5213-5216
-
-
Cui, Y.1
Duan, X.2
Hu, J.3
Lieber, C.M.4
-
10
-
-
0035804248
-
-
Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66-69
-
(2001)
Nature
, vol.409
, pp. 66-69
-
-
Duan, X.1
Huang, Y.2
Cui, Y.3
Wang, J.4
Lieber, C.M.5
-
12
-
-
0035834415
-
-
Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K.-H.; Lieber, C. M. Science 2001, 294, 1313-1317
-
(2001)
Science
, vol.294
, pp. 1313-1317
-
-
Huang, Y.1
Duan, X.2
Cui, Y.3
Lauhon, L.J.4
Kim, K.-H.5
Lieber, C.M.6
-
13
-
-
77949480681
-
-
Kim, D. R.; Lee, C. H.; Zheng, X. Nano Lett. 2010, 10, 1050-1054
-
(2010)
Nano Lett.
, vol.10
, pp. 1050-1054
-
-
Kim, D.R.1
Lee, C.H.2
Zheng, X.3
-
14
-
-
0141605054
-
-
Duan, X.; Niu, C.; Sahi, J.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. Nature 2003, 425, 274-278
-
(2003)
Nature
, vol.425
, pp. 274-278
-
-
Duan, X.1
Niu, C.2
Sahi, J.3
Chen, J.4
Parce, J.W.5
Empedocles, S.6
Goldman, J.L.7
-
15
-
-
0344012623
-
-
Zhong, Z.; Wang, D.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Science 2003, 302, 1377-1379
-
(2003)
Science
, vol.302
, pp. 1377-1379
-
-
Zhong, Z.1
Wang, D.2
Cui, Y.3
Bockrath, M.W.4
Lieber, C.M.5
-
16
-
-
4143108889
-
-
Ng, H. T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M. Nano Lett. 2004, 4, 1247-1252
-
(2004)
Nano Lett.
, vol.4
, pp. 1247-1252
-
-
Ng, H.T.1
Han, J.2
Yamada, T.3
Nguyen, P.4
Chen, Y.P.5
Meyyappan, M.6
-
17
-
-
34047143923
-
-
Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Nano Lett. 2007, 7, 773-777
-
(2007)
Nano Lett.
, vol.7
, pp. 773-777
-
-
Javey, A.1
Nam, S.2
Friedman, R.S.3
Yan, H.4
Lieber, C.M.5
-
18
-
-
0036163060
-
-
Choi, Y. -K.; King, T. -J.; Hu, C. IEEE Electron Device Lett. 2002, 23, 25-27
-
(2002)
IEEE Electron Device Lett.
, vol.23
, pp. 25-27
-
-
Choi, Y.-K.1
King, T.-J.2
Hu, C.3
-
19
-
-
79851503460
-
-
+-doped source/drain (S/D) and p-SiNW as a channel) as a pull-down network on the proposed SiNW-FET, a NOR logic gate can be readily formed, similar to a NAND logic gate.
-
+-doped source/drain (S/D) and p-SiNW as a channel) as a pull-down network on the proposed SiNW-FET, a NOR logic gate can be readily formed, similar to a NAND logic gate.
-
-
-
-
21
-
-
79851496429
-
-
The pn-diodes are generally used for the formation of potential barriers between the S/D and channel in a FET. However, this structure can be changed through the use of a structure without S/D junctions. Whereas previous work using crossed nanowire FETs only utilized highly doped SiNWs without the formation of S/D junctions, in the present study highly doped S/D junctions were formed to employ built-in diodes.
-
The pn-diodes are generally used for the formation of potential barriers between the S/D and channel in a FET. However, this structure can be changed through the use of a structure without S/D junctions. Whereas previous work using crossed nanowire FETs only utilized highly doped SiNWs without the formation of S/D junctions, in the present study highly doped S/D junctions were formed to employ built-in diodes.
-
-
-
-
22
-
-
0034617249
-
-
Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C.-L.; Lieber, C. M. Science 2000, 289, 94-97
-
(2000)
Science
, vol.289
, pp. 94-97
-
-
Rueckes, T.1
Kim, K.2
Joselevich, E.3
Tseng, G.Y.4
Cheung, C.-L.5
Lieber, C.M.6
-
23
-
-
79851475339
-
-
OUT does not affect the operation of our logic gates because the low turn-on voltage contributions are reproducible and can be readily accounted for in defining the 0 and 1 states.
-
OUT does not affect the operation of our logic gates because the low turn-on voltage contributions are reproducible and can be readily accounted for in defining the 0 and 1 states.
-
-
-
-
24
-
-
79851485391
-
-
+ poly-Si gates. Therefore, previous pull-up networks in complementary metal oxide semiconductor (CMOS) electronics can be transformed to OR logic gates (Figure 2), and pull-down networks can be transformed to AND logic gates. Also see Supporting Information, Figure S2.
-
+ poly-Si gates. Therefore, previous pull-up networks in complementary metal oxide semiconductor (CMOS) electronics can be transformed to OR logic gates (Figure 2), and pull-down networks can be transformed to AND logic gates. Also see Supporting Information, Figure S2.
-
-
-
-
26
-
-
0034723410
-
-
Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622-625
-
(2000)
Science
, vol.287
, pp. 622-625
-
-
Kong, J.1
Franklin, N.R.2
Zhou, C.3
Chapline, M.G.4
Peng, S.5
Cho, K.6
Dai, H.7
-
27
-
-
0035902938
-
-
Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289-1292
-
(2001)
Science
, vol.293
, pp. 1289-1292
-
-
Cui, Y.1
Wei, Q.2
Park, H.3
Lieber, C.M.4
-
28
-
-
79851488126
-
-
2 and air. However, after modification, the equivalent thickness of the gate dielectric is close to 6 nm. This difference in the thickness and permittivity of the gate dielectric layer can affect the gate capacitance value and in turn, significantly change the threshold voltage.
-
2 and air. However, after modification, the equivalent thickness of the gate dielectric is close to 6 nm. This difference in the thickness and permittivity of the gate dielectric layer can affect the gate capacitance value and in turn, significantly change the threshold voltage.
-
-
-
|