-
2
-
-
0003535541
-
-
Oxford Univ. Press, New York
-
M. C. Petty, M. R. Bryce, D. Bloor, Eds., Introduction to Molecular Electronics (Oxford Univ. Press, New York, 1995).
-
(1995)
Introduction to Molecular Electronics
-
-
Petty, M.C.1
Bryce, M.R.2
Bloor, D.3
-
3
-
-
0032510985
-
-
J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams, Science 280, 1716 (1998).
-
(1998)
Science
, vol.280
, pp. 1716
-
-
Heath, J.R.1
Kuekes, P.J.2
Snider, G.S.3
Williams, R.S.4
-
4
-
-
0033575366
-
-
C. P. Collier et al., Science 285, 391 (1999).
-
(1999)
Science
, vol.285
, pp. 391
-
-
Collier, C.P.1
-
5
-
-
0033584805
-
-
J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 286, 1550 (1999).
-
(1999)
Science
, vol.286
, pp. 1550
-
-
Chen, J.1
Reed, M.A.2
Rawlett, A.M.3
Tour, J.M.4
-
8
-
-
0031912473
-
-
T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature 391, 62 (1998).
-
(1998)
Nature
, vol.391
, pp. 62
-
-
Odom, T.W.1
Huang, J.L.2
Kim, P.3
Lieber, C.M.4
-
9
-
-
0007178040
-
-
S. J. Tans et al., Nature 386, 474 (1997); M. Bockrath et al., Science 275, 1922 (1997).
-
(1997)
Nature
, vol.386
, pp. 474
-
-
Tans, S.J.1
-
10
-
-
0030892702
-
-
S. J. Tans et al., Nature 386, 474 (1997); M. Bockrath et al., Science 275, 1922 (1997).
-
(1997)
Science
, vol.275
, pp. 1922
-
-
Bockrath, M.1
-
12
-
-
0347959060
-
-
L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 971
-
-
Chico, L.1
Crespi, V.H.2
Benedict, L.X.3
Louie, S.G.4
Cohen, M.L.5
-
13
-
-
0033581905
-
-
Z. Yao, H. W. Ch. Postma, L. Balents, C. Dekker, Nature 402, 273 (1999).
-
(1999)
Nature
, vol.402
, pp. 273
-
-
Yao, Z.1
Postma, H.W.Ch.2
Balents, L.3
Dekker, C.4
-
16
-
-
0342934470
-
-
manuscript in preparation
-
The elastic energy of a nanotube suspended on hard and soft supports has been evaluated using linear (Eq. 2) and nonlinear beam-bending models (K. Kim, E. Joselevich, T. Rueckes, J. W. Hutchinson, C. M. Lieber, manuscript in preparation). Calculations using the nonlinear model agree to within 1% of those using the computationally less costly linear model (Eq. 2).
-
-
-
Kim, K.1
Joselevich, E.2
Rueckes, T.3
Hutchinson, J.W.4
Lieber, C.M.5
-
19
-
-
0032787499
-
-
Our recent studies of nanotube tweezers [P. Kim and C. M. Lieber, Science 286, 2148 (1999)] show experimentally that nanotubes can behave as robust electromechanical devices. In this latter work, the free ends of nanotube bundles could be deflected repeatably using electrostatic forces to grab submicron objects.
-
(1999)
Science
, vol.286
, pp. 2148
-
-
Kim, P.1
Lieber, C.M.2
-
20
-
-
0004179874
-
-
Wiley, New York, ed. 2
-
The electrostatic energy of the system was evaluated by solving the Laplace equation for the suspended nanotube geometry (Fig. 1), including the dielectric support layer. The Laplace equation in a general 3D geometry was solved using Green's theorem [J. D. Jackson, Classical Electrodynamics (Wiley, New York, ed. 2, 1974)]. Green's theorem converts the Laplace equation into the form of an integral equation. It implies that if the potential and its normal derivative on the boundary are known, then the electrostatic potential over all 3D space can be determined. The value of the potential on the boundary is known, so the main task is to solve for the normal derivative. We used the potential value on the boundary to self-consistently obtain the normal derivative with the boundary element method [C. A. Brebbia, The Boundary Element Method for Engineers (Wiley, New York, 1978)].
-
(1974)
Classical Electrodynamics
-
-
Jackson, J.D.1
-
21
-
-
0003424393
-
-
Wiley, New York
-
The electrostatic energy of the system was evaluated by solving the Laplace equation for the suspended nanotube geometry (Fig. 1), including the dielectric support layer. The Laplace equation in a general 3D geometry was solved using Green's theorem [J. D. Jackson, Classical Electrodynamics (Wiley, New York, ed. 2, 1974)]. Green's theorem converts the Laplace equation into the form of an integral equation. It implies that if the potential and its normal derivative on the boundary are known, then the electrostatic potential over all 3D space can be determined. The value of the potential on the boundary is known, so the main task is to solve for the normal derivative. We used the potential value on the boundary to self-consistently obtain the normal derivative with the boundary element method [C. A. Brebbia, The Boundary Element Method for Engineers (Wiley, New York, 1978)].
-
(1978)
The Boundary Element Method for Engineers
-
-
Brebbia, C.A.1
-
24
-
-
0342934468
-
-
note
-
-7 pF) so that it will not affect the speed of the device.
-
-
-
-
25
-
-
6444244907
-
-
A. Thess et al., Science 273, 483 (1996).
-
(1996)
Science
, vol.273
, pp. 483
-
-
Thess, A.1
-
27
-
-
0032573499
-
-
G. A. Prinz, Science 282, 1660 (1998).
-
(1998)
Science
, vol.282
, pp. 1660
-
-
Prinz, G.A.1
-
28
-
-
0033737136
-
-
Semiconductor nanowires can be specifically doped n-type or p-type [Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000)]. If the lower wires in our architecture are made from n-type nanowires, then rectifying behavior will be observed at each cross element, irrespective of whether the upper SWNT is metallic or semiconductor. Metallic SWNTs would produce M-S diode junctions, whereas semiconducting SWNTs, which (as previous studies have shown) behave as p-type materials (12), would form rectifying p-n junctions.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 5213
-
-
Cui, Y.1
Duan, X.2
Hu, J.3
Lieber, C.M.4
-
29
-
-
0032578904
-
-
J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai, Nature 395, 878 (1998).
-
(1998)
Nature
, vol.395
, pp. 878
-
-
Kong, J.1
Soh, H.T.2
Cassell, A.M.3
Quate, C.F.4
Dai, H.5
-
31
-
-
0345045336
-
-
A. R. Burns, J. E. Houston, R. W. Carpick, T. A. Michalske, Langmuir 15, 2922 (1999).
-
(1999)
Langmuir
, vol.15
, pp. 2922
-
-
Burns, A.R.1
Houston, J.E.2
Carpick, R.W.3
Michalske, T.A.4
-
32
-
-
0343369869
-
-
note
-
We thank J. W. Hutchinson, P. Kim, and J. Huang for helpful discussion and E. J. Sánchez for help with figures. C.M.L. acknowledges support of this work by the Defense Advanced Research Projects Agency and the Office of Naval Research.
-
-
-
|