메뉴 건너뛰기




Volumn 91, Issue 2, 2008, Pages 110-121

Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers

Author keywords

Bayesian network classifiers; DNA microarrays; Gene interactions; Knowledge discovery; Robust arc identification

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; DNA; GENE EXPRESSION; MICROARRAYS;

EID: 44949178280     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2008.02.010     Document Type: Article
Times cited : (22)

References (65)
  • 1
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science 303 5659 (2004) 799-805
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 2
    • 34248330399 scopus 로고    scopus 로고
    • A blocking strategy to improve gene selection for classification of gene expression data
    • Bontempi G. A blocking strategy to improve gene selection for classification of gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 4 2 (2007) 293-300
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.4 , Issue.2 , pp. 293-300
    • Bontempi, G.1
  • 3
    • 33748420317 scopus 로고    scopus 로고
    • Pattern classification in DNA microarray data of multiple tumor types
    • Lin T., Liu R., Chen C., Chao Y., and Chen S. Pattern classification in DNA microarray data of multiple tumor types. Pattern Recogn. 39 (2006) 2426-2438
    • (2006) Pattern Recogn. , vol.39 , pp. 2426-2438
    • Lin, T.1    Liu, R.2    Chen, C.3    Chao, Y.4    Chen, S.5
  • 4
    • 33847753038 scopus 로고    scopus 로고
    • Accurate cancer classification using expressions of very few genes
    • Wang L., Chu F., and Xie W. Accurate cancer classification using expressions of very few genes. IEEE/ACM Trans. Comput. Biol. Bioinform. 4 1 (2007) 40-53
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.4 , Issue.1 , pp. 40-53
    • Wang, L.1    Chu, F.2    Xie, W.3
  • 5
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • Yang K., Cai Z., Li J., and Lin G. A stable gene selection in microarray data analysis. BMC Bioinform. 7 1 (2006) 228
    • (2006) BMC Bioinform. , vol.7 , Issue.1 , pp. 228
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.4
  • 7
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto U.M., and Dougherty E.R. Is cross-validation valid for small-sample microarray classification?. Bioinformatics 20 3 (2004) 374-380
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 8
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: a multiple random validation strategy
    • Michiels S., Koscielny S., and Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365 (2005) 488-492
    • (2005) Lancet , vol.365 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 10
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • Peña J.M., Björkegren J., and Tegnér J. Growing Bayesian network models of gene networks from seed genes. Bioinformatics 21 Suppl. 2 (2005) ii224-ii229
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Peña, J.M.1    Björkegren, J.2    Tegnér, J.3
  • 11
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D., Regev A., Elidan G., and Friedman N. Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 (2001) S215-S224
    • (2001) Bioinformatics , vol.17
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 12
    • 33749030973 scopus 로고    scopus 로고
    • Identifying genes that contribute most to good classification in microarrays
    • Baker S.G., and Kramer B.S. Identifying genes that contribute most to good classification in microarrays. BMC Bioinform. 7 (2006) 407
    • (2006) BMC Bioinform. , vol.7 , pp. 407
    • Baker, S.G.1    Kramer, B.S.2
  • 13
    • 0346505356 scopus 로고    scopus 로고
    • Steady-state analysis of genetic regulatory networks modeled by probabilistic Boolean networks
    • Shmulevich I., Gluhovsky I., Hashimoto R., Dougherty E.R., and Zhang W. Steady-state analysis of genetic regulatory networks modeled by probabilistic Boolean networks. Comp. Funct. Genom. 4 (2003) 601-608
    • (2003) Comp. Funct. Genom. , vol.4 , pp. 601-608
    • Shmulevich, I.1    Gluhovsky, I.2    Hashimoto, R.3    Dougherty, E.R.4    Zhang, W.5
  • 14
    • 28744449703 scopus 로고    scopus 로고
    • New probabilistic graphical models for genetic regulatory networks studies
    • Wang J., Cheung L.W., and Delabie J. New probabilistic graphical models for genetic regulatory networks studies. J. Biomed. Inform. 38 (2005) 443-455
    • (2005) J. Biomed. Inform. , vol.38 , pp. 443-455
    • Wang, J.1    Cheung, L.W.2    Delabie, J.3
  • 17
    • 33646338193 scopus 로고    scopus 로고
    • Minreg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals
    • Pe'er D., Tanay A., and Regev A. Minreg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals. J. Mach. Learn. Res. 7 (2006) 167-189
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 167-189
    • Pe'er, D.1    Tanay, A.2    Regev, A.3
  • 18
    • 44949259226 scopus 로고    scopus 로고
    • P. Larrañaga, J.A. Lozano, J.M. Peña, I. Inza (guest editors), Special issue on probabilistic graphical models for classification, Mach. Learn. 59 (3) (2005).
    • P. Larrañaga, J.A. Lozano, J.M. Peña, I. Inza (guest editors), Special issue on probabilistic graphical models for classification, Mach. Learn. 59 (3) (2005).
  • 21
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., and Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 23 19 (2007) 2507-2517
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 22
    • 44949199454 scopus 로고    scopus 로고
    • W. Li, Y. Yang, How many genes are needed for a discriminant microarray data analysis? in: S.M. Lin, K.F. Johnson (Eds.), Methods of Microarray Data Analysis: Papers from CAMDA'00, Kluwer Academic, Boston, 2002, pp. 137-150.
    • W. Li, Y. Yang, How many genes are needed for a discriminant microarray data analysis? in: S.M. Lin, K.F. Johnson (Eds.), Methods of Microarray Data Analysis: Papers from CAMDA'00, Kluwer Academic, Boston, 2002, pp. 137-150.
  • 23
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S., Tamayo P., Mesirov J., and Golub T. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52 1-2 (2003) 91-118
    • (2003) Mach. Learn. , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 26
    • 10244239406 scopus 로고    scopus 로고
    • A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks
    • Zhou X., Wang X., Pal R., Ivanov I., Bittner M., and Dougherty E.R. A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks. Bioinformatics 20 17 (2004) 2918-2927
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 2918-2927
    • Zhou, X.1    Wang, X.2    Pal, R.3    Ivanov, I.4    Bittner, M.5    Dougherty, E.R.6
  • 27
    • 84937350040 scopus 로고
    • Steps toward artificial intelligence
    • Minsky M. Steps toward artificial intelligence. Trans. Inst. Radio Eng. 49 (1961) 8-30
    • (1961) Trans. Inst. Radio Eng. , vol.49 , pp. 8-30
    • Minsky, M.1
  • 29
    • 26044441615 scopus 로고    scopus 로고
    • Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS
    • Blanco R., Inza I., Merino M., Quiroga J., and Larrañaga P. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with TIPS. J. Biomed. Inform. 38 5 (2005) 376-388
    • (2005) J. Biomed. Inform. , vol.38 , Issue.5 , pp. 376-388
    • Blanco, R.1    Inza, I.2    Merino, M.3    Quiroga, J.4    Larrañaga, P.5
  • 30
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7 (1979) 1-26
    • (1979) Ann. Stat. , vol.7 , pp. 1-26
    • Efron, B.1
  • 33
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20 (1995) 197-243
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 35
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., and Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. U.S.A. 96 12 (1999) 6745-6750
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 41
    • 4043059226 scopus 로고    scopus 로고
    • Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper
    • Orlando
    • Hall M.A., and Smith L.A. Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. Proceedings of the Florida Artificial Intelligence Research Symposium. Orlando (1999) 235-239
    • (1999) Proceedings of the Florida Artificial Intelligence Research Symposium , pp. 235-239
    • Hall, M.A.1    Smith, L.A.2
  • 43
    • 70350346892 scopus 로고    scopus 로고
    • M. Ben-Bassat, Use of distance measures, information measures and error bounds in feature evaluation, in: P.R. Krishnaiah, L.N. Kanal (Eds.), Handbook of Statistics, vol. 2, North-Holland Publishing Company, 1982, pp. 773-791.
    • M. Ben-Bassat, Use of distance measures, information measures and error bounds in feature evaluation, in: P.R. Krishnaiah, L.N. Kanal (Eds.), Handbook of Statistics, vol. 2, North-Holland Publishing Company, 1982, pp. 773-791.
  • 44
    • 44949155658 scopus 로고    scopus 로고
    • M.A. Hall, Correlation-Based Feature Subset Selection for Machine Learning, PhD Thesis, Department of Computer Science, University of Waikato, 1999.
    • M.A. Hall, Correlation-Based Feature Subset Selection for Machine Learning, PhD Thesis, Department of Computer Science, University of Waikato, 1999.
  • 47
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., and Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21 5 (2005) 631-643
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 48
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T., Zhang C., and Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20 15 (2004) 2429-2437
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 49
    • 33745591644 scopus 로고    scopus 로고
    • Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development
    • Schwartz R., Engel I., Fallahi-Sichani M., Petrie H.T., and Murre C. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc. Natl. Acad. Sci. U.S.A. 103 26 (2006) 9976-9981
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , Issue.26 , pp. 9976-9981
    • Schwartz, R.1    Engel, I.2    Fallahi-Sichani, M.3    Petrie, H.T.4    Murre, C.5
  • 50
    • 0035802116 scopus 로고    scopus 로고
    • Physiological regulation of beta-catenin stability by Tcf3 and CK1epsilon
    • Lee E., Salic A., and Kirschner M.W. Physiological regulation of beta-catenin stability by Tcf3 and CK1epsilon. J. Cell Biol. 154 5 (2001) 983-993
    • (2001) J. Cell Biol. , vol.154 , Issue.5 , pp. 983-993
    • Lee, E.1    Salic, A.2    Kirschner, M.W.3
  • 51
    • 11244308073 scopus 로고    scopus 로고
    • E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells
    • Bayly R., Chuen L., Currie R.A., Hyndman B.D., Casselman R., Blobel G.A., and LeBrun D.P. E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J. Biol. Chem. 279 53 (2004) 55362-55371
    • (2004) J. Biol. Chem. , vol.279 , Issue.53 , pp. 55362-55371
    • Bayly, R.1    Chuen, L.2    Currie, R.A.3    Hyndman, B.D.4    Casselman, R.5    Blobel, G.A.6    LeBrun, D.P.7
  • 56
    • 2342623470 scopus 로고    scopus 로고
    • Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching
    • Murayama A., Kim M.S., Yanagisawa J., Takeyama K., and Kato S. Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J. 23 7 (2004) 1598-1608
    • (2004) EMBO J. , vol.23 , Issue.7 , pp. 1598-1608
    • Murayama, A.1    Kim, M.S.2    Yanagisawa, J.3    Takeyama, K.4    Kato, S.5
  • 57
    • 33748754053 scopus 로고    scopus 로고
    • Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments
    • Liang F., Seyrantepe V., Landry K., Ahmad R., Ahmad A., Stamatos N.M., and Pshezhetsky A.V. Monocyte differentiation up-regulates the expression of the lysosomal sialidase, Neu1, and triggers its targeting to the plasma membrane via major histocompatibility complex class II-positive compartments. J. Biol. Chem. 281 37 (2006) 27526-27538
    • (2006) J. Biol. Chem. , vol.281 , Issue.37 , pp. 27526-27538
    • Liang, F.1    Seyrantepe, V.2    Landry, K.3    Ahmad, R.4    Ahmad, A.5    Stamatos, N.M.6    Pshezhetsky, A.V.7
  • 58
    • 18944385187 scopus 로고    scopus 로고
    • Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages
    • Stamatos N.M., Liang F., Nan X., Landry K., Cross A.S., Wang L.X., and Pshezhetsky A.V. Differential expression of endogenous sialidases of human monocytes during cellular differentiation into macrophages. J. Feder. Eur. Biochem. Soc. 272 10 (2005) 2445-2456
    • (2005) J. Feder. Eur. Biochem. Soc. , vol.272 , Issue.10 , pp. 2445-2456
    • Stamatos, N.M.1    Liang, F.2    Nan, X.3    Landry, K.4    Cross, A.S.5    Wang, L.X.6    Pshezhetsky, A.V.7
  • 59
    • 7244245579 scopus 로고    scopus 로고
    • Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B lymphocytes
    • Greenbaum S., Lazorchak A.S., and Zhuang Y. Differential functions for the transcription factor E2A in positive and negative gene regulation in pre-B lymphocytes. J. Biol. Chem. 279 43 (2004) 45028-45035
    • (2004) J. Biol. Chem. , vol.279 , Issue.43 , pp. 45028-45035
    • Greenbaum, S.1    Lazorchak, A.S.2    Zhuang, Y.3
  • 61
    • 0035503474 scopus 로고    scopus 로고
    • Up-regulation of the ectodermal-neural cortex 1 (ENC1) gene, a downstream target of the beta-catenin/T-cell factor complex, in colorectal carcinomas
    • Fujita M., Furukawa Y., Tsunoda T., Tanaka T., Ogawa M., and Nakamura Y. Up-regulation of the ectodermal-neural cortex 1 (ENC1) gene, a downstream target of the beta-catenin/T-cell factor complex, in colorectal carcinomas. Cancer Res. 61 21 (2001) 7722-7726
    • (2001) Cancer Res. , vol.61 , Issue.21 , pp. 7722-7726
    • Fujita, M.1    Furukawa, Y.2    Tsunoda, T.3    Tanaka, T.4    Ogawa, M.5    Nakamura, Y.6
  • 64
    • 0038240733 scopus 로고    scopus 로고
    • Single base substitutions at the initiator codon in the mitochondrial acetoacetyl-CoA thiolase (ACAT1/T2) gene result in production of varying amounts of wild-type T2 polypeptide
    • Fukao T., Matsuo N., Zhang G.X., Urasawa R., Kubo T., Kohno Y., and Kondo N. Single base substitutions at the initiator codon in the mitochondrial acetoacetyl-CoA thiolase (ACAT1/T2) gene result in production of varying amounts of wild-type T2 polypeptide. Hum. Mutat. 21 6 (2003) 587-592
    • (2003) Hum. Mutat. , vol.21 , Issue.6 , pp. 587-592
    • Fukao, T.1    Matsuo, N.2    Zhang, G.X.3    Urasawa, R.4    Kubo, T.5    Kohno, Y.6    Kondo, N.7
  • 65
    • 33748959683 scopus 로고    scopus 로고
    • Identification of Alu-mediated, large deletion-spanning exons 2-4 in a patient with mitochondrial acetoacetyl-CoA thiolase deficiency
    • Zhang G., Fukao T., Sakurai S., Yamada K., Michael Gibson K., and Kondo N. Identification of Alu-mediated, large deletion-spanning exons 2-4 in a patient with mitochondrial acetoacetyl-CoA thiolase deficiency. Mol. Genet. Metab. 89 3 (2006) 222-226
    • (2006) Mol. Genet. Metab. , vol.89 , Issue.3 , pp. 222-226
    • Zhang, G.1    Fukao, T.2    Sakurai, S.3    Yamada, K.4    Michael Gibson, K.5    Kondo, N.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.