메뉴 건너뛰기




Volumn 11, Issue SUPPLL.1, 2010, Pages

A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data

Author keywords

[No Author keywords available]

Indexed keywords

DATA CHARACTERISTICS; GENERALIZATION PROPERTIES; HIGH DIMENSIONAL DATASETS; MODEL GENERALIZATION; MULTICLASS CLASSIFICATION PROBLEMS; OVER FITTING PROBLEM; SAMPLE CLASSIFICATION; SELECTION TECHNIQUES; BIOLOGICAL HYPOTHESIS; MICROARRAY DATA SETS;

EID: 75149178749     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-S1-S5     Document Type: Article
Times cited : (58)

References (39)
  • 1
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • 10.1093/bioinformatics/btm344, 17720704
    • Saeys Y, Lnza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(19):2507-2517. 10.1093/bioinformatics/btm344, 17720704.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Lnza, I.2    Larrañaga, P.3
  • 2
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
    • 10.1093/bioinformatics/btg182, 12912828
    • Somorjai RL, Dolenko B, Baumgartner R, Crow JE, Moore JH. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 2003, 19:1484-1491. 10.1093/bioinformatics/btg182, 12912828.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3    Crow, J.E.4    Moore, J.H.5
  • 3
    • 17444386734 scopus 로고    scopus 로고
    • Hykgene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
    • 10.1093/bioinformatics/bti192, 15585531
    • Wang Y, Makedon F, Ford J, Pearlman J. Hykgene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 2005, 21:1530-1537. 10.1093/bioinformatics/bti192, 15585531.
    • (2005) Bioinformatics , vol.21 , pp. 1530-1537
    • Wang, Y.1    Makedon, F.2    Ford, J.3    Pearlman, J.4
  • 4
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors
    • 10.1186/1472-6947-6-27, 16790051, 1523197
    • Jafari P, Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med Inform Decis Mak 2006, 6:27. 10.1186/1472-6947-6-27, 16790051, 1523197.
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 5
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of relieff and rrelieff. Machine Learning 2003, 53:23-69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 6
    • 0042388208 scopus 로고    scopus 로고
    • Rankgene: identification of diagnostic genes based on expression data
    • 10.1093/bioinformatics/btg179, 12912841
    • Su Y, Murali T, Pavlovic V, Schaffer M, Kasif S. Rankgene: identification of diagnostic genes based on expression data. Bioinformatics 2003, 19:1578-1579. 10.1093/bioinformatics/btg179, 12912841.
    • (2003) Bioinformatics , vol.19 , pp. 1578-1579
    • Su, Y.1    Murali, T.2    Pavlovic, V.3    Schaffer, M.4    Kasif, S.5
  • 7
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Kohavi R, John G. Wrapper for feature subset selection. Artificial Intelligence 1997, 97:273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 8
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A, Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97:245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 9
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • 10.1093/bioinformatics/17.12.1131, 11751221
    • Li L, Weinberg C, Darden T, Pedersen L. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001, 17:1131-1142. 10.1093/bioinformatics/17.12.1131, 11751221.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.2    Darden, T.3    Pedersen, L.4
  • 10
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
    • 10.1093/bioinformatics/19.1.37, 12499291
    • Ooi C, Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 2003, 19:37-44. 10.1093/bioinformatics/19.1.37, 12499291.
    • (2003) Bioinformatics , vol.19 , pp. 37-44
    • Ooi, C.1    Tan, P.2
  • 11
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • 10.1186/1471-2105-6-148, 1181623, 15953389
    • Jirapech-Umpai T, Aitken S. Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes. BMC Bioinformatics 2005, 6:146. 10.1186/1471-2105-6-148, 1181623, 15953389.
    • (2005) BMC Bioinformatics , vol.6 , pp. 146
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 12
    • 20744448405 scopus 로고    scopus 로고
    • Multiclass cancer classification and biomarker discovery using GA-based algorithm
    • 10.1093/bioinformatics/bti419, 15814557
    • Liu J, Cutler G, Li W, Pan Z, Peng S, Hoey T, Chen L, Ling X. Multiclass cancer classification and biomarker discovery using GA-based algorithm. Bioinformatics 2005, 21:2691-2697. 10.1093/bioinformatics/bti419, 15814557.
    • (2005) Bioinformatics , vol.21 , pp. 2691-2697
    • Liu, J.1    Cutler, G.2    Li, W.3    Pan, Z.4    Peng, S.5    Hoey, T.6    Chen, L.7    Ling, X.8
  • 13
  • 14
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 2000, 33:25-41.
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 15
    • 33744584654 scopus 로고    scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of decision trees. Machine Learning 2004, 1:81-106.
    • (2004) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 17
    • 16344371755 scopus 로고    scopus 로고
    • Identifying differentially expressed genes from microarray experiments via statistic synthesis
    • 10.1093/bioinformatics/bti108, 15513985
    • Yang YH, Xiao Y, Segal MR. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 2005, 21(7):1084-1093. 10.1093/bioinformatics/bti108, 15513985.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1084-1093
    • Yang, Y.H.1    Xiao, Y.2    Segal, M.R.3
  • 18
    • 60849090745 scopus 로고    scopus 로고
    • A voting approach to identify a small number of highly predictive genes using multiple classifiers
    • 10.1186/1471-2105-10-S1-S19, 2648737, 19208118
    • Hassan M, Hossain M, Bailey J, Macintyre G, Ho J, Ramamohanarao K. A voting approach to identify a small number of highly predictive genes using multiple classifiers. BMC Bioinformatics 2009, 10(Suppl 1):S19. 10.1186/1471-2105-10-S1-S19, 2648737, 19208118.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL 1
    • Hassan, M.1    Hossain, M.2    Bailey, J.3    Macintyre, G.4    Ho, J.5    Ramamohanarao, K.6
  • 19
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • 10.1186/1471-2105-5-136, 522806, 15450124
    • Liu B, Cui Q, Jiang T, Ma S. A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 2004, 5:136. 10.1186/1471-2105-5-136, 522806, 15450124.
    • (2004) BMC Bioinformatics , vol.5 , pp. 136
    • Liu, B.1    Cui, Q.2    Jiang, T.3    Ma, S.4
  • 20
    • 71549138167 scopus 로고    scopus 로고
    • An ensemble of classifiers with genetic algorithm based feature selection
    • Zhang Z, Yang P. An ensemble of classifiers with genetic algorithm based feature selection. IEEE Intelligent Informatics Bulletin 2008, 9:18-24.
    • (2008) IEEE Intelligent Informatics Bulletin , vol.9 , pp. 18-24
    • Zhang, Z.1    Yang, P.2
  • 21
    • 75149130548 scopus 로고    scopus 로고
    • An agent-based hybrid system for microarray data analysis
    • Zhang Z, Yang P, Wu X, Zhang C. An agent-based hybrid system for microarray data analysis. IEEE Intelligent Systems 2009, 24(5):53-63.
    • (2009) IEEE Intelligent Systems , vol.24 , Issue.5 , pp. 53-63
    • Zhang, Z.1    Yang, P.2    Wu, X.3    Zhang, C.4
  • 26
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A, Pechenizkiy M, Cunningham P. Diversity in search strategies for ensemble feature selection. Information Fusion 2005, 6:83-98.
    • (2005) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 27
    • 34248330399 scopus 로고    scopus 로고
    • A blocking strategy to improve gene selection for classification of gene expression data
    • Bontempi G. A blocking strategy to improve gene selection for classification of gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatcis 2007, 4:293-300.
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatcis , vol.4 , pp. 293-300
    • Bontempi, G.1
  • 28
    • 0031238275 scopus 로고    scopus 로고
    • Application of majority voting to pattern recognition: an analysis of its behaviour and performance
    • Lam L, Suen Y. Application of majority voting to pattern recognition: an analysis of its behaviour and performance. IEEE Transactions on Systems, Man, and Cybernetics 1997, 27:553-568.
    • (1997) IEEE Transactions on Systems, Man, and Cybernetics , vol.27 , pp. 553-568
    • Lam, L.1    Suen, Y.2
  • 29
    • 84956988905 scopus 로고    scopus 로고
    • Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting
    • Ruta D, Gabrys B. Application of the evolutionary algorithms for classifier selection in multiple classifier systems with majority voting. Proceedings of MCS 2001, LNCS 2096 2001, 399-408.
    • (2001) Proceedings of MCS 2001, LNCS 2096 , pp. 399-408
    • Ruta, D.1    Gabrys, B.2
  • 30
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • 10.1126/science.286.5439.531, 10521349
    • Golub T, Slonim D, Tamayo T, Huard C, Gaasenbeek M, Mesirov J, Coller H, Loh M, Downing J, Caligiuri M, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537. 10.1126/science.286.5439.531, 10521349.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, T.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.6    Coller, H.7    Loh, M.8    Downing, J.9    Caligiuri, M.10
  • 31
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • 10.1073/pnas.96.12.6745, 21986, 10359783
    • Alon U, Barkai N, Notterman D, Gish K, Ybarra S, Mack D, Levine A. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS 1999, 96:6745-6750. 10.1073/pnas.96.12.6745, 21986, 10359783.
    • (1999) PNAS , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 34
    • 17544364191 scopus 로고    scopus 로고
    • Optimal number of features as a function of sample size for various classification rules
    • 10.1093/bioinformatics/bti171, 15572470
    • Hua J, Xiong Z, Lowey J, Suh E, Dougherty E. Optimal number of features as a function of sample size for various classification rules. Bioinformatics 2005, 21:1509-1515. 10.1093/bioinformatics/bti171, 15572470.
    • (2005) Bioinformatics , vol.21 , pp. 1509-1515
    • Hua, J.1    Xiong, Z.2    Lowey, J.3    Suh, E.4    Dougherty, E.5
  • 36
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 2002, 97:77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 37
    • 84888285098 scopus 로고    scopus 로고
    • GA/KNN software usage agreement and download
    • GA/KNN software usage agreement and download. , http://www.niehs.nih.gov/research/resources/software/gaknn/
  • 38
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • 10.1142/S0219720005001004, 15852500
    • Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 2005, 3(2):185-205. 10.1142/S0219720005001004, 15852500.
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 39
    • 84888282632 scopus 로고    scopus 로고
    • MFGE project homepage
    • MFGE project homepage. , http://www.cs.usyd.edu.au/~yangpy/software/MFGE


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.