메뉴 건너뛰기




Volumn 7, Issue 1, 2006, Pages 55-65

Erratum: Microarray data analysis: From disarray to consolidation and consensus (Nature Reviews Genetics (2006) 7 (55-65) DOI: 10.1038/nrg1749);Microarray data analysis: From disarray to consolidation and consensus

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEMENTARY DNA; MESSENGER RNA;

EID: 29244448340     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg1869     Document Type: Erratum
Times cited : (1049)

References (95)
  • 1
    • 0346733313 scopus 로고    scopus 로고
    • Design considerations for efficient and effective microarray studies
    • Kerr, M. K. Design considerations for efficient and effective microarray studies. Biometrics 59, 822-828 (2003).
    • (2003) Biometrics , vol.59 , pp. 822-828
    • Kerr, M.K.1
  • 2
    • 0242496185 scopus 로고    scopus 로고
    • A design and statistical perspective on microarray gene expression studies in nutrition: The need for playful creativity and scientific hard-mindedness
    • Page, G. P., Edwards, J. W., Barnes, S., Weindruch, R. & Allison, D. B. A design and statistical perspective on microarray gene expression studies in nutrition: the need for playful creativity and scientific hard-mindedness. Nutrition 19, 997-1000 (2003).
    • (2003) Nutrition , vol.19 , pp. 997-1000
    • Page, G.P.1    Edwards, J.W.2    Barnes, S.3    Weindruch, R.4    Allison, D.B.5
  • 3
    • 1842535253 scopus 로고    scopus 로고
    • Microarray experimental design: Power and sample size considerations
    • Yang, M. C., Yang, J. J., Mclndoe, R. A. & She, J. X. Microarray experimental design: power and sample size considerations. Physiol. Genomics 16, 24-28 (2003).
    • (2003) Physiol. Genomics , vol.16 , pp. 24-28
    • Yang, M.C.1    Yang, J.J.2    Mclndoe, R.A.3    She, J.X.4
  • 4
    • 0000884487 scopus 로고    scopus 로고
    • Experimental design for gene expression microarrays
    • Kerr, M. K. & Churchill, G. A. Experimental design for gene expression microarrays. Biostatistics 2, 183-201 (2001).
    • (2001) Biostatistics , vol.2 , pp. 183-201
    • Kerr, M.K.1    Churchill, G.A.2
  • 5
    • 0037620681 scopus 로고    scopus 로고
    • Statistical design of reverse dye microarrays
    • Dobbin, K., Shih, J. H. & Simon, R. Statistical design of reverse dye microarrays. Bioinformatics 19, 803-810 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 803-810
    • Dobbin, K.1    Shih, J.H.2    Simon, R.3
  • 6
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill, G. A. Fundamentals of experimental design for cDNA microarrays. Nature Genet. 32, S490-S495 (2002).
    • (2002) Nature Genet. , vol.32
    • Churchill, G.A.1
  • 7
    • 0036319960 scopus 로고    scopus 로고
    • Design issues for cDNA microarray experiments
    • Yang, Y. H. & Speed, T. Design issues for cDNA microarray experiments. Nature Rev. Genet. 3, 579-588 (2002).
    • (2002) Nature Rev. Genet. , vol.3 , pp. 579-588
    • Yang, Y.H.1    Speed, T.2
  • 8
    • 0039910654 scopus 로고    scopus 로고
    • Power and money: Designing statistically powerful studies while minimizing financial costs
    • Allison, D. B., Allison, R. L., Faith, M. S., Paultre, F. & Pi-Sunyer, F. X. Power and money: designing statistically powerful studies while minimizing financial costs. Psychol. Methods 2, 20-33 (1997).
    • (1997) Psychol. Methods , vol.2 , pp. 20-33
    • Allison, D.B.1    Allison, R.L.2    Faith, M.S.3    Paultre, F.4    Pi-Sunyer, F.X.5
  • 9
    • 0037187833 scopus 로고    scopus 로고
    • A mixture model approach for the analysis of microarray gene expression data
    • Allison, D. B. et al. A mixture model approach for the analysis of microarray gene expression data. Comput. Stat. Data Analysis 39, 1-20 (2002). This was the first paper in the field of microarray research to introduce mixture modelling.
    • (2002) Comput. Stat. Data Analysis , vol.39 , pp. 1-20
    • Allison, D.B.1
  • 10
    • 0141626917 scopus 로고    scopus 로고
    • The effect of replication on gene expression microarray experiments
    • Pavlidis, P., Li, Q. & Noble, W. S. The effect of replication on gene expression microarray experiments. Bioinformatics 19, 1620-1627 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1620-1627
    • Pavlidis, P.1    Li, Q.2    Noble, W.S.3
  • 11
    • 0346102887 scopus 로고    scopus 로고
    • Estimation of false discovery rates in multiple testing: Application to gene microarray data
    • Tsai, C. A., Hsueh, H. M. & Chen, J. J. Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics 59, 1071-1081 (2003).
    • (2003) Biometrics , vol.59 , pp. 1071-1081
    • Tsai, C.A.1    Hsueh, H.M.2    Chen, J.J.3
  • 12
    • 0036051492 scopus 로고    scopus 로고
    • How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
    • research0022
    • Pan, W., Lin, J. & Le, C. T. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 3, research0022 (2002).
    • (2002) Genome Biol. , vol.3
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 14
    • 4344593785 scopus 로고    scopus 로고
    • Power analysis and sample size estimation in the age of high dimensional biology: A parametric bootstrap approach and examples from microarray research
    • Gadbury, G. L. et al. Power analysis and sample size estimation in the age of high dimensional biology: a parametric bootstrap approach and examples from microarray research. Stat. Methods Med. Res. 13, 325-338 (2004). This paper offers convenient FDR-based methods for power analysis and sample-size estimation in microarray and other high-dimensional testing situations.
    • (2004) Stat. Methods Med. Res. , vol.13 , pp. 325-338
    • Gadbury, G.L.1
  • 15
    • 21444454257 scopus 로고    scopus 로고
    • False discovery rate, sensitivity and sample size for microarray studies
    • Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A. & Ploner, A. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21, 3017-3024 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3017-3024
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3    Gusnanto, A.4    Ploner, A.5
  • 16
    • 10844254626 scopus 로고    scopus 로고
    • Optimal sample size for multiple testing: The case of gene expression microarrays
    • Muller, P., Parmigiani, G., Robert, C. & Rousseau, J. Optimal sample size for multiple testing: The case of gene expression microarrays. J. Am. Stat. Assoc. 99, 990-1001 (2004).
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 990-1001
    • Muller, P.1    Parmigiani, G.2    Robert, C.3    Rousseau, J.4
  • 17
    • 19544383638 scopus 로고    scopus 로고
    • Sample size determination in microarray experiments for class comparison and prognostic classification
    • Dobbin, K. & Simon, R. Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics. 6, 27-38 (2005).
    • (2005) Biostatistics , vol.6 , pp. 27-38
    • Dobbin, K.1    Simon, R.2
  • 18
    • 27644474698 scopus 로고    scopus 로고
    • Reproducible clusters from microarray research: Whither?
    • Garge, N., Page, G. P., Spargue, A. P., Gorman, B. S. & Allison, D. B. Reproducible clusters from microarray research: whither? BMC Bioinformatics 6 (Suppl. 2), S10 (2005). The authors evaluate clustering techniques using real data, and find that with sample sizes of less than 50, the reproducibility of results is poor.
    • (2005) BMC Bioinformatics , vol.6 , Issue.2 SUPPL.
    • Garge, N.1    Page, G.P.2    Spargue, A.P.3    Gorman, B.S.4    Allison, D.B.5
  • 19
    • 0141939435 scopus 로고    scopus 로고
    • The efficiency of pooling mRNA in microarray experiments
    • Kendziorski, C. M., Zhang, Y., Lan, H. & Attie, A. D. The efficiency of pooling mRNA in microarray experiments. Biostatistics 4, 465-477 (2003). This paper clarifies concepts and statistical design issues that are involved with mRNA pooling in microarray experiments.
    • (2003) Biostatistics , vol.4 , pp. 465-477
    • Kendziorski, C.M.1    Zhang, Y.2    Lan, H.3    Attie, A.D.4
  • 21
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decisions and the quantitative analysis of cDNA microarray images
    • Chen, Y., Dougherty, E. R. & Bittner, M. L. Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Opt. 2, 364-374 (1997).
    • (1997) J. Biomed. Opt. , vol.2 , pp. 364-374
    • Chen, Y.1    Dougherty, E.R.2    Bittner, M.L.3
  • 22
    • 0035752668 scopus 로고    scopus 로고
    • Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data
    • Schadt, E. E., Li, C., Ellis, B. & Wong, W. H. Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J. Cell Biochem. Suppl. 37, 120-125 (2001).
    • (2001) J. Cell Biochem. Suppl. , vol.37 , pp. 120-125
    • Schadt, E.E.1    Li, C.2    Ellis, B.3    Wong, W.H.4
  • 23
    • 5044250422 scopus 로고    scopus 로고
    • Spot shape modelling and data transformations for microarrays
    • Ekstrom, C. T., Bak, S., Kristensen, C. & Rudemo, M. Spot shape modelling and data transformations for microarrays. Bioinformatics 20, 2270-2278 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 2270-2278
    • Ekstrom, C.T.1    Bak, S.2    Kristensen, C.3    Rudemo, M.4
  • 24
    • 0034894449 scopus 로고    scopus 로고
    • Automated image analysis for array hybridization experiments
    • Steinfath, M. et al. Automated image analysis for array hybridization experiments. Bioinformatics 17, 634-641 (2001).
    • (2001) Bioinformatics , vol.17 , pp. 634-641
    • Steinfath, M.1
  • 26
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush, J. Microarray data normalization and transformation. Nature Genet. 32, 496-501 (2002).
    • (2002) Nature Genet. , vol.32 , pp. 496-501
    • Quackenbush, J.1
  • 27
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation
    • Yang, Y. H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).
    • (2002) Nucleic Acids Res. , vol.30
    • Yang, Y.H.1
  • 28
    • 0242333835 scopus 로고    scopus 로고
    • Normalization of cDNA microarray data
    • Smyth, G. K. & Speed, T. Normalization of cDNA microarray data. Methods 31, 265-273 (2003).
    • (2003) Methods , vol.31 , pp. 265-273
    • Smyth, G.K.1    Speed, T.2
  • 29
    • 9144268360 scopus 로고    scopus 로고
    • Empirical evaluation of data transformations and ranking statistics for microarray analysis
    • Qin, L. X. & Kerr, K. F. Empirical evaluation of data transformations and ranking statistics for microarray analysis. Nucleic Acids Res. 32, 5471-5479 (2004). This article presents the effect of different image-processing and normalization techniques on microarray analysis conclusions.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 5471-5479
    • Qin, L.X.1    Kerr, K.F.2
  • 31
    • 15844396393 scopus 로고    scopus 로고
    • Implementation of a gene expression index calculation method based on the PDNN model
    • Nielsen, H. B., Gautier, L. & Knudsen, S. Implementation of a gene expression index calculation method based on the PDNN model. Bioinformatics 21, 687-688 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 687-688
    • Nielsen, H.B.1    Gautier, L.2    Knudsen, S.3
  • 32
    • 12344280017 scopus 로고    scopus 로고
    • Summaries of Affymetrix GeneChip probe level data
    • Irizarry, R. A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003).
    • (2003) Nucleic Acids Res. , vol.31
    • Irizarry, R.A.1
  • 33
    • 4444371602 scopus 로고    scopus 로고
    • Towards sound epistemological foundations of statistical methods for high-dimensional biology
    • Mehta, T., Tanik, M. & Allison, D. B. Towards sound epistemological foundations of statistical methods for high-dimensional biology. Nature Genet. 36, 943-947 (2004). This paper clarifies the importance of methods for evaluating the validity of proposed statistical methodologies in high-dimensional biology, with an emphasis on microarray research.
    • (2004) Nature Genet. , vol.36 , pp. 943-947
    • Mehta, T.1    Tanik, M.2    Allison, D.B.3
  • 34
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 35
    • 22144461265 scopus 로고    scopus 로고
    • Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset
    • Choe, S. E., Boutros, M., Michelson, A. M., Church, G. M. & Halfon, M. S. Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 6, R16 (2005).
    • (2005) Genome Biol. , vol.6
    • Choe, S.E.1    Boutros, M.2    Michelson, A.M.3    Church, G.M.4    Halfon, M.S.5
  • 37
    • 4644281352 scopus 로고    scopus 로고
    • A graphical approach for quality control of oligonucleotide array data
    • Chen, D. T. A graphical approach for quality control of oligonucleotide array data. J. Biopharm. Stat 14, 591-606 (2004).
    • (2004) J. Biopharm. Stat , vol.14 , pp. 591-606
    • Chen, D.T.1
  • 38
    • 10244251720 scopus 로고    scopus 로고
    • Variance-modeled posterior inference of microarray data: Detecting gene-expression changes in 3T3-L1 adipocytes
    • Hsiao, A., Worrall, D. S., Olefsky, J. M. & Subramaniam, S. Variance-modeled posterior inference of microarray data: detecting gene-expression changes in 3T3-L1 adipocytes. Bioinformatics 20, 3108-3127 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 3108-3127
    • Hsiao, A.1    Worrall, D.S.2    Olefsky, J.M.3    Subramaniam, S.4
  • 39
    • 0035144230 scopus 로고    scopus 로고
    • Interpretation, design, and analysis of gene array expression experiments
    • Miller, R. A., Galecki, A. & Shmookler-Reis, R. J. Interpretation, design, and analysis of gene array expression experiments. J. Gerontol. A 56, B52-B57 (2001).
    • (2001) J. Gerontol. A , vol.56
    • Miller, R.A.1    Galecki, A.2    Shmookler-Reis, R.J.3
  • 40
    • 3242730161 scopus 로고    scopus 로고
    • Incorporation of gene-specific variability improves expression analysis using high-density DNA microarrays
    • Budhraja, V., Spitznagel, E., Schaiff, W. T. & Sadovsky, Y. Incorporation of gene-specific variability improves expression analysis using high-density DNA microarrays. BMC Biol. 1, 1 (2003).
    • (2003) BMC Biol. , vol.1 , pp. 1
    • Budhraja, V.1    Spitznagel, E.2    Schaiff, W.T.3    Sadovsky, Y.4
  • 41
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • Cui, X., Hwang, J. T., Qiu, J., Blades, N. J. & Churchill, G. A. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6, 59-75 (2005). This article provides one method of shrinkage and compares its performance with other variance shrinkage methods.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 42
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci USA 98, 5116-5121 (2001).
    • (2001) Proc. Natl Acad. Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 43
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi, P. & Long, A. D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509-519 (2001).
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 44
    • 11244328941 scopus 로고    scopus 로고
    • Empirical Bayes estimation of gene-specific effects in micro-array research
    • Edwards, J. W. et al. Empirical Bayes estimation of gene-specific effects in micro-array research. Funct. Integr. Genomics 5, 32-39 (2005).
    • (2005) Funct. Integr. Genomics , vol.5 , pp. 32-39
    • Edwards, J.W.1
  • 45
    • 0041530047 scopus 로고    scopus 로고
    • Resampling-based multiple testing for microarray data analysis
    • Ge, Y. C., Dudoit, S. & Speed, T. P. Resampling-based multiple testing for microarray data analysis. Test 12, 1-77 (2003).
    • (2003) Test , vol.12 , pp. 1-77
    • Ge, Y.C.1    Dudoit, S.2    Speed, T.P.3
  • 46
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - A practical and powerful approach to multiple testing
    • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat Soc. Ser. B 57, 289-300 (1995).
    • (1995) J. R. Stat Soc. Ser. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 47
    • 0141924402 scopus 로고    scopus 로고
    • Comparison of methods for estimating the number of true null hypotheses in multiplicity testing
    • Hsueh, H. M., Chen, J. J. & Kodell, R. L. Comparison of methods for estimating the number of true null hypotheses in multiplicity testing. J. Biopharm. Stat. 13, 675-689 (2003).
    • (2003) J. Biopharm. Stat. , vol.13 , pp. 675-689
    • Hsueh, H.M.1    Chen, J.J.2    Kodell, R.L.3
  • 48
    • 14644413619 scopus 로고    scopus 로고
    • Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives
    • van der Lann, M. J., Dudoit, S. & Pollard, K. S. Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat. Appl. Genet. Mol. Biol. 3, A15 (2004).
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3
    • Van Der Lann, M.J.1    Dudoit, S.2    Pollard, K.S.3
  • 49
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • Storey, J. D. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann. Stat. 31, 2013-2035 (2003). This paper clarifies the key terminology and concepts used in FDR-related methods.
    • (2003) Ann. Stat. , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 50
    • 29244480587 scopus 로고    scopus 로고
    • A nonparametric Bayesian mixture model for gene expression
    • Do, K. A., Mueller, P. & Tang, F. A nonparametric Bayesian mixture model for gene expression. J. R. Stat. Soc. Ser. C 54, 1-18 (2005).
    • (2005) J. R. Stat. Soc. Ser. C , vol.54 , pp. 1-18
    • Do, K.A.1    Mueller, P.2    Tang, F.3
  • 51
    • 0038156106 scopus 로고    scopus 로고
    • Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values
    • Pounds, S. & Morris, S. W. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19, 1236-1242 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1236-1242
    • Pounds, S.1    Morris, S.W.2
  • 52
    • 18744378860 scopus 로고    scopus 로고
    • Empirical Bayes screening of many p-values with applications to microarray studies
    • Datta, S. & Datta, S. Empirical Bayes screening of many p-values with applications to microarray studies. Bioinformatics 21, 1987-1994 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 1987-1994
    • Datta, S.1    Datta, S.2
  • 54
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton, M. A., Noueiry, A., Sarkar, D. & Ahlquist, P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155-176 (2004).
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 55
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R. & Tsui, K. W. On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J. Comput. Biol. 8, 37-52 (2001).
    • (2001) J. Comput. Biol. , vol.8 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 56
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267-273 (2003).
    • (2003) Nature Genet. , vol.34 , pp. 267-273
    • Mootha, V.K.1
  • 58
    • 13244249634 scopus 로고    scopus 로고
    • Handling multiple testing while interpreting microarrays with the Gene Ontology Database
    • Osier, M. V., Zhao, H. & Cheung, K. H. Handling multiple testing while interpreting microarrays with the Gene Ontology Database. BMC Bioinformatics 5, 124 (2004).
    • (2004) BMC Bioinformatics , vol.5 , pp. 124
    • Osier, M.V.1    Zhao, H.2    Cheung, K.H.3
  • 60
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple datatypes
    • Pavlidis, P., Weston, J., Cai, J. & Noble, W. S. Learning gene functional classifications from multiple datatypes. J. Comput Biol. 9, 401-411 (2002).
    • (2002) J. Comput Biol. , vol.9 , pp. 401-411
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Noble, W.S.4
  • 61
    • 3142673366 scopus 로고    scopus 로고
    • Using the gene ontology for microarray data mining: A comparison of methods and application to age effects in human prefrontal cortex
    • Pavlidis, P., Qin, J., Arango, V., Mann, J. J. & Sibille, E. Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex. Neurochem. Res. 29, 1213-1222 (2004). This study introduces a gene-class testing method that uses the full continuous evidence that is available within p-values.
    • (2004) Neurochem. Res. , vol.29 , pp. 1213-1222
    • Pavlidis, P.1    Qin, J.2    Arango, V.3    Mann, J.J.4    Sibille, E.5
  • 62
    • 16344373908 scopus 로고    scopus 로고
    • Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression
    • Ben Shaul, Y., Bergman, H. & Soreq, H. Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression. Bioinformatics 21, 1129-1137 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 1129-1137
    • Ben Shaul, Y.1    Bergman, H.2    Soreq, H.3
  • 63
    • 0038175144 scopus 로고    scopus 로고
    • GoMiner: A resource for biological interpretation of genomic and proteomic data
    • Zeeberg, B. R. et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, R28 (2003).
    • (2003) Genome Biol. , vol.4
    • Zeeberg, B.R.1
  • 64
    • 84958691699 scopus 로고    scopus 로고
    • Statistical concerns about the GSEA procedure
    • Damian, D. & Gorfine, M. Statistical concerns about the GSEA procedure. Nature Genet. 36, 663 (2004).
    • (2004) Nature Genet. , vol.36 , pp. 663
    • Damian, D.1    Gorfine, M.2
  • 65
    • 20844445318 scopus 로고    scopus 로고
    • Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets
    • Persson, S., Wei, H., Milne, J., Page, G. P. & Somerville, C. R. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc. Natl Acad. Sci. USA 102, 8633-8638 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 8633-8638
    • Persson, S.1    Wei, H.2    Milne, J.3    Page, G.P.4    Somerville, C.R.5
  • 66
    • 0142123097 scopus 로고    scopus 로고
    • Gene expression profiling in Werner syndrome closely resembles that of normal aging
    • Kyng, K. J., May, A., Kolvraa, S. & Bohr, V. A. Gene expression profiling in Werner syndrome closely resembles that of normal aging. Proc. Natl Acad. Sci. USA 100, 12259-12264 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 12259-12264
    • Kyng, K.J.1    May, A.2    Kolvraa, S.3    Bohr, V.A.4
  • 67
    • 0031693994 scopus 로고    scopus 로고
    • An empirical study of the effect of the control rate as a predictor of treatment efficacy in meta-analysis of clinical trials
    • Schmid, C. H., Lau, J., McIntosh, M. W. & Cappelleri, J. C. An empirical study of the effect of the control rate as a predictor of treatment efficacy in meta-analysis of clinical trials. Stat Med. 17, 1923-1942 (1998).
    • (1998) Stat Med. , vol.17 , pp. 1923-1942
    • Schmid, C.H.1    Lau, J.2    McIntosh, M.W.3    Cappelleri, J.C.4
  • 68
    • 84919436881 scopus 로고
    • Multiparameter hypothesis testing and acceptance sampling
    • Berger, R. L. Multiparameter hypothesis testing and acceptance sampling. Technometrics 24, 295-300 (1982).
    • (1982) Technometrics , vol.24 , pp. 295-300
    • Berger, R.L.1
  • 69
    • 25444442045 scopus 로고    scopus 로고
    • Two-part permutation tests for DNA methylation and microarray data
    • Neuhauser, M., Boes, T. & Jockel, K. H. Two-part permutation tests for DNA methylation and microarray data. BMC Bioinformatics 6, 35 (2005).
    • (2005) BMC Bioinformatics , vol.6 , pp. 35
    • Neuhauser, M.1    Boes, T.2    Jockel, K.H.3
  • 70
    • 18744389489 scopus 로고    scopus 로고
    • Significance analysis of functional categories in gene expression studies: A structured permutation approach
    • Barry, W. T., Nobel, A. B. & Wright, F. A. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21, 1943-1949 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 1943-1949
    • Barry, W.T.1    Nobel, A.B.2    Wright, F.A.3
  • 71
    • 0041592555 scopus 로고    scopus 로고
    • On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression
    • Pan, W. On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics 19, 1333-1340 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1333-1340
    • Pan, W.1
  • 72
    • 0038494587 scopus 로고    scopus 로고
    • A comparison of parametric versus permutation methods with applications to general and temporal microarray gene expression data
    • Xu, R. H. & Li, X. C. A comparison of parametric versus permutation methods with applications to general and temporal microarray gene expression data. Bioinformatics 19, 1284-1289 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1284-1289
    • Xu, R.H.1    Li, X.C.2
  • 73
    • 0036372382 scopus 로고    scopus 로고
    • Permutation-validated principal components analysis of microarray data
    • RESEARCH0019
    • Landgrebe, J., Wurst, W. & Welzl, G. Permutation-validated principal components analysis of microarray data. Genome Biol. 3, RESEARCH0019 (2002).
    • (2002) Genome Biol. , vol.3
    • Landgrebe, J.1    Wurst, W.2    Welzl, G.3
  • 74
    • 1342310261 scopus 로고    scopus 로고
    • An example of slow convergence of the bootstrap in high dimensions
    • Troendle, J. F., Korn, E. L. & McShame, L. M. An example of slow convergence of the bootstrap in high dimensions. Am. Stat. 58, 25-29 (2004). This presents an excellent overview of the nuances of resampling methodology that is used in microarray research, and discusses the fact that such methods are not assumption-free panaceas that are valid under all circumstances.
    • (2004) Am. Stat. , vol.58 , pp. 25-29
    • Troendle, J.F.1    Korn, E.L.2    McShame, L.M.3
  • 75
    • 0001343445 scopus 로고    scopus 로고
    • Randomization tests for multiple regression
    • Kennedy, P. E. & Cade, B. S. Randomization tests for multiple regression. Commun. Stat. 25, 923-936 (1996).
    • (1996) Commun. Stat. , vol.25 , pp. 923-936
    • Kennedy, P.E.1    Cade, B.S.2
  • 76
    • 0038041495 scopus 로고    scopus 로고
    • Randomization tests for small samples: An application for genetic expression data
    • Gadbury, G. L., Page, G. P., Heo, M., Mountz, J. D. & Allison, D. B. Randomization tests for small samples: an application for genetic expression data. J. R. Stat. Soc. Ser. C 52, 365-376 (2003).
    • (2003) J. R. Stat. Soc. Ser. C , vol.52 , pp. 365-376
    • Gadbury, G.L.1    Page, G.P.2    Heo, M.3    Mountz, J.D.4    Allison, D.B.5
  • 77
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Yeung, K. Y., Haynor, D. R. & Ruzzo, W. L. Validating clustering for gene expression data. Bioinformatics 17, 309-318 (2001).
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 78
    • 0037342510 scopus 로고    scopus 로고
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data
    • Datta, S. & Datta, S. Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 19, 459-466 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 459-466
    • Datta, S.1    Datta, S.2
  • 79
    • 12344333513 scopus 로고    scopus 로고
    • Effects of pooling mRNA in microarray class comparisons
    • Shih, J. H. et al. Effects of pooling mRNA in microarray class comparisons. Bioinformatics 20, 3318-3325 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 3318-3325
    • Shih, J.H.1
  • 80
    • 4844229238 scopus 로고    scopus 로고
    • From co-expression to co-regulation: How many microarray experiments do we need?
    • Yeung, K. Y., Medvedovic, M. & Bumgarner, R. E. From co-expression to co-regulation: how many microarray experiments do we need? Genome Biol. 5, R48 (2004).
    • (2004) Genome Biol. , vol.5
    • Yeung, K.Y.1    Medvedovic, M.2    Bumgarner, R.E.3
  • 81
    • 20444442286 scopus 로고    scopus 로고
    • Problems in gene clustering based on gene expression data
    • Bryan, J. Problems in gene clustering based on gene expression data. J. Multivariate Analysis 90, 44-66 (2004). This is an excellent overview of the methodological and conceptual challenges in the use of cluster analysis in gene-expression studies.
    • (2004) J. Multivariate Analysis , vol.90 , pp. 44-66
    • Bryan, J.1
  • 82
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments
    • Kerr, M. K. & Churchill, G. A. Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc. Natl Acad. Sci. USA 98, 8961-8965 (2001).
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 8961-8965
    • Kerr, M.K.1    Churchill, G.A.2
  • 83
    • 0034334064 scopus 로고    scopus 로고
    • Assessing reliability of gene clusters from gene expression data
    • Zhang, K. & Zhao, H. Assessing reliability of gene clusters from gene expression data. Funct. Integr. Genomics 1, 156-173 (2000).
    • (2000) Funct. Integr. Genomics , vol.1 , pp. 156-173
    • Zhang, K.1    Zhao, H.2
  • 84
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • Tseng, G. C. & Wong, W. H. Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics 61, 10-16 (2005).
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 86
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise, C. & McLachlan, G. J. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl Acad. Sci. USA 99, 6562-6566 (2002). This article addresses selection bias in the context of predictive error-estimation and cross-validation for microarray studies.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 87
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-based gene ranking without selection bias for the predictive classification of microarray data
    • Furlanello, C., Serafini, M., Merler, S. & Jurman, G. Entropy-based gene ranking without selection bias for the predictive classification of microarray data. BMC Bioinformatics 4, 54 (2003).
    • (2003) BMC Bioinformatics , vol.4 , pp. 54
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 88
    • 18744413287 scopus 로고    scopus 로고
    • Estimating misclassification error with small samples via bootstrap cross-validation
    • Fu, W. J., Carroll, R. J. & Wang, S. Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21, 1979-1986 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 1979-1986
    • Fu, W.J.1    Carroll, R.J.2    Wang, S.3
  • 89
    • 19544383638 scopus 로고    scopus 로고
    • Sample size determination in microarray experiments for class comparison and prognostic classification
    • Dobbin, K. & Simon, R. Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6, 27-38 (2005).
    • (2005) Biostatistics , vol.6 , pp. 27-38
    • Dobbin, K.1    Simon, R.2
  • 90
    • 0036738906 scopus 로고    scopus 로고
    • Determination of minimum sample size and discriminatory expression patterns in microarray data
    • Hwang, D., Schmitt, W. A., Stephanopoulos, G. & Stephanopoulos, G. Determination of minimum sample size and discriminatory expression patterns in microarray data. Bioinformatics 18, 1184-1193 (2002).
    • (2002) Bioinformatics , vol.18 , pp. 1184-1193
    • Hwang, D.1    Schmitt, W.A.2    Stephanopoulos, G.3    Stephanopoulos, G.4
  • 91
    • 0038237368 scopus 로고    scopus 로고
    • Estimating dataset size requirements for classifying DNA microarray data
    • Mukherjee, S. et al. Estimating dataset size requirements for classifying DNA microarray data. J. Comput Biol. 10, 119-142 (2003).
    • (2003) J. Comput Biol. , vol.10 , pp. 119-142
    • Mukherjee, S.1
  • 92
    • 0035714069 scopus 로고    scopus 로고
    • Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies
    • Rajeevan, M. S., Ranamukhaarachchi, D. G., Vernon, S. D. & Unger, E. R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25, 443-451 (2001).
    • (2001) Methods , vol.25 , pp. 443-451
    • Rajeevan, M.S.1    Ranamukhaarachchi, D.G.2    Vernon, S.D.3    Unger, E.R.4
  • 93
    • 1542613788 scopus 로고    scopus 로고
    • Confirming microarray data - Is it really necessary?
    • Rockett, J. C. & Hellmann, G. M. Confirming microarray data - is it really necessary? Genomics 83, 541-549 (2004).
    • (2004) Genomics , vol.83 , pp. 541-549
    • Rockett, J.C.1    Hellmann, G.M.2
  • 94
    • 0037606155 scopus 로고    scopus 로고
    • Approximate variance-stabilizing transformations for gene-expression microarray data
    • Rocke, D. M. & Durbin, B. Approximate variance-stabilizing transformations for gene-expression microarray data. Bioinformatics 19, 966-972 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 966-972
    • Rocke, D.M.1    Durbin, B.2
  • 95
    • 18844447998 scopus 로고    scopus 로고
    • Statistical development and evaluation of microarray gene expression data filters
    • Pounds, S. & Cheng, C. Statistical development and evaluation of microarray gene expression data filters. J. Comput Biol. 12, 482-495 (2005).
    • (2005) J. Comput Biol. , vol.12 , pp. 482-495
    • Pounds, S.1    Cheng, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.