메뉴 건너뛰기




Volumn 9, Issue 2, 2008, Pages 102-118

Approaches to dimensionality reduction in proteomic biomarker studies

Author keywords

Biomarkers; Dimensionality reduction; Feature selection; Feature transformation; Mass spectra; Proteomics

Indexed keywords

BIOLOGICAL MARKER;

EID: 42049102625     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbn005     Document Type: Review
Times cited : (124)

References (98)
  • 1
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectrometry data: Curses, caveats, cautions
    • Somorjai RL, Dolenko B, Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectrometry data: Curses, caveats, cautions. Bioinformatics 2003;19:1484-91.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 2
    • 5344247436 scopus 로고    scopus 로고
    • Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n)
    • Simon R. Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n). ACM SIGKDD Explor Newslett 2003;5:31-36.
    • (2003) ACM SIGKDD Explor Newslett , vol.5 , pp. 31-36
    • Simon, R.1
  • 3
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997;97:273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 4
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant feaures and examples in machine learning
    • Blum A, Langley P. Selection of relevant feaures and examples in machine learning. Artif Intell 1997;97: 245-71.
    • (1997) Artif Intell , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-82.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 11144357641 scopus 로고    scopus 로고
    • A novel and accurate diagnostic test for human African trypanosomiasis
    • Papadopoulos M, Abel PM, Agranoff D, et al. A novel and accurate diagnostic test for human African trypanosomiasis. Lancet 2004; 363:1358-63.
    • (2004) Lancet , vol.363 , pp. 1358-1363
    • Papadopoulos, M.1    Abel, P.M.2    Agranoff, D.3
  • 7
    • 0742269626 scopus 로고    scopus 로고
    • Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
    • Lilien RH, Farid H, Donald BR. Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J Comput Biol 2003;10: 925-946.
    • (2003) J Comput Biol , vol.10 , pp. 925-946
    • Lilien, R.H.1    Farid, H.2    Donald, B.R.3
  • 8
    • 0242499870 scopus 로고    scopus 로고
    • Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensional data
    • Qu Y, Adam BL, Thornquist M, et al. Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensional data. Biometrics 2003;59:143-51.
    • (2003) Biometrics , vol.59 , pp. 143-151
    • Qu, Y.1    Adam, B.L.2    Thornquist, M.3
  • 10
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003;19:1636-43.
    • (2003) Bioinformatics , vol.19 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3
  • 11
    • 21844512674 scopus 로고
    • Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data
    • Krzanowski W, Jonathan P, McCarthy W, et al. Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data. Appl Stat 1995;44:101-15.
    • (1995) Appl Stat , vol.44 , pp. 101-115
    • Krzanowski, W.1    Jonathan, P.2    McCarthy, W.3
  • 13
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: A versatile tool for the analysis of high dimensional genomic data
    • Boulesteix AL, Strimmer K. Partial least squares: A versatile tool for the analysis of high dimensional genomic data. Brief Bioinform 2006;8:32-44.
    • (2006) Brief Bioinform , vol.8 , pp. 32-44
    • Boulesteix, A.L.1    Strimmer, K.2
  • 14
    • 33646383088 scopus 로고    scopus 로고
    • Dimension reduction for classification with gene expression microarray data
    • Dai JJ, Lieu L, Rocke D. Dimension reduction for classification with gene expression microarray data. Stat Appl Genet Mol Biol 2006; 5:6. http://www.bepress.com/sagmb/vol5/iss1/art6.
    • (2006) Stat Appl Genet Mol Biol , vol.5 , pp. 6
    • Dai, J.J.1    Lieu, L.2    Rocke, D.3
  • 15
    • 0141855283 scopus 로고    scopus 로고
    • Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method
    • Lee KR, Lin X, Park DC, Eslava S. Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method. Proteomics 2003;3:1680-6.
    • (2003) Proteomics , vol.3 , pp. 1680-1686
    • Lee, K.R.1    Lin, X.2    Park, D.C.3    Eslava, S.4
  • 16
    • 0141743615 scopus 로고    scopus 로고
    • Discriminant models for high-throughput proteomics mass spectrometer data
    • Purohit PV, Rocke DM. Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics 2003;3:1699-703.
    • (2003) Proteomics , vol.3 , pp. 1699-1703
    • Purohit, P.V.1    Rocke, D.M.2
  • 17
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23:2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 18
    • 0141631754 scopus 로고    scopus 로고
    • Protocols for disease classification from mass spectrometry data
    • Wagner M, Naik D, Pothen A. Protocols for disease classification from mass spectrometry data. Proteomics 2003;3: 1692-8.
    • (2003) Proteomics , vol.3 , pp. 1692-1698
    • Wagner, M.1    Naik, D.2    Pothen, A.3
  • 19
    • 0142250869 scopus 로고    scopus 로고
    • Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: Identification of key issues affecting potential clinical utility
    • Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: Identification of key issues affecting potential clinical utility. Cancer Res 2003;63 6971-83.
    • (2003) Cancer Res , vol.63 , pp. 6971-6983
    • Rogers, M.A.1    Clarke, P.2    Noble, J.3
  • 20
    • 0142027764 scopus 로고    scopus 로고
    • Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis
    • Kozak K, Amneus M, Pusey S, et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis. Proc Natl Acad Sci USA 2003;100 12343-8.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 12343-12348
    • Kozak, K.1    Amneus, M.2    Pusey, S.3
  • 21
    • 0347181849 scopus 로고    scopus 로고
    • A data review and re-assessment of ovarian cancer serum proteomic profiling
    • Sorace JM, Zhan M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 2003;4:24.
    • (2003) BMC Bioinformatics , vol.4 , pp. 24
    • Sorace, J.M.1    Zhan, M.2
  • 22
    • 19544394460 scopus 로고    scopus 로고
    • Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
    • Yu J, Ongarello S, Fiedler R, et al. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 2005;21: 2200-9.
    • (2005) Bioinformatics , vol.21 , pp. 2200-2209
    • Yu, J.1    Ongarello, S.2    Fiedler, R.3
  • 23
    • 25444463295 scopus 로고    scopus 로고
    • Feature selection and nearest centroid classification for protein mass spectrometry
    • Levner I. Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 2005;6:68.
    • (2005) BMC Bioinformatics , vol.6 , pp. 68
    • Levner, I.1
  • 24
    • 32144435790 scopus 로고    scopus 로고
    • A robust meta-classification strategy for cancer detection from mass spectra data
    • Bhanot G, Alexe G, Venkataraghavan B, et al. A robust meta-classification strategy for cancer detection from mass spectra data. Proteomics 2006;6:592-604.
    • (2006) Proteomics , vol.6 , pp. 592-604
    • Bhanot, G.1    Alexe, G.2    Venkataraghavan, B.3
  • 26
    • 0141743613 scopus 로고    scopus 로고
    • Machine learning approaches to lung cancer prediction from mass spectra
    • Hilario M, Kalousis A, Muller M, et al. Machine learning approaches to lung cancer prediction from mass spectra. Proteomics 2003;3:1716-19.
    • (2003) Proteomics , vol.3 , pp. 1716-1719
    • Hilario, M.1    Kalousis, A.2    Muller, M.3
  • 27
    • 0027304920 scopus 로고
    • Tightening the clinical trial
    • Tukey JW. Tightening the clinical trial. Controll Clin Trials 1992;14:266-85.
    • (1992) Controll Clin Trials , vol.14 , pp. 266-285
    • Tukey, J.W.1
  • 28
    • 0035931947 scopus 로고    scopus 로고
    • Gene expression profiles in hereditary breast cancer
    • Hedenfalk I, Duggan D, Chen Y, et al. Gene expression profiles in hereditary breast cancer. N Engl J Med 2001;344: 539-48.
    • (2001) N Engl J Med , vol.344 , pp. 539-548
    • Hedenfalk, I.1    Duggan, D.2    Chen, Y.3
  • 29
    • 0041735992 scopus 로고    scopus 로고
    • Proteomic patterns of tumour subsets in non-small-cell lung cancer
    • Yanasigawa K, Shyr Y, Xu B, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003; 362 433-9.
    • (2003) Lancet , vol.362 , pp. 433-439
    • Yanasigawa, K.1    Shyr, Y.2    Xu, B.3
  • 30
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani K, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002;99: 6567-72.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 6567-6572
    • Tibshirani, K.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 31
    • 10244279272 scopus 로고    scopus 로고
    • Sample classification from protein mass spectrometry by "peak probability contrasts
    • Tibshirani R, Hastie T, Narasimhan B, et al. Sample classification from protein mass spectrometry by "peak probability contrasts". Bioinformatics 2004;20:3034-44.
    • (2004) Bioinformatics , vol.20 , pp. 3034-3044
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3
  • 33
    • 42049111498 scopus 로고    scopus 로고
    • Search Strategies
    • Chapter 4, Guyon I, Gunn S, Nikravesh M, et al, eds, Springer
    • Reunanen J. Search Strategies. Chapter 4. In: Guyon I, Gunn S, Nikravesh M, et al. (eds). Feature Extraction: Foundations & Applications Springer, 2006.
    • (2006) Feature Extraction: Foundations & Applications
    • Reunanen, J.1
  • 36
    • 0033084695 scopus 로고    scopus 로고
    • Ant algorithms for discrete optimization
    • Dorigo M, Di Caro G, Gambardella L. Ant algorithms for discrete optimization. Artif Life 1999;5:137-72.
    • (1999) Artif Life , vol.5 , pp. 137-172
    • Dorigo, M.1    Di Caro, G.2    Gambardella, L.3
  • 38
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete data class data mining
    • Hall M, Holmes G. Benchmarking attribute selection techniques for discrete data class data mining. IEEE T Knowl Dat En 2003;15 1437-47.
    • (2003) IEEE T Knowl Dat En , vol.15 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2
  • 39
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu H, Li J, Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform 2002;13: 51-60.
    • (2002) Genome Inform , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 40
    • 0141855279 scopus 로고    scopus 로고
    • A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization time of flight proteomics spectra from serum samples
    • Baggerly KA, Morris JS, Wang J, et al. A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization time of flight proteomics spectra from serum samples. Proteomics 2003;3 1667-72.
    • (2003) Proteomics , vol.3 , pp. 1667-1672
    • Baggerly, K.A.1    Morris, J.S.2    Wang, J.3
  • 41
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • Kira K, Rendell L. The feature selection problem: Traditional methods and a new algorithm. Proc Natl Conf Artif Intell (AAAI-92) 1992;129-34.
    • (1992) Proc Natl Conf Artif Intell (AAAI-92) , pp. 129-134
    • Kira, K.1    Rendell, L.2
  • 42
    • 33646245707 scopus 로고    scopus 로고
    • Multivariate nonlinear feature selection with kernel multiplicative updates and Gram-Schmidt Relief
    • CA: Berkeley
    • Guyon I, Bitter HM, Ahmed Z, et al. Multivariate nonlinear feature selection with kernel multiplicative updates and Gram-Schmidt Relief. In: Proceedings of the BISCFLINT CIBI 2003 Workshop. CA: Berkeley, 2003.
    • (2003) Proceedings of the BISCFLINT CIBI 2003 Workshop
    • Guyon, I.1    Bitter, H.M.2    Ahmed, Z.3
  • 46
    • 0347517822 scopus 로고    scopus 로고
    • Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons
    • Won Y, Song HJ, Kang TW, et al. Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 2003;3: 2310-6.
    • (2003) Proteomics , vol.3 , pp. 2310-2316
    • Won, Y.1    Song, H.J.2    Kang, T.W.3
  • 47
    • 1642557289 scopus 로고    scopus 로고
    • Diagnostic potential of serum proteomic patterns in prostate cancer
    • Bañez LL, Prasanna P, Sun L, et al. Diagnostic potential of serum proteomic patterns in prostate cancer. J Urol 2003; 170 442-6.
    • (2003) J Urol , vol.170 , pp. 442-446
    • Bañez, L.L.1    Prasanna, P.2    Sun, L.3
  • 48
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002;62:3609-14.
    • (2002) Cancer Res , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3
  • 50
    • 0036791428 scopus 로고    scopus 로고
    • Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
    • Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002;48:1835-43.
    • (2002) Clin Chem , vol.48 , pp. 1835-1843
    • Qu, Y.1    Adam, B.L.2    Yasui, Y.3
  • 51
    • 0142008803 scopus 로고    scopus 로고
    • A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection
    • Yasui Y, Pepe M, Thompson M, et al. A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection. Biostatistics 2003;4:449-63.
    • (2003) Biostatistics , vol.4 , pp. 449-463
    • Yasui, Y.1    Pepe, M.2    Thompson, M.3
  • 52
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum of identify ovarian cancer
    • Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum of identify ovarian cancer. Lancet 2002;359 572-7.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1    Ardekani, A.M.2    Hitt, B.A.3
  • 54
    • 4444234496 scopus 로고    scopus 로고
    • Data mining techniques for cancer detection using serum proteomic profiling
    • Li L, Tang H, Wu Z, et al. Data mining techniques for cancer detection using serum proteomic profiling. Artif Intell Med 2004;32:71-83.
    • (2004) Artif Intell Med , vol.32 , pp. 71-83
    • Li, L.1    Tang, H.2    Wu, Z.3
  • 55
    • 3543076921 scopus 로고    scopus 로고
    • Application of the GA/KNN method to SELDI proteomics data
    • Li L, Umbach DM, Terry P, et al. Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 2004;20:1638-40.
    • (2004) Bioinformatics , vol.20 , pp. 1638-1640
    • Li, L.1    Umbach, D.M.2    Terry, P.3
  • 57
    • 27744595524 scopus 로고    scopus 로고
    • Analysis of mass spectral serum profiles for biomarker selection
    • Ressom H, Varghese R, Sahia D, et al. Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 2005;21 4039-45.
    • (2005) Bioinformatics , vol.21 , pp. 4039-4045
    • Ressom, H.1    Varghese, R.2    Sahia, D.3
  • 58
    • 34047103028 scopus 로고    scopus 로고
    • Peak selection from MALDI-TOF mass spectra using ant colony optimization
    • Ressom H, Varghese R, Drake S, et al. Peak selection from MALDI-TOF mass spectra using ant colony optimization. Bioinformatics 2007;23:619-26.
    • (2007) Bioinformatics , vol.23 , pp. 619-626
    • Ressom, H.1    Varghese, R.2    Drake, S.3
  • 59
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999;286:531-7.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 60
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 62
    • 33748549944 scopus 로고    scopus 로고
    • Diagnosis of early relapse in ovariance cancer using serum proteomic profiling
    • Oh JH, Gao J, Nandi A, et al. Diagnosis of early relapse in ovariance cancer using serum proteomic profiling. Genome Inform 2005;16:195-204.
    • (2005) Genome Inform , vol.16 , pp. 195-204
    • Oh, J.H.1    Gao, J.2    Nandi, A.3
  • 63
    • 33646377650 scopus 로고    scopus 로고
    • Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
    • Zhang X, Lu X, Shi Q, et al. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 2006;7:197.
    • (2006) BMC Bioinformatics , vol.7 , pp. 197
    • Zhang, X.1    Lu, X.2    Shi, Q.3
  • 64
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J. Roy Stat Soc B 1996;58:267-88.
    • (1996) J. Roy Stat Soc B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 65
    • 3242736447 scopus 로고    scopus 로고
    • The use of plasma surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic patterns for detection of head and neck squamous cell cancers
    • Soltys S, Le Q, Shi G, et al. The use of plasma surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic patterns for detection of head and neck squamous cell cancers. Clin Cancer Res 2004;10: 4806-12.
    • (2004) Clin Cancer Res , vol.10 , pp. 4806-4812
    • Soltys, S.1    Le, Q.2    Shi, G.3
  • 66
    • 12244293651 scopus 로고    scopus 로고
    • Simultaneous classication and relevant feature identication in high-dimensional spaces: Application to molecular profiling data
    • Bhattacharya C, Grate L, Rizki A, et al. Simultaneous classication and relevant feature identication in high-dimensional spaces: application to molecular profiling data. Signal Process 2003;83 729-43.
    • (2003) Signal Process , vol.83 , pp. 729-743
    • Bhattacharya, C.1    Grate, L.2    Rizki, A.3
  • 68
  • 69
    • 25144482428 scopus 로고    scopus 로고
    • Proteomic mass spectra classification using decision tree based ensemble methods
    • Geurts P, Fillet M, de Sehy D, et al. Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics 2005;21:3138-45.
    • (2005) Bioinformatics , vol.21 , pp. 3138-3145
    • Geurts, P.1    Fillet, M.2    de Sehy, D.3
  • 70
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise C, McLachlan G. Selection bias in gene extraction on the basis of microarray gene-expression data. In: Proceedings of the Natl Acad Sci USA 2002;99:6562-6.
    • (2002) Proceedings of the Natl Acad Sci USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 71
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high-dimensional spaces
    • Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: A study on high-dimensional spaces. Knowl Inform Syst 2007;12:95-116.
    • (2007) Knowl Inform Syst , vol.12 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 72
    • 0002900451 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Kittler J. and Roli F eds, Springer
    • Dietterich TG. Ensemble methods in machine learning. In: Kittler J. and Roli F (eds). Multiple Classifier Systems. Springer, 2000.
    • (2000) Multiple Classifier Systems
    • Dietterich, T.G.1
  • 73
    • 34047123075 scopus 로고    scopus 로고
    • Ensemble Learning
    • Guyon I, Gunn S, Nikravesh M, et al, eds, Springer
    • Tuv E. Ensemble Learning. In: Guyon I, Gunn S, Nikravesh M, et al. (eds). Feature Extraction: Foundations and Applications Springer, 2006;187-204.
    • (2006) Feature Extraction: Foundations and Applications , pp. 187-204
    • Tuv, E.1
  • 74
    • 85130889021 scopus 로고    scopus 로고
    • An ensemble method for identifying robust features for biomarker identification
    • Liu H and Motoda H.eds, Chapman & Hall/CRC
    • Chan D, Bridges SM, Burgess S. An ensemble method for identifying robust features for biomarker identification. In: Liu H and Motoda H.(eds). Computational Methods of Feature Selection. Chapman & Hall/CRC, 2007;377-392.
    • (2007) Computational Methods of Feature Selection , pp. 377-392
    • Chan, D.1    Bridges, S.M.2    Burgess, S.3
  • 75
    • 34547765953 scopus 로고    scopus 로고
    • On consensus biomarker selection
    • Dutkowski J, Gambin A. On consensus biomarker selection. BMC Bioinformatics 2007;8(Suppl 5):5.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 5 , pp. 5
    • Dutkowski, J.1    Gambin, A.2
  • 79
    • 34249855008 scopus 로고    scopus 로고
    • Model order selection for bio-molecular data clustering
    • Bertoni A, Valentini G. Model order selection for bio-molecular data clustering. BMC Bioinformatics 2007 8(Suppl 2):7.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 2 , pp. 7
    • Bertoni, A.1    Valentini, G.2
  • 82
    • 84899024917 scopus 로고    scopus 로고
    • Zhu J, Rosset S, Hastie T, et al. 1-norm support vector machines. In: Advances in Neural Information Processing Systems 2004;16.
    • Zhu J, Rosset S, Hastie T, et al. 1-norm support vector machines. In: Advances in Neural Information Processing Systems 2004;16.
  • 83
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B 2005;67:301-20.
    • (2005) J R Stat Soc B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 84
    • 42049122895 scopus 로고    scopus 로고
    • Model building and feature selection with genomic data
    • Liu and Motoda, ed, Chapman & Hall/CRC
    • Zou H, Hastie T. Model building and feature selection with genomic data. In: Liu and Motoda, (ed). Computational Methods of Feature Selection Chapman & Hall/CRC, 2007; 393-411.
    • (2007) Computational Methods of Feature Selection , pp. 393-411
    • Zou, H.1    Hastie, T.2
  • 92
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 2001;1:211-44.
    • (2001) J Mach Learn Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 93
    • 33750052587 scopus 로고    scopus 로고
    • What should be expected from feature selection in small-sample settings
    • Sima C, Dougherty ER. What should be expected from feature selection in small-sample settings. Bioinformatics 2006;22:2430-6.
    • (2006) Bioinformatics , vol.22 , pp. 2430-2436
    • Sima, C.1    Dougherty, E.R.2
  • 98
    • 14344265835 scopus 로고    scopus 로고
    • Aliferis CF, Tsamardinos I, Statnikov A. HITON, a novel Markov blanket algorithm for optimal variable selection. American Medical Informatics Association (AMIA) 2003;21-5.
    • Aliferis CF, Tsamardinos I, Statnikov A. HITON, a novel Markov blanket algorithm for optimal variable selection. American Medical Informatics Association (AMIA) 2003;21-5.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.