-
1
-
-
0042923097
-
Class prediction and discovery using gene microarray and proteomics mass spectrometry data: Curses, caveats, cautions
-
Somorjai RL, Dolenko B, Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectrometry data: Curses, caveats, cautions. Bioinformatics 2003;19:1484-91.
-
(2003)
Bioinformatics
, vol.19
, pp. 1484-1491
-
-
Somorjai, R.L.1
Dolenko, B.2
Baumgartner, R.3
-
2
-
-
5344247436
-
Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n)
-
Simon R. Supervised analysis when the number of candidate features (p) greatly exceeds the number of cases (n). ACM SIGKDD Explor Newslett 2003;5:31-36.
-
(2003)
ACM SIGKDD Explor Newslett
, vol.5
, pp. 31-36
-
-
Simon, R.1
-
3
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell 1997;97:273-324.
-
(1997)
Artif Intell
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
4
-
-
0031334221
-
Selection of relevant feaures and examples in machine learning
-
Blum A, Langley P. Selection of relevant feaures and examples in machine learning. Artif Intell 1997;97: 245-71.
-
(1997)
Artif Intell
, vol.97
, pp. 245-271
-
-
Blum, A.1
Langley, P.2
-
5
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-82.
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
6
-
-
11144357641
-
A novel and accurate diagnostic test for human African trypanosomiasis
-
Papadopoulos M, Abel PM, Agranoff D, et al. A novel and accurate diagnostic test for human African trypanosomiasis. Lancet 2004; 363:1358-63.
-
(2004)
Lancet
, vol.363
, pp. 1358-1363
-
-
Papadopoulos, M.1
Abel, P.M.2
Agranoff, D.3
-
7
-
-
0742269626
-
Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
-
Lilien RH, Farid H, Donald BR. Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J Comput Biol 2003;10: 925-946.
-
(2003)
J Comput Biol
, vol.10
, pp. 925-946
-
-
Lilien, R.H.1
Farid, H.2
Donald, B.R.3
-
8
-
-
0242499870
-
Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensional data
-
Qu Y, Adam BL, Thornquist M, et al. Data reduction using a discrete wavelet transform in discriminant analysis of very high dimensional data. Biometrics 2003;59:143-51.
-
(2003)
Biometrics
, vol.59
, pp. 143-151
-
-
Qu, Y.1
Adam, B.L.2
Thornquist, M.3
-
10
-
-
0141738784
-
Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
-
Wu B, Abbott T, Fishman D, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003;19:1636-43.
-
(2003)
Bioinformatics
, vol.19
, pp. 1636-1643
-
-
Wu, B.1
Abbott, T.2
Fishman, D.3
-
11
-
-
21844512674
-
Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data
-
Krzanowski W, Jonathan P, McCarthy W, et al. Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data. Appl Stat 1995;44:101-15.
-
(1995)
Appl Stat
, vol.44
, pp. 101-115
-
-
Krzanowski, W.1
Jonathan, P.2
McCarthy, W.3
-
13
-
-
33846515112
-
Partial least squares: A versatile tool for the analysis of high dimensional genomic data
-
Boulesteix AL, Strimmer K. Partial least squares: A versatile tool for the analysis of high dimensional genomic data. Brief Bioinform 2006;8:32-44.
-
(2006)
Brief Bioinform
, vol.8
, pp. 32-44
-
-
Boulesteix, A.L.1
Strimmer, K.2
-
14
-
-
33646383088
-
Dimension reduction for classification with gene expression microarray data
-
Dai JJ, Lieu L, Rocke D. Dimension reduction for classification with gene expression microarray data. Stat Appl Genet Mol Biol 2006; 5:6. http://www.bepress.com/sagmb/vol5/iss1/art6.
-
(2006)
Stat Appl Genet Mol Biol
, vol.5
, pp. 6
-
-
Dai, J.J.1
Lieu, L.2
Rocke, D.3
-
15
-
-
0141855283
-
Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method
-
Lee KR, Lin X, Park DC, Eslava S. Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method. Proteomics 2003;3:1680-6.
-
(2003)
Proteomics
, vol.3
, pp. 1680-1686
-
-
Lee, K.R.1
Lin, X.2
Park, D.C.3
Eslava, S.4
-
16
-
-
0141743615
-
Discriminant models for high-throughput proteomics mass spectrometer data
-
Purohit PV, Rocke DM. Discriminant models for high-throughput proteomics mass spectrometer data. Proteomics 2003;3:1699-703.
-
(2003)
Proteomics
, vol.3
, pp. 1699-1703
-
-
Purohit, P.V.1
Rocke, D.M.2
-
17
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23:2507-17.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
18
-
-
0141631754
-
Protocols for disease classification from mass spectrometry data
-
Wagner M, Naik D, Pothen A. Protocols for disease classification from mass spectrometry data. Proteomics 2003;3: 1692-8.
-
(2003)
Proteomics
, vol.3
, pp. 1692-1698
-
-
Wagner, M.1
Naik, D.2
Pothen, A.3
-
19
-
-
0142250869
-
Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: Identification of key issues affecting potential clinical utility
-
Rogers MA, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: Identification of key issues affecting potential clinical utility. Cancer Res 2003;63 6971-83.
-
(2003)
Cancer Res
, vol.63
, pp. 6971-6983
-
-
Rogers, M.A.1
Clarke, P.2
Noble, J.3
-
20
-
-
0142027764
-
Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis
-
Kozak K, Amneus M, Pusey S, et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis. Proc Natl Acad Sci USA 2003;100 12343-8.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 12343-12348
-
-
Kozak, K.1
Amneus, M.2
Pusey, S.3
-
21
-
-
0347181849
-
A data review and re-assessment of ovarian cancer serum proteomic profiling
-
Sorace JM, Zhan M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 2003;4:24.
-
(2003)
BMC Bioinformatics
, vol.4
, pp. 24
-
-
Sorace, J.M.1
Zhan, M.2
-
22
-
-
19544394460
-
Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
-
Yu J, Ongarello S, Fiedler R, et al. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 2005;21: 2200-9.
-
(2005)
Bioinformatics
, vol.21
, pp. 2200-2209
-
-
Yu, J.1
Ongarello, S.2
Fiedler, R.3
-
23
-
-
25444463295
-
Feature selection and nearest centroid classification for protein mass spectrometry
-
Levner I. Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 2005;6:68.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 68
-
-
Levner, I.1
-
24
-
-
32144435790
-
A robust meta-classification strategy for cancer detection from mass spectra data
-
Bhanot G, Alexe G, Venkataraghavan B, et al. A robust meta-classification strategy for cancer detection from mass spectra data. Proteomics 2006;6:592-604.
-
(2006)
Proteomics
, vol.6
, pp. 592-604
-
-
Bhanot, G.1
Alexe, G.2
Venkataraghavan, B.3
-
26
-
-
0141743613
-
Machine learning approaches to lung cancer prediction from mass spectra
-
Hilario M, Kalousis A, Muller M, et al. Machine learning approaches to lung cancer prediction from mass spectra. Proteomics 2003;3:1716-19.
-
(2003)
Proteomics
, vol.3
, pp. 1716-1719
-
-
Hilario, M.1
Kalousis, A.2
Muller, M.3
-
27
-
-
0027304920
-
Tightening the clinical trial
-
Tukey JW. Tightening the clinical trial. Controll Clin Trials 1992;14:266-85.
-
(1992)
Controll Clin Trials
, vol.14
, pp. 266-285
-
-
Tukey, J.W.1
-
28
-
-
0035931947
-
Gene expression profiles in hereditary breast cancer
-
Hedenfalk I, Duggan D, Chen Y, et al. Gene expression profiles in hereditary breast cancer. N Engl J Med 2001;344: 539-48.
-
(2001)
N Engl J Med
, vol.344
, pp. 539-548
-
-
Hedenfalk, I.1
Duggan, D.2
Chen, Y.3
-
29
-
-
0041735992
-
Proteomic patterns of tumour subsets in non-small-cell lung cancer
-
Yanasigawa K, Shyr Y, Xu B, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003; 362 433-9.
-
(2003)
Lancet
, vol.362
, pp. 433-439
-
-
Yanasigawa, K.1
Shyr, Y.2
Xu, B.3
-
30
-
-
0037076272
-
Diagnosis of multiple cancer types by shrunken centroids of gene expression
-
Tibshirani K, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002;99: 6567-72.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 6567-6572
-
-
Tibshirani, K.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
31
-
-
10244279272
-
Sample classification from protein mass spectrometry by "peak probability contrasts
-
Tibshirani R, Hastie T, Narasimhan B, et al. Sample classification from protein mass spectrometry by "peak probability contrasts". Bioinformatics 2004;20:3034-44.
-
(2004)
Bioinformatics
, vol.20
, pp. 3034-3044
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
-
32
-
-
70350225878
-
Introduction
-
Guyon I, Gunn S, Nikravesh M, et al, eds, Springer
-
Guyon I, Elisseeff A. Introduction. In: Guyon I, Gunn S, Nikravesh M, et al. (eds). Feature Extraction: Foundations, & Applications. Springer, 2006;1-25.
-
(2006)
Feature Extraction: Foundations, & Applications
, pp. 1-25
-
-
Guyon, I.1
Elisseeff, A.2
-
33
-
-
42049111498
-
Search Strategies
-
Chapter 4, Guyon I, Gunn S, Nikravesh M, et al, eds, Springer
-
Reunanen J. Search Strategies. Chapter 4. In: Guyon I, Gunn S, Nikravesh M, et al. (eds). Feature Extraction: Foundations & Applications Springer, 2006.
-
(2006)
Feature Extraction: Foundations & Applications
-
-
Reunanen, J.1
-
38
-
-
0242410408
-
Benchmarking attribute selection techniques for discrete data class data mining
-
Hall M, Holmes G. Benchmarking attribute selection techniques for discrete data class data mining. IEEE T Knowl Dat En 2003;15 1437-47.
-
(2003)
IEEE T Knowl Dat En
, vol.15
, pp. 1437-1447
-
-
Hall, M.1
Holmes, G.2
-
39
-
-
0038021028
-
A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
-
Liu H, Li J, Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform 2002;13: 51-60.
-
(2002)
Genome Inform
, vol.13
, pp. 51-60
-
-
Liu, H.1
Li, J.2
Wong, L.3
-
40
-
-
0141855279
-
A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization time of flight proteomics spectra from serum samples
-
Baggerly KA, Morris JS, Wang J, et al. A comprehensive approach to the analysis of matrix-assisted laser desorption/ionization time of flight proteomics spectra from serum samples. Proteomics 2003;3 1667-72.
-
(2003)
Proteomics
, vol.3
, pp. 1667-1672
-
-
Baggerly, K.A.1
Morris, J.S.2
Wang, J.3
-
41
-
-
0027002164
-
The feature selection problem: Traditional methods and a new algorithm
-
Kira K, Rendell L. The feature selection problem: Traditional methods and a new algorithm. Proc Natl Conf Artif Intell (AAAI-92) 1992;129-34.
-
(1992)
Proc Natl Conf Artif Intell (AAAI-92)
, pp. 129-134
-
-
Kira, K.1
Rendell, L.2
-
42
-
-
33646245707
-
Multivariate nonlinear feature selection with kernel multiplicative updates and Gram-Schmidt Relief
-
CA: Berkeley
-
Guyon I, Bitter HM, Ahmed Z, et al. Multivariate nonlinear feature selection with kernel multiplicative updates and Gram-Schmidt Relief. In: Proceedings of the BISCFLINT CIBI 2003 Workshop. CA: Berkeley, 2003.
-
(2003)
Proceedings of the BISCFLINT CIBI 2003 Workshop
-
-
Guyon, I.1
Bitter, H.M.2
Ahmed, Z.3
-
46
-
-
0347517822
-
Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons
-
Won Y, Song HJ, Kang TW, et al. Pattern analysis of serum proteome distinguishes renal cell carcinoma from other urologic diseases and healthy persons. Proteomics 2003;3: 2310-6.
-
(2003)
Proteomics
, vol.3
, pp. 2310-2316
-
-
Won, Y.1
Song, H.J.2
Kang, T.W.3
-
47
-
-
1642557289
-
Diagnostic potential of serum proteomic patterns in prostate cancer
-
Bañez LL, Prasanna P, Sun L, et al. Diagnostic potential of serum proteomic patterns in prostate cancer. J Urol 2003; 170 442-6.
-
(2003)
J Urol
, vol.170
, pp. 442-446
-
-
Bañez, L.L.1
Prasanna, P.2
Sun, L.3
-
48
-
-
0036645099
-
Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
-
Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002;62:3609-14.
-
(2002)
Cancer Res
, vol.62
, pp. 3609-3614
-
-
Adam, B.L.1
Qu, Y.2
Davis, J.W.3
-
50
-
-
0036791428
-
Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients
-
Qu Y, Adam BL, Yasui Y, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem 2002;48:1835-43.
-
(2002)
Clin Chem
, vol.48
, pp. 1835-1843
-
-
Qu, Y.1
Adam, B.L.2
Yasui, Y.3
-
51
-
-
0142008803
-
A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection
-
Yasui Y, Pepe M, Thompson M, et al. A data-analytic strategy for protein biomarker discovery: Profiling of high-dimensional proteomic data for cancer detection. Biostatistics 2003;4:449-63.
-
(2003)
Biostatistics
, vol.4
, pp. 449-463
-
-
Yasui, Y.1
Pepe, M.2
Thompson, M.3
-
52
-
-
0037116832
-
Use of proteomic patterns in serum of identify ovarian cancer
-
Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum of identify ovarian cancer. Lancet 2002;359 572-7.
-
(2002)
Lancet
, vol.359
, pp. 572-577
-
-
Petricoin, E.F.1
Ardekani, A.M.2
Hitt, B.A.3
-
54
-
-
4444234496
-
Data mining techniques for cancer detection using serum proteomic profiling
-
Li L, Tang H, Wu Z, et al. Data mining techniques for cancer detection using serum proteomic profiling. Artif Intell Med 2004;32:71-83.
-
(2004)
Artif Intell Med
, vol.32
, pp. 71-83
-
-
Li, L.1
Tang, H.2
Wu, Z.3
-
55
-
-
3543076921
-
Application of the GA/KNN method to SELDI proteomics data
-
Li L, Umbach DM, Terry P, et al. Application of the GA/KNN method to SELDI proteomics data. Bioinformatics 2004;20:1638-40.
-
(2004)
Bioinformatics
, vol.20
, pp. 1638-1640
-
-
Li, L.1
Umbach, D.M.2
Terry, P.3
-
56
-
-
27744545542
-
Particle swarm optimization for analysis of mass spectral serum profiles
-
Washington, DC
-
Ressom H, Varghese R, Sahia D, et al. Particle swarm optimization for analysis of mass spectral serum profiles. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation(GECCO-05), Washington, DC, 2005;431-8.
-
(2005)
Proceedings of the 2005 Conference on Genetic and Evolutionary Computation(GECCO-05)
, pp. 431-438
-
-
Ressom, H.1
Varghese, R.2
Sahia, D.3
-
57
-
-
27744595524
-
Analysis of mass spectral serum profiles for biomarker selection
-
Ressom H, Varghese R, Sahia D, et al. Analysis of mass spectral serum profiles for biomarker selection. Bioinformatics 2005;21 4039-45.
-
(2005)
Bioinformatics
, vol.21
, pp. 4039-4045
-
-
Ressom, H.1
Varghese, R.2
Sahia, D.3
-
58
-
-
34047103028
-
Peak selection from MALDI-TOF mass spectra using ant colony optimization
-
Ressom H, Varghese R, Drake S, et al. Peak selection from MALDI-TOF mass spectra using ant colony optimization. Bioinformatics 2007;23:619-26.
-
(2007)
Bioinformatics
, vol.23
, pp. 619-626
-
-
Ressom, H.1
Varghese, R.2
Drake, S.3
-
59
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999;286:531-7.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
60
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46:389-422.
-
(2002)
Mach Learn
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
-
61
-
-
17044376597
-
Feature selection in proteomic pattern data with support vector machines
-
San Diego, CA
-
Jong K, Marchiori E, Sebag M, et al. Feature selection in proteomic pattern data with support vector machines. In: Proceedings of the IEEE Symposium on Computational Intelligence in Bionformatics and Computational Biology. San Diego, CA, 2004;41-8.
-
(2004)
Proceedings of the IEEE Symposium on Computational Intelligence in Bionformatics and Computational Biology
, pp. 41-48
-
-
Jong, K.1
Marchiori, E.2
Sebag, M.3
-
62
-
-
33748549944
-
Diagnosis of early relapse in ovariance cancer using serum proteomic profiling
-
Oh JH, Gao J, Nandi A, et al. Diagnosis of early relapse in ovariance cancer using serum proteomic profiling. Genome Inform 2005;16:195-204.
-
(2005)
Genome Inform
, vol.16
, pp. 195-204
-
-
Oh, J.H.1
Gao, J.2
Nandi, A.3
-
63
-
-
33646377650
-
Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
-
Zhang X, Lu X, Shi Q, et al. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 2006;7:197.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 197
-
-
Zhang, X.1
Lu, X.2
Shi, Q.3
-
64
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. Regression shrinkage and selection via the Lasso. J. Roy Stat Soc B 1996;58:267-88.
-
(1996)
J. Roy Stat Soc B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
65
-
-
3242736447
-
The use of plasma surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic patterns for detection of head and neck squamous cell cancers
-
Soltys S, Le Q, Shi G, et al. The use of plasma surface-enhanced laser desorption/ionization time-of-flight mass spectrometry proteomic patterns for detection of head and neck squamous cell cancers. Clin Cancer Res 2004;10: 4806-12.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 4806-4812
-
-
Soltys, S.1
Le, Q.2
Shi, G.3
-
66
-
-
12244293651
-
Simultaneous classication and relevant feature identication in high-dimensional spaces: Application to molecular profiling data
-
Bhattacharya C, Grate L, Rizki A, et al. Simultaneous classication and relevant feature identication in high-dimensional spaces: application to molecular profiling data. Signal Process 2003;83 729-43.
-
(2003)
Signal Process
, vol.83
, pp. 729-743
-
-
Bhattacharya, C.1
Grate, L.2
Rizki, A.3
-
69
-
-
25144482428
-
Proteomic mass spectra classification using decision tree based ensemble methods
-
Geurts P, Fillet M, de Sehy D, et al. Proteomic mass spectra classification using decision tree based ensemble methods. Bioinformatics 2005;21:3138-45.
-
(2005)
Bioinformatics
, vol.21
, pp. 3138-3145
-
-
Geurts, P.1
Fillet, M.2
de Sehy, D.3
-
70
-
-
0037076322
-
Selection bias in gene extraction on the basis of microarray gene-expression data
-
Ambroise C, McLachlan G. Selection bias in gene extraction on the basis of microarray gene-expression data. In: Proceedings of the Natl Acad Sci USA 2002;99:6562-6.
-
(2002)
Proceedings of the Natl Acad Sci USA
, vol.99
, pp. 6562-6566
-
-
Ambroise, C.1
McLachlan, G.2
-
71
-
-
34248647608
-
Stability of feature selection algorithms: A study on high-dimensional spaces
-
Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: A study on high-dimensional spaces. Knowl Inform Syst 2007;12:95-116.
-
(2007)
Knowl Inform Syst
, vol.12
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
72
-
-
0002900451
-
Ensemble methods in machine learning
-
Kittler J. and Roli F eds, Springer
-
Dietterich TG. Ensemble methods in machine learning. In: Kittler J. and Roli F (eds). Multiple Classifier Systems. Springer, 2000.
-
(2000)
Multiple Classifier Systems
-
-
Dietterich, T.G.1
-
73
-
-
34047123075
-
Ensemble Learning
-
Guyon I, Gunn S, Nikravesh M, et al, eds, Springer
-
Tuv E. Ensemble Learning. In: Guyon I, Gunn S, Nikravesh M, et al. (eds). Feature Extraction: Foundations and Applications Springer, 2006;187-204.
-
(2006)
Feature Extraction: Foundations and Applications
, pp. 187-204
-
-
Tuv, E.1
-
74
-
-
85130889021
-
An ensemble method for identifying robust features for biomarker identification
-
Liu H and Motoda H.eds, Chapman & Hall/CRC
-
Chan D, Bridges SM, Burgess S. An ensemble method for identifying robust features for biomarker identification. In: Liu H and Motoda H.(eds). Computational Methods of Feature Selection. Chapman & Hall/CRC, 2007;377-392.
-
(2007)
Computational Methods of Feature Selection
, pp. 377-392
-
-
Chan, D.1
Bridges, S.M.2
Burgess, S.3
-
75
-
-
34547765953
-
On consensus biomarker selection
-
Dutkowski J, Gambin A. On consensus biomarker selection. BMC Bioinformatics 2007;8(Suppl 5):5.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 5
, pp. 5
-
-
Dutkowski, J.1
Gambin, A.2
-
79
-
-
34249855008
-
Model order selection for bio-molecular data clustering
-
Bertoni A, Valentini G. Model order selection for bio-molecular data clustering. BMC Bioinformatics 2007 8(Suppl 2):7.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 2
, pp. 7
-
-
Bertoni, A.1
Valentini, G.2
-
82
-
-
84899024917
-
-
Zhu J, Rosset S, Hastie T, et al. 1-norm support vector machines. In: Advances in Neural Information Processing Systems 2004;16.
-
Zhu J, Rosset S, Hastie T, et al. 1-norm support vector machines. In: Advances in Neural Information Processing Systems 2004;16.
-
-
-
-
83
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B 2005;67:301-20.
-
(2005)
J R Stat Soc B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
84
-
-
42049122895
-
Model building and feature selection with genomic data
-
Liu and Motoda, ed, Chapman & Hall/CRC
-
Zou H, Hastie T. Model building and feature selection with genomic data. In: Liu and Motoda, (ed). Computational Methods of Feature Selection Chapman & Hall/CRC, 2007; 393-411.
-
(2007)
Computational Methods of Feature Selection
, pp. 393-411
-
-
Zou, H.1
Hastie, T.2
-
90
-
-
1942517347
-
Learning distance functions using equivalence relations
-
Washington, DC
-
Bar Hillel A, Hertz T, Shental N, et al. Learning distance functions using equivalence relations. In: Proceedings of the International Conference on Machine Learning. Washington, DC, 2003;11-18.
-
(2003)
Proceedings of the International Conference on Machine Learning
, pp. 11-18
-
-
Bar Hillel, A.1
Hertz, T.2
Shental, N.3
-
92
-
-
0001224048
-
Sparse Bayesian learning and the relevance vector machine
-
Tipping ME. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 2001;1:211-44.
-
(2001)
J Mach Learn Res
, vol.1
, pp. 211-244
-
-
Tipping, M.E.1
-
93
-
-
33750052587
-
What should be expected from feature selection in small-sample settings
-
Sima C, Dougherty ER. What should be expected from feature selection in small-sample settings. Bioinformatics 2006;22:2430-6.
-
(2006)
Bioinformatics
, vol.22
, pp. 2430-2436
-
-
Sima, C.1
Dougherty, E.R.2
-
98
-
-
14344265835
-
-
Aliferis CF, Tsamardinos I, Statnikov A. HITON, a novel Markov blanket algorithm for optimal variable selection. American Medical Informatics Association (AMIA) 2003;21-5.
-
Aliferis CF, Tsamardinos I, Statnikov A. HITON, a novel Markov blanket algorithm for optimal variable selection. American Medical Informatics Association (AMIA) 2003;21-5.
-
-
-
|