-
2
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X., Yu J., Bhagat G., Furuya N., Hibshoosh H., Troxel A., Rosen J., Eskelinen E.L., Mizushima N., Ohsumi Y., et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112 (2003) 1809-1820
-
(2003)
J Clin Invest
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
Rosen, J.7
Eskelinen, E.L.8
Mizushima, N.9
Ohsumi, Y.10
-
3
-
-
1242296021
-
Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability
-
Ionov Y., Nowak N., Perucho M., Markowitz S., and Cowell J.K. Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability. Oncogene 23 (2004) 639-645
-
(2004)
Oncogene
, vol.23
, pp. 639-645
-
-
Ionov, Y.1
Nowak, N.2
Perucho, M.3
Markowitz, S.4
Cowell, J.K.5
-
4
-
-
52749094770
-
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
-
Jung H.S., Chung K.W., Won Kim J., Kim J., Komatsu M., Tanaka K., Nguyen Y.H., Kang T.M., Yoon K.H., Kim J.W., et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8 (2008) 318-324
-
(2008)
Cell Metab
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
Chung, K.W.2
Won Kim, J.3
Kim, J.4
Komatsu, M.5
Tanaka, K.6
Nguyen, Y.H.7
Kang, T.M.8
Yoon, K.H.9
Kim, J.W.10
-
5
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z., Jin S., Yang C., Levine A.J., and Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100 (2003) 15077-15082
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
6
-
-
34848899280
-
Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
-
Takahashi Y., Coppola D., Matsushita N., Cualing H.D., Sun M., Sato Y., Liang C., Jung J.U., Cheng J.Q., Mule J.J., et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9 (2007) 1142-1151
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1142-1151
-
-
Takahashi, Y.1
Coppola, D.2
Matsushita, N.3
Cualing, H.D.4
Sun, M.5
Sato, Y.6
Liang, C.7
Jung, J.U.8
Cheng, J.Q.9
Mule, J.J.10
-
7
-
-
34547132328
-
Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3
-
Marino G., Salvador-Montoliu N., Fueyo A., Knecht E., Mizushima N., and Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem 282 (2007) 18573-18583
-
(2007)
J Biol Chem
, vol.282
, pp. 18573-18583
-
-
Marino, G.1
Salvador-Montoliu, N.2
Fueyo, A.3
Knecht, E.4
Mizushima, N.5
Lopez-Otin, C.6
-
8
-
-
66449099090
-
Autophagy suppresses tumorigenesis through elimination of p62
-
•].
-
•].
-
(2009)
Cell
, vol.137
, pp. 1062-1075
-
-
Mathew, R.1
Karp, C.M.2
Beaudoin, B.3
Vuong, N.4
Chen, G.5
Chen, H.Y.6
Bray, K.7
Reddy, A.8
Bhanot, G.9
Gelinas, C.10
-
9
-
-
48249156591
-
Autophagy: an emerging target for cancer therapy
-
Hoyer-Hansen M., and Jaattela M. Autophagy: an emerging target for cancer therapy. Autophagy 4 (2008) 574-580
-
(2008)
Autophagy
, vol.4
, pp. 574-580
-
-
Hoyer-Hansen, M.1
Jaattela, M.2
-
10
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gelinas C., Fan Y., et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10 (2006) 51-64
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
Mathew, R.2
Beaudoin, B.3
Bray, K.4
Anderson, D.5
Chen, G.6
Mukherjee, C.7
Shi, Y.8
Gelinas, C.9
Fan, Y.10
-
11
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H., Bosch-Marce M., Shimoda L.A., Tan Y.S., Baek J.H., Wesley J.B., Gonzalez F.J., and Semenza G.L. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283 (2008) 10892-10903
-
(2008)
J Biol Chem
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
Gonzalez, F.J.7
Semenza, G.L.8
-
12
-
-
66149179367
-
Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity
-
Wilkinson S., O'Prey J., Fricker M., and Ryan K.M. Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev 23 (2009) 1283-1288
-
(2009)
Genes Dev
, vol.23
, pp. 1283-1288
-
-
Wilkinson, S.1
O'Prey, J.2
Fricker, M.3
Ryan, K.M.4
-
13
-
-
33645112812
-
Rapamycin pre-treatment protects against apoptosis
-
Ravikumar B., Berger Z., Vacher C., O'Kane C.J., and Rubinsztein D.C. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15 (2006) 1209-1216
-
(2006)
Hum Mol Genet
, vol.15
, pp. 1209-1216
-
-
Ravikumar, B.1
Berger, Z.2
Vacher, C.3
O'Kane, C.J.4
Rubinsztein, D.C.5
-
14
-
-
34548037901
-
Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium
-
Hoyer-Hansen M., and Jaattela M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14 (2007) 1576-1582
-
(2007)
Cell Death Differ
, vol.14
, pp. 1576-1582
-
-
Hoyer-Hansen, M.1
Jaattela, M.2
-
15
-
-
63049132756
-
Acetylation targets mutant huntingtin to autophagosomes for degradation
-
•] this paper demonstrates the emerging concept that post-translational modification of would-be cargo proteins could be a point of regulation of autophagy. Specifically, acetylation of mutant huntingtin protein, the causative agent of Huntington's chorea, appears to permit the formation of autophagosomes that selectively degrade this species.
-
•] this paper demonstrates the emerging concept that post-translational modification of would-be cargo proteins could be a point of regulation of autophagy. Specifically, acetylation of mutant huntingtin protein, the causative agent of Huntington's chorea, appears to permit the formation of autophagosomes that selectively degrade this species.
-
(2009)
Cell
, vol.137
, pp. 60-72
-
-
Jeong, H.1
Then, F.2
Melia Jr., T.J.3
Mazzulli, J.R.4
Cui, L.5
Savas, J.N.6
Voisine, C.7
Paganetti, P.8
Tanese, N.9
Hart, A.C.10
-
16
-
-
67651155954
-
Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy
-
Ding W.X., Ni H.M., Gao W., Chen X., Kang J.H., Stolz D.B., Liu J., and Yin X.M. Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy. Mol Cancer Ther 8 (2009) 2036-2045
-
(2009)
Mol Cancer Ther
, vol.8
, pp. 2036-2045
-
-
Ding, W.X.1
Ni, H.M.2
Gao, W.3
Chen, X.4
Kang, J.H.5
Stolz, D.B.6
Liu, J.7
Yin, X.M.8
-
17
-
-
34249863298
-
Autophagy suppresses tumor progression by limiting chromosomal instability
-
•].
-
•].
-
(2007)
Genes Dev
, vol.21
, pp. 1367-1381
-
-
Mathew, R.1
Kongara, S.2
Beaudoin, B.3
Karp, C.M.4
Bray, K.5
Degenhardt, K.6
Chen, G.7
Jin, S.8
White, E.9
-
19
-
-
65449117176
-
Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
-
Gamerdinger M., Hajieva P., Kaya A.M., Wolfrum U., Hartl F.U., and Behl C. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28 (2009) 889-901
-
(2009)
EMBO J
, vol.28
, pp. 889-901
-
-
Gamerdinger, M.1
Hajieva, P.2
Kaya, A.M.3
Wolfrum, U.4
Hartl, F.U.5
Behl, C.6
-
20
-
-
58549084167
-
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
-
This paper demonstrates that monoubiquitination or polyubiquitination is sufficient to target proteins and organelles to autophagosomes, suggesting that regulation of ubiquitination by ligases and deubiquitinases may be a point of signalling control for selective autophagy pathways.
-
Kim P.K., Hailey D.W., Mullen R.T., and Lippincott-Schwartz J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 105 (2008) 20567-20574. This paper demonstrates that monoubiquitination or polyubiquitination is sufficient to target proteins and organelles to autophagosomes, suggesting that regulation of ubiquitination by ligases and deubiquitinases may be a point of signalling control for selective autophagy pathways.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20567-20574
-
-
Kim, P.K.1
Hailey, D.W.2
Mullen, R.T.3
Lippincott-Schwartz, J.4
-
21
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
•].
-
•].
-
(2009)
Mol Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjorkoy, G.4
Nunn, J.L.5
Bruun, J.A.6
Shvets, E.7
McEwan, D.G.8
Clausen, T.H.9
Wild, P.10
-
22
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
•] also demonstrates effectively that the phenotypic effects of inhibiting autophagy may be because of the consequent lack of sequestration of a target protein or adaptor. In this model, conditional knockout of the autophagy mediator Atg7 in the mouse liver leads to both nucleation of insoluble foci of ubiquitinated cytoplasmic protein species and hepatocyte abnormalities, dependent upon the presence of p62/SQSTM1.
-
•] also demonstrates effectively that the phenotypic effects of inhibiting autophagy may be because of the consequent lack of sequestration of a target protein or adaptor. In this model, conditional knockout of the autophagy mediator Atg7 in the mouse liver leads to both nucleation of insoluble foci of ubiquitinated cytoplasmic protein species and hepatocyte abnormalities, dependent upon the presence of p62/SQSTM1.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
Hara, T.6
Mizushima, N.7
Iwata, J.I.8
Ezaki, J.9
Murata, S.10
-
23
-
-
60549093730
-
Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
-
•], this paper demonstrates that autophagy inhibition may have effects on cell function by compromise of turnover of a particular protein species. In this instance, p62/SQSTM1 accumulates in the cytosol when autophagy is inhibited. This is proposed to stabilise multiple ubiquitinated proteins, possibly via direct binding to p62 and sequestration from the proteasomal degradation pathway.
-
•], this paper demonstrates that autophagy inhibition may have effects on cell function by compromise of turnover of a particular protein species. In this instance, p62/SQSTM1 accumulates in the cytosol when autophagy is inhibited. This is proposed to stabilise multiple ubiquitinated proteins, possibly via direct binding to p62 and sequestration from the proteasomal degradation pathway.
-
(2009)
Mol Cell
, vol.33
, pp. 517-527
-
-
Korolchuk, V.I.1
Mansilla, A.2
Menzies, F.M.3
Rubinsztein, D.C.4
-
24
-
-
65549085701
-
Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling
-
Jin Z., Li Y., Pitti R., Lawrence D., Pham V.C., Lill J.R., and Ashkenazi A. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137 (2009) 721-735
-
(2009)
Cell
, vol.137
, pp. 721-735
-
-
Jin, Z.1
Li, Y.2
Pitti, R.3
Lawrence, D.4
Pham, V.C.5
Lill, J.R.6
Ashkenazi, A.7
-
25
-
-
58149473474
-
Protein kinase Czeta represses the interleukin-6 promoter and impairs tumorigenesis in vivo
-
Galvez A.S., Duran A., Linares J.F., Pathrose P., Castilla E.A., Abu-Baker S., Leitges M., Diaz-Meco M.T., and Moscat J. Protein kinase Czeta represses the interleukin-6 promoter and impairs tumorigenesis in vivo. Mol Cell Biol 29 (2009) 104-115
-
(2009)
Mol Cell Biol
, vol.29
, pp. 104-115
-
-
Galvez, A.S.1
Duran, A.2
Linares, J.F.3
Pathrose, P.4
Castilla, E.A.5
Abu-Baker, S.6
Leitges, M.7
Diaz-Meco, M.T.8
Moscat, J.9
-
27
-
-
64349123107
-
Autophagy mediates the mitotic senescence transition
-
This paper is the first demonstration that oncogene-induced senescence can mechanistically involve the induction of autophagy, required for secretion of pro-senescence cytokines such as interleukin-6 and interleukin-8. Although most of the work was performed in fibroblasts and it remains to be shown that this functional role is conserved in nascent human neoplasia, the observation that senescent cells within nascent murine papillomas exhibit accumulated autophagosomes provides some tantalising evidence that this may be so.
-
Young A.R., Narita M., Ferreira M., Kirschner K., Sadaie M., Darot J.F., Tavare S., Arakawa S., Shimizu S., Watt F.M., et al. Autophagy mediates the mitotic senescence transition. Genes Dev 23 (2009) 798-803. This paper is the first demonstration that oncogene-induced senescence can mechanistically involve the induction of autophagy, required for secretion of pro-senescence cytokines such as interleukin-6 and interleukin-8. Although most of the work was performed in fibroblasts and it remains to be shown that this functional role is conserved in nascent human neoplasia, the observation that senescent cells within nascent murine papillomas exhibit accumulated autophagosomes provides some tantalising evidence that this may be so.
-
(2009)
Genes Dev
, vol.23
, pp. 798-803
-
-
Young, A.R.1
Narita, M.2
Ferreira, M.3
Kirschner, K.4
Sadaie, M.5
Darot, J.F.6
Tavare, S.7
Arakawa, S.8
Shimizu, S.9
Watt, F.M.10
-
28
-
-
33847404337
-
Autophagy gene-dependent clearance of apoptotic cells during embryonic development
-
Qu X., Zou Z., Sun Q., Luby-Phelps K., Cheng P., Hogan R.N., Gilpin C., and Levine B. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (2007) 931-946
-
(2007)
Cell
, vol.128
, pp. 931-946
-
-
Qu, X.1
Zou, Z.2
Sun, Q.3
Luby-Phelps, K.4
Cheng, P.5
Hogan, R.N.6
Gilpin, C.7
Levine, B.8
-
29
-
-
57649217868
-
Autophagy regulates selective HMGB1 release in tumor cells that are destined to die
-
Thorburn J., Horita H., Redzic J., Hansen K., Frankel A.E., and Thorburn A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16 (2008) 175-183
-
(2008)
Cell Death Differ
, vol.16
, pp. 175-183
-
-
Thorburn, J.1
Horita, H.2
Redzic, J.3
Hansen, K.4
Frankel, A.E.5
Thorburn, A.6
-
30
-
-
46249114022
-
Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells
-
This study provides a convincing mechanistic description of one route by which autophagy may influence a pathologic state of organ inflammation that may promote tumourigenesis. In this model, acute pancreatic inflammation, which ultimately leads to chronic inflammation, is induced with endotoxic agents in mice. Autophagy is shown to be involved in the genesis of inflammation in response to the decapeptide cerulein, which stimulates digestive enzyme secretion. Specifically, autophagy mediates trypsin formation from trypsinogen proenzyme via transport of the latter to the lysosome in autophagosomes.
-
Hashimoto D., Ohmuraya M., Hirota M., Yamamoto A., Suyama K., Ida S., Okumura Y., Takahashi E., Kido H., Araki K., et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 181 (2008) 1065-1072. This study provides a convincing mechanistic description of one route by which autophagy may influence a pathologic state of organ inflammation that may promote tumourigenesis. In this model, acute pancreatic inflammation, which ultimately leads to chronic inflammation, is induced with endotoxic agents in mice. Autophagy is shown to be involved in the genesis of inflammation in response to the decapeptide cerulein, which stimulates digestive enzyme secretion. Specifically, autophagy mediates trypsin formation from trypsinogen proenzyme via transport of the latter to the lysosome in autophagosomes.
-
(2008)
J Cell Biol
, vol.181
, pp. 1065-1072
-
-
Hashimoto, D.1
Ohmuraya, M.2
Hirota, M.3
Yamamoto, A.4
Suyama, K.5
Ida, S.6
Okumura, Y.7
Takahashi, E.8
Kido, H.9
Araki, K.10
-
31
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
-
Saitoh T., Fujita N., Jang M.H., Uematsu S., Yang B.G., Satoh T., Omori H., Noda T., Yamamoto N., Komatsu M., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456 (2008) 264-268
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
Uematsu, S.4
Yang, B.G.5
Satoh, T.6
Omori, H.7
Noda, T.8
Yamamoto, N.9
Komatsu, M.10
-
32
-
-
56249135538
-
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
-
Cadwell K., Liu J.Y., Brown S.L., Miyoshi H., Loh J., Lennerz J.K., Kishi C., Kc W., Carrero J.A., Hunt S., et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (2008) 259-263
-
(2008)
Nature
, vol.456
, pp. 259-263
-
-
Cadwell, K.1
Liu, J.Y.2
Brown, S.L.3
Miyoshi, H.4
Loh, J.5
Lennerz, J.K.6
Kishi, C.7
Kc, W.8
Carrero, J.A.9
Hunt, S.10
-
33
-
-
57649181445
-
Autophagic disposal of the aggregation-prone protein that causes liver inflammation and carcinogenesis in alpha-1-antitrypsin deficiency
-
Perlmutter D.H. Autophagic disposal of the aggregation-prone protein that causes liver inflammation and carcinogenesis in alpha-1-antitrypsin deficiency. Cell Death Differ 16 (2009) 39-45
-
(2009)
Cell Death Differ
, vol.16
, pp. 39-45
-
-
Perlmutter, D.H.1
-
34
-
-
67649382475
-
Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis
-
Fortunato F., Burgers H., Bergmann F., Rieger P., Buchler M.W., Kroemer G., and Werner J. Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 137 (2009) 350-360
-
(2009)
Gastroenterology
, vol.137
, pp. 350-360
-
-
Fortunato, F.1
Burgers, H.2
Bergmann, F.3
Rieger, P.4
Buchler, M.W.5
Kroemer, G.6
Werner, J.7
-
35
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin D.A., and Sabatini D.M. Defining the role of mTOR in cancer. Cancer Cell 12 (2007) 9-22
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
36
-
-
32444433450
-
Hypoxia-induced energy stress regulates mRNA translation and cell growth
-
Liu L., Cash T.P., Jones R.G., Keith B., Thompson C.B., and Simon M.C. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21 (2006) 521-531
-
(2006)
Mol Cell
, vol.21
, pp. 521-531
-
-
Liu, L.1
Cash, T.P.2
Jones, R.G.3
Keith, B.4
Thompson, C.B.5
Simon, M.C.6
-
37
-
-
52149101812
-
Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L
-
Papandreou I., Lim A.L., Laderoute K., and Denko N.C. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15 (2008) 1572-1581
-
(2008)
Cell Death Differ
, vol.15
, pp. 1572-1581
-
-
Papandreou, I.1
Lim, A.L.2
Laderoute, K.3
Denko, N.C.4
-
38
-
-
33745885329
-
DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
-
Crighton D., Wilkinson S., O'Prey J., Syed N., Smith P., Harrison P.R., Gasco M., Garrone O., Crook T., and Ryan K.M. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126 (2006) 121-134
-
(2006)
Cell
, vol.126
, pp. 121-134
-
-
Crighton, D.1
Wilkinson, S.2
O'Prey, J.3
Syed, N.4
Smith, P.5
Harrison, P.R.6
Gasco, M.7
Garrone, O.8
Crook, T.9
Ryan, K.M.10
-
39
-
-
66849111716
-
Stimulation of autophagy by the p53 target gene Sestrin2
-
Maiuri M.C., Malik S.A., Morselli E., Kepp O., Criollo A., Mouchel P.L., Carnuccio R., and Kroemer G. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8 (2009) 1571-1576
-
(2009)
Cell Cycle
, vol.8
, pp. 1571-1576
-
-
Maiuri, M.C.1
Malik, S.A.2
Morselli, E.3
Kepp, O.4
Criollo, A.5
Mouchel, P.L.6
Carnuccio, R.7
Kroemer, G.8
-
40
-
-
48449101433
-
p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov A.V., and Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134 (2008) 451-460
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
41
-
-
33947250696
-
The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis
-
Liang J., Shao S.H., Xu Z.X., Hennessy B., Ding Z., Larrea M., Kondo S., Dumont D.J., Gutterman J.U., Walker C.L., et al. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9 (2007) 218-224
-
(2007)
Nat Cell Biol
, vol.9
, pp. 218-224
-
-
Liang, J.1
Shao, S.H.2
Xu, Z.X.3
Hennessy, B.4
Ding, Z.5
Larrea, M.6
Kondo, S.7
Dumont, D.J.8
Gutterman, J.U.9
Walker, C.L.10
-
42
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao J., Brault J.J., Schild A., Cao P., Sandri M., Schiaffino S., Lecker S.H., and Goldberg A.L. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6 (2007) 472-483
-
(2007)
Cell Metab
, vol.6
, pp. 472-483
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
Cao, P.4
Sandri, M.5
Schiaffino, S.6
Lecker, S.H.7
Goldberg, A.L.8
-
43
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C., Milan G., Romanello V., Masiero E., Rudolf R., Del Piccolo P., Burden S.J., Di Lisi R., Sandri C., Zhao J., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6 (2007) 458-471
-
(2007)
Cell Metab
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
Milan, G.2
Romanello, V.3
Masiero, E.4
Rudolf, R.5
Del Piccolo, P.6
Burden, S.J.7
Di Lisi, R.8
Sandri, C.9
Zhao, J.10
-
44
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P., Bergman P., Zhang B., Triantafellow E., Wang H., Nyfeler B., Yang H., Hild M., Kung C., Wilson C., et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136 (2009) 521-534
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
-
45
-
-
44649141966
-
Regulation of autophagy by cytoplasmic p53
-
•] for annotation.
-
•] for annotation.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 676-687
-
-
Tasdemir, E.1
Maiuri, M.C.2
Galluzzi, L.3
Vitale, I.4
Djavaheri-Mergny, M.5
D'Amelio, M.6
Criollo, A.7
Morselli, E.8
Zhu, C.9
Harper, F.10
-
46
-
-
53649086181
-
Mutant p53 protein localized in the cytoplasm inhibits autophagy
-
•], elevated levels of cytosolic p53 (wild-type or mutant) are shown to repress autophagy, predominantly the degradation of ER fragments (reticulophagy) but also possibly some mitophagy. As mutants of p53 are capable of performing this function, and as some p53 mutants are hyperstabilised and accumulate in the cytosol, this then raises the tantalising possibility that the inhibition of autophagy by some mutant forms of p53 may be a component of their gain-of-function activity.
-
•], elevated levels of cytosolic p53 (wild-type or mutant) are shown to repress autophagy, predominantly the degradation of ER fragments (reticulophagy) but also possibly some mitophagy. As mutants of p53 are capable of performing this function, and as some p53 mutants are hyperstabilised and accumulate in the cytosol, this then raises the tantalising possibility that the inhibition of autophagy by some mutant forms of p53 may be a component of their gain-of-function activity.
-
(2008)
Cell Cycle
, vol.7
, pp. 3056-3061
-
-
Morselli, E.1
Tasdemir, E.2
Maiuri, M.C.3
Galluzzi, L.4
Kepp, O.5
Criollo, A.6
Vicencio, J.M.7
Soussi, T.8
Kroemer, G.9
-
48
-
-
34248998801
-
Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1
-
Maiuri M.C., Le Toumelin G., Criollo A., Rain J.C., Gautier F., Juin P., Tasdemir E., Pierron G., Troulinaki K., Tavernarakis N., et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26 (2007) 2527-2539
-
(2007)
EMBO J
, vol.26
, pp. 2527-2539
-
-
Maiuri, M.C.1
Le Toumelin, G.2
Criollo, A.3
Rain, J.C.4
Gautier, F.5
Juin, P.6
Tasdemir, E.7
Pierron, G.8
Troulinaki, K.9
Tavernarakis, N.10
-
49
-
-
44949237240
-
JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
-
Wei Y., Pattingre S., Sinha S., Bassik M., and Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30 (2008) 678-688
-
(2008)
Mol Cell
, vol.30
, pp. 678-688
-
-
Wei, Y.1
Pattingre, S.2
Sinha, S.3
Bassik, M.4
Levine, B.5
-
50
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., and Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26 (2007) 1749-1760
-
(2007)
EMBO J
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
51
-
-
33646523798
-
A short mitochondrial form of p19(ARF) induces autophagy and caspase-independent cell death
-
Reef S., Zalckvar E., Shifman O., Bialik S., Sabanay H., Oren M., and Kimchi A. A short mitochondrial form of p19(ARF) induces autophagy and caspase-independent cell death. Mol Cell 22 (2006) 463-475
-
(2006)
Mol Cell
, vol.22
, pp. 463-475
-
-
Reef, S.1
Zalckvar, E.2
Shifman, O.3
Bialik, S.4
Sabanay, H.5
Oren, M.6
Kimchi, A.7
-
52
-
-
59149096565
-
ARF induces autophagy by virtue of interaction with Bcl-xl
-
Pimkina J., Humbey O., Zilfou J.T., Jarnik M., and Murphy M. ARF induces autophagy by virtue of interaction with Bcl-xl. J Biol Chem 284 (2008) 2803-2810
-
(2008)
J Biol Chem
, vol.284
, pp. 2803-2810
-
-
Pimkina, J.1
Humbey, O.2
Zilfou, J.T.3
Jarnik, M.4
Murphy, M.5
-
53
-
-
67749111834
-
Insulin-like growth factor-I prevents the accumulation of autophagic vesicles and cell death in Purkinje neurons by increasing the rate of autophagosome-to-lysosome fusion and degradation
-
Bains M., Florez-McClure M.L., and Heidenreich K.A. Insulin-like growth factor-I prevents the accumulation of autophagic vesicles and cell death in Purkinje neurons by increasing the rate of autophagosome-to-lysosome fusion and degradation. J Biol Chem 284 (2009) 20398-20407
-
(2009)
J Biol Chem
, vol.284
, pp. 20398-20407
-
-
Bains, M.1
Florez-McClure, M.L.2
Heidenreich, K.A.3
-
54
-
-
33846794896
-
Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
-
•] for annotation.
-
•] for annotation.
-
(2007)
J Clin Invest
, vol.117
, pp. 326-336
-
-
Amaravadi, R.K.1
Yu, D.2
Lum, J.J.3
Bui, T.4
Christophorou, M.A.5
Evan, G.I.6
Thomas-Tikhonenko, A.7
Thompson, C.B.8
-
55
-
-
66449122303
-
Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells
-
•] demonstrates that hydroxychloroquine can enhance the activity of the Bcr-Abl fusion tyrosine kinase inhibitor imatinib in killing of chronic myeloid leukaemia (CML) cells in a mouse model where the cancer is driven by the Bcr-Abl fusion kinase, as well as in patient-derived samples in vitro. The effectiveness of this as a therapy is also demonstrated in vitro in the toxicity of this combination against otherwise refractory CML stem cells.
-
•] demonstrates that hydroxychloroquine can enhance the activity of the Bcr-Abl fusion tyrosine kinase inhibitor imatinib in killing of chronic myeloid leukaemia (CML) cells in a mouse model where the cancer is driven by the Bcr-Abl fusion kinase, as well as in patient-derived samples in vitro. The effectiveness of this as a therapy is also demonstrated in vitro in the toxicity of this combination against otherwise refractory CML stem cells. Furthermore, targeting autophagy along with imatinib treatment is only effective against cells bearing the Bcr-Abl fusion, giving confidence in the ability of this combination to selectively kill cancer cells.
-
(2009)
J Clin Invest
, vol.119
, pp. 1109-1123
-
-
Bellodi, C.1
Lidonnici, M.R.2
Hamilton, A.3
Helgason, G.V.4
Soliera, A.R.5
Ronchetti, M.6
Galavotti, S.7
Young, K.W.8
Selmi, T.9
Yacobi, R.10
|