-
1
-
-
0034528890
-
2-Methoxyestradiol: An endogenous antiangiogenic and antiproliferative drug candidate
-
Pribluda VS, Gubish ER, Jr., Lavallee TM, et al. 2-Methoxyestradiol: an endogenous antiangiogenic and antiproliferative drug candidate. Cancer Metastasis Rev 2000;19:173-9.
-
(2000)
Cancer Metastasis Rev
, vol.19
, pp. 173-179
-
-
Pribluda, V.S.1
Gubish Jr., E.R.2
Lavallee, T.M.3
-
2
-
-
0742269867
-
New insights into 2-methoxyestradiol, a promising antiangiogenic and antitumor agent
-
Mooberry SL. New insights into 2-methoxyestradiol, a promising antiangiogenic and antitumor agent. Curr Opin Oncol 2003;15: 425-30.
-
(2003)
Curr Opin Oncol
, vol.15
, pp. 425-430
-
-
Mooberry, S.L.1
-
3
-
-
0028331925
-
2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site
-
D'Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci U S A 1994;91:3964-8.
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, pp. 3964-3968
-
-
D'Amato, R.J.1
Lin, C.M.2
Flynn, E.3
Folkman, J.4
Hamel, E.5
-
5
-
-
33749578369
-
2-Methoxyestradiol suppresses microtubule dynamics and arrests mitosis without depolymerizing microtubules
-
Kamath K, Okouneva T, Larson G, Panda D, Wilson L, Jordan MA. 2-Methoxyestradiol suppresses microtubule dynamics and arrests mitosis without depolymerizing microtubules. Mol Cancer Ther 2006;5: 2225-33.
-
(2006)
Mol Cancer Ther
, vol.5
, pp. 2225-2233
-
-
Kamath, K.1
Okouneva, T.2
Larson, G.3
Panda, D.4
Wilson, L.5
Jordan, M.A.6
-
6
-
-
1942438028
-
Microtubules as a target for anticancer drugs
-
Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4:53-65.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 53-65
-
-
Jordan, M.A.1
Wilson, L.2
-
7
-
-
48249145841
-
In vitro effects of 2-methoxyestradiol on MCF-12A and MCF-7 cell growth, morphology and mitotic spindle formation
-
Van Zijl C, Lottering ML, Steffens F, Joubert A. In vitro effects of 2-methoxyestradiol on MCF-12A and MCF-7 cell growth, morphology and mitotic spindle formation. Cell Biochem Funct 2008;26:632-42.
-
(2008)
Cell Biochem Funct
, vol.26
, pp. 632-642
-
-
Van Zijl, C.1
Lottering, M.L.2
Steffens, F.3
Joubert, A.4
-
8
-
-
0034699513
-
Superoxide dismutase as a target for the selective killing of cancer cells
-
Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000;407:390-5.
-
(2000)
Nature
, vol.407
, pp. 390-395
-
-
Huang, P.1
Feng, L.2
Oldham, E.A.3
Keating, M.J.4
Plunkett, W.5
-
9
-
-
0037200911
-
2-Methoxyestradiol enhances reactive oxygen species formation and increases the efficacy of oxygen radical generating tumor treatment
-
Lambert C, Thews O, Biesalski HK, Vaupel P, Kelleher DK, Frank J. 2-Methoxyestradiol enhances reactive oxygen species formation and increases the efficacy of oxygen radical generating tumor treatment. Eur J Med Res 2002;7:404-14.
-
(2002)
Eur J Med Res
, vol.7
, pp. 404-414
-
-
Lambert, C.1
Thews, O.2
Biesalski, H.K.3
Vaupel, P.4
Kelleher, D.K.5
Frank, J.6
-
10
-
-
0141509869
-
Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism
-
Pelicano H, Feng L, Zhou Y, et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 2003;278:37832-9.
-
(2003)
J Biol Chem
, vol.278
, pp. 37832-37839
-
-
Pelicano, H.1
Feng, L.2
Zhou, Y.3
-
11
-
-
0038531029
-
2-Methoxyestradiol induces apoptosis in Ewing sarcoma cells through mitochondrial hydrogen peroxide production
-
Djavaheri-Mergny M, Wietzerbin J, Besancon F. 2-Methoxyestradiol induces apoptosis in Ewing sarcoma cells through mitochondrial hydrogen peroxide production. Oncogene 2003;22:2558-67.
-
(2003)
Oncogene
, vol.22
, pp. 2558-2567
-
-
Djavaheri-Mergny, M.1
Wietzerbin, J.2
Besancon, F.3
-
12
-
-
0142025122
-
Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells
-
Chauhan D, Li G, Sattler M, et al. Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene 2003;22:6296-300.
-
(2003)
Oncogene
, vol.22
, pp. 6296-6300
-
-
Chauhan, D.1
Li, G.2
Sattler, M.3
-
13
-
-
57649097524
-
2-methoxyestradiol mediates apoptosis through caspase-dependent and independent mechanisms in ovarian cancer cells but not in normal counterparts
-
Kato S, Sadarangani A, Lange S, et al. 2-methoxyestradiol mediates apoptosis through caspase-dependent and independent mechanisms in ovarian cancer cells but not in normal counterparts. Reprod Sci 2008;15:878-94.
-
(2008)
Reprod Sci
, vol.15
, pp. 878-894
-
-
Kato, S.1
Sadarangani, A.2
Lange, S.3
-
14
-
-
0035881228
-
2-Methoxyestradiol does not inhibit superoxide dismutase
-
Kachadourian R, Liochev SI, Cabelli DE, Patel MN, Fridovich I, Day BJ. 2-Methoxyestradiol does not inhibit superoxide dismutase. Arch Biochem Biophys 2001;392:349-53.
-
(2001)
Arch Biochem Biophys
, vol.392
, pp. 349-353
-
-
Kachadourian, R.1
Liochev, S.I.2
Cabelli, D.E.3
Patel, M.N.4
Fridovich, I.5
Day, B.J.6
-
15
-
-
4444229716
-
Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol
-
Hagen T, D'Amico G, Quintero M, et al. Inhibition of mitochondrial respiration by the anticancer agent 2-methoxyestradiol. Biochem Biophys Res Commun 2004;322:923-9.
-
(2004)
Biochem Biophys Res Commun
, vol.322
, pp. 923-929
-
-
Hagen, T.1
D'Amico, G.2
Quintero, M.3
-
16
-
-
33744518169
-
Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure
-
Moreira PI, Custódio J, Moreno A, Oliveira CR, Santos MS. Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 2006;281:10143-52.
-
(2006)
J Biol Chem
, vol.281
, pp. 10143-10152
-
-
Moreira, P.I.1
Custódio, J.2
Moreno, A.3
Oliveira, C.R.4
Santos, M.S.5
-
17
-
-
0242363670
-
Molecular pathways of neurodegeneration in Parkinson's disease
-
Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003;302:819-22.
-
(2003)
Science
, vol.302
, pp. 819-822
-
-
Dawson, T.M.1
Dawson, V.L.2
-
18
-
-
10744231706
-
2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF
-
Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003;3:363-75.
-
(2003)
Cancer Cell
, vol.3
, pp. 363-375
-
-
Mabjeesh, N.J.1
Escuin, D.2
LaVallee, T.M.3
-
19
-
-
43649093915
-
Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway
-
Kaelin WG, Jr., Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008;30:393-402.
-
(2008)
Mol Cell
, vol.30
, pp. 393-402
-
-
Kaelin Jr., W.G.1
Ratcliffe, P.J.2
-
20
-
-
17944375360
-
EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
-
Epstein AC, Gleadle JM, McNeill LA, et al. EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001;107:43-54.
-
(2001)
Cell
, vol.107
, pp. 43-54
-
-
Epstein, A.C.1
Gleadle, J.M.2
McNeill, L.A.3
-
21
-
-
0035834409
-
A conserved family of prolyl-4-hydroxylases that modify HIF
-
Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001;294:1337-40.
-
(2001)
Science
, vol.294
, pp. 1337-1340
-
-
Bruick, R.K.1
McKnight, S.L.2
-
22
-
-
32944477859
-
Hypoxia-inducible factor-1α promotes nonhypoxia mediated proliferation in colon cancer cells and xenografts
-
Dang DT, Chen F, Gardner LB, et al. Hypoxia-inducible factor-1α promotes nonhypoxia mediated proliferation in colon cancer cells and xenografts. Cancer Res 2006;66:1684-93.
-
(2006)
Cancer Res
, vol.66
, pp. 1684-1693
-
-
Dang, D.T.1
Chen, F.2
Gardner, L.B.3
-
23
-
-
66849142007
-
Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment
-
Burkitt K, Chun SY, Dang DT, Dang LH. Targeting both HIF-1 and HIF-2 in human colon cancer cells improves tumor response to sunitinib treatment. Mol Cancer Ther 2009;8:1148-56.
-
(2009)
Mol Cancer Ther
, vol.8
, pp. 1148-1156
-
-
Burkitt, K.1
Chun, S.Y.2
Dang, D.T.3
Dang, L.H.4
-
24
-
-
0032581277
-
Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis
-
Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998;374:485-90.
-
(1998)
Nature
, vol.374
, pp. 485-490
-
-
Carmeliet, P.1
Dor, Y.2
Herbert, J.M.3
-
25
-
-
0033870727
-
Hypoxia-inducible factor-1α is a positive factor in solid tumor growth
-
Ryan HE, Poloni M, McNulty W, et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res 2000;60:4010-5.
-
(2000)
Cancer Res
, vol.60
, pp. 4010-4015
-
-
Ryan, H.E.1
Poloni, M.2
McNulty, W.3
-
26
-
-
0038282482
-
The hypoxia-inducible factor-1α is a negative factor for tumor therapy
-
Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1α is a negative factor for tumor therapy. Oncogene 2003;22:3213-20.
-
(2003)
Oncogene
, vol.22
, pp. 3213-3220
-
-
Unruh, A.1
Ressel, A.2
Mohamed, H.G.3
-
27
-
-
64949171489
-
siRNA targeting HIF-1α induces apoptosis of pancreatic cancer cells through NF-κB-independent and -dependent pathways under hypoxic conditions
-
Chen C, Yu Z. siRNA targeting HIF-1α induces apoptosis of pancreatic cancer cells through NF-κB-independent and -dependent pathways under hypoxic conditions. Anticancer Res 2009;29:1367-72.
-
(2009)
Anticancer Res
, vol.29
, pp. 1367-1372
-
-
Chen, C.1
Yu, Z.2
-
28
-
-
20944439854
-
Elucidation of thioredoxin as a molecular target for antitumor quinols
-
Bradshaw TD, Matthews CS, Cookson J, et al. Elucidation of thioredoxin as a molecular target for antitumor quinols. Cancer Res 2005; 65:3911-9.
-
(2005)
Cancer Res
, vol.65
, pp. 3911-3919
-
-
Bradshaw, T.D.1
Matthews, C.S.2
Cookson, J.3
-
29
-
-
33744983297
-
Antitumor quinols: Role of glutathione in modulating quinol-induced apoptosis and identification of putative cellular protein targets
-
Chew EH, Matthews CS, Zhang J, et al. Antitumor quinols: role of glutathione in modulating quinol-induced apoptosis and identification of putative cellular protein targets. Biochem Biophys Res Commun 2006;346:242-51.
-
(2006)
Biochem Biophys Res Commun
, vol.346
, pp. 242-251
-
-
Chew, E.H.1
Matthews, C.S.2
Zhang, J.3
-
30
-
-
48949095975
-
Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198
-
LaVallee TM, Burke PA, Swartz GM, et al. Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198. Mol Cancer Ther 2008;7:1472-82.
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 1472-1482
-
-
LaVallee, T.M.1
Burke, P.A.2
Swartz, G.M.3
-
31
-
-
48949087080
-
ENMD-1198, a novel tubulin-binding agent reduces HIF-1α and STAT3 activity in human hepatocellular carcinoma (HCC) cells, and inhibits growth and vascularization in vivo
-
Moser C, Lang SA, Mori A, et al. ENMD-1198, a novel tubulin-binding agent reduces HIF-1α and STAT3 activity in human hepatocellular carcinoma (HCC) cells, and inhibits growth and vascularization in vivo. BMC Cancer 2008;8:206.
-
(2008)
BMC Cancer
, vol.8
, pp. 206
-
-
Moser, C.1
Lang, S.A.2
Mori, A.3
-
32
-
-
24144447915
-
Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation
-
Mansfield KD, Guzy RD, Pan Y, et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell Metab 2005;1:393-9.
-
(2005)
Cell Metab
, vol.1
, pp. 393-399
-
-
Mansfield, K.D.1
Guzy, R.D.2
Pan, Y.3
-
33
-
-
24144493814
-
Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing
-
Guzy RD, Hoyos B, Robin E, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005;1:401-8.
-
(2005)
Cell Metab
, vol.1
, pp. 401-408
-
-
Guzy, R.D.1
Hoyos, B.2
Robin, E.3
-
34
-
-
24144444133
-
Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
-
Brunelle JK, Bell EL, Quesada NM, et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 2005;1:409-14.
-
(2005)
Cell Metab
, vol.1
, pp. 409-414
-
-
Brunelle, J.K.1
Bell, E.L.2
Quesada, N.M.3
-
35
-
-
0348134741
-
Redistribution of intracellular oxygen in hypoxia by nitric oxide: Effect on HIF1α
-
Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 2003; 302:1975-8.
-
(2003)
Science
, vol.302
, pp. 1975-1978
-
-
Hagen, T.1
Taylor, C.T.2
Lam, F.3
Moncada, S.4
-
36
-
-
27144528715
-
Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact
-
Doege K, Heine S, Jensen I, Jelkmann W, Metzen E. Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood 2005;106: 2311-7.
-
(2005)
Blood
, vol.106
, pp. 2311-2317
-
-
Doege, K.1
Heine, S.2
Jensen, I.3
Jelkmann, W.4
Metzen, E.5
|