메뉴 건너뛰기




Volumn , Issue , 2008, Pages 143-167

Statistical Methods for Inference of Genetic Networks and Regulatory Modules

Author keywords

Analysis; DNA microarrays; Gaussian graphical models; Genetic networks; Inference; Regulatory modules; Statistical methods; Transcriptional networks

Indexed keywords


EID: 73449121698     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9783527622818.ch6     Document Type: Chapter
Times cited : (3)

References (58)
  • 2
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 30, 799-805.
    • (2004) Science , vol.30 , pp. 799-805
    • Friedman, N.1
  • 3
    • 33745440791 scopus 로고    scopus 로고
    • Adaptively inferring human transcriptional subnetworks
    • Das, D., Nahle, Z. and Zhang, M.Q. (2006) Adaptively inferring human transcriptional subnetworks. Molecular Systems Biology, 2, 29.
    • (2006) Molecular Systems Biology , vol.2 , pp. 29
    • Das, D.1    Nahle, Z.2    Zhang, M.Q.3
  • 6
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their conditionspecific regulators from gene expression data
    • Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifying regulatory modules and their conditionspecific regulators from gene expression data. Nature Genetics, 34 (2), 166-176.
    • (2003) Nature Genetics , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 7
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer, J. and Strimmer, K. (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 10
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs with applications to inference of genetic networks
    • Li, H. and Gui, Li (2006) Gradient directed regularization for sparse Gaussian concentration graphs with applications to inference of genetic networks. Biostatistics, 7, 302-317.
    • (2006) Biostatistics , vol.7 , pp. 302-317
    • Li, H.1    Gui, L.2
  • 12
    • 33747813561 scopus 로고    scopus 로고
    • The inferelator: an algorithm for learning parsimonious regulatory networks from systemsbiology data sets de novo
    • Bonneau, R., Reiss, D., Shannon, P., Facciotti, M., Hood, L., Baliga, N. and Thorsson, V. (2006) The inferelator: an algorithm for learning parsimonious regulatory networks from systemsbiology data sets de novo. Genome Biology, 7, R36.
    • (2006) Genome Biology , vol.7
    • Bonneau, R.1    Reiss, D.2    Shannon, P.3    Facciotti, M.4    Hood, L.5    Baliga, N.6    Thorsson, V.7
  • 14
    • 0003891734 scopus 로고
    • Mixture Models: Inference and Applications to Clustering
    • Marcel Dekker
    • McLachlan, G.J. and Basford, K.E. (1988) Mixture Models: Inference and Applications to Clustering, Marcel Dekker.
    • (1988)
    • McLachlan, G.J.1    Basford, K.E.2
  • 15
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker, H.J., Li, H. and Siggia, E.D. (2001) Regulatory element detection using correlation with expression. Nature Genetics, 27, 167-171.
    • (2001) Nature Genetics , vol.27 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 16
    • 0036740483 scopus 로고    scopus 로고
    • Identification of regulatory elements using a feature selection method
    • Keles, S. Van Der Laan, M. and Eisen, M.B. (2002) Identification of regulatory elements using a feature selection method. Bioinformatics, 18, 1167-1175.
    • (2002) Bioinformatics , vol.18 , pp. 1167-1175
    • Keles, S.1    Van Der Laan, M.2    Eisen, M.B.3
  • 17
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data
    • Gao, F. Foat, B.C. and Bussemaker, H.J. (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics, 5, 31.
    • (2004) BMC Bioinformatics , vol.5 , pp. 31
    • Gao, F.1    Foat, B.C.2    Bussemaker, H.J.3
  • 19
    • 0002432565 scopus 로고    scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. (2001) Multivariate adaptive regression splines. Annals of Statistics, 19, 1-141.
    • (2001) Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.1
  • 20
    • 0003759849 scopus 로고    scopus 로고
    • Introduction to Graphical Modelling
    • 2nd edn, Springer Verlag, New York
    • Edwards, D. (2000) Introduction to Graphical Modelling, 2nd edn, Springer Verlag, New York.
    • (2000)
    • Edwards, D.1
  • 21
    • 0001038826 scopus 로고
    • Covariance selection
    • Demspter, A.P. (1972) Covariance selection. Biometrics, 28, 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Demspter, A.P.1
  • 23
    • 0035799707 scopus 로고    scopus 로고
    • Lethality and centrality in protein networks
    • Jeong, H., Mason, S.P., Barabasi, A.L. and Oltvai, Z.N. (2001) Lethality and centrality in protein networks. Nature, 411, 41-42.
    • (2001) Nature , vol.411 , pp. 41-42
    • Jeong, H.1    Mason, S.P.2    Barabasi, A.L.3    Oltvai, Z.N.4
  • 24
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner, T.S., di Bernardo, D., Lorenz, D. and Collins, J. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301, 102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.4
  • 25
    • 33747163541 scopus 로고    scopus 로고
    • Consistent neighbourhood selection for high-dimensional graphs with the Lasso
    • Meinshausen, N. and Buhlmann, P. (2006) Consistent neighbourhood selection for high-dimensional graphs with the Lasso. Annals of Statistics, 34, 1436-1462.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 26
    • 14744273364 scopus 로고    scopus 로고
    • Gradient Directed Regularization Technical report
    • Stanford University
    • Friedman, J.H. and Popescu, B.E. (2004) Gradient Directed Regularization Technical report Stanford University.
    • (2004)
    • Friedman, J.H.1    Popescu, B.E.2
  • 27
    • 15944409959 scopus 로고    scopus 로고
    • Threshold gradient descent method for censored data regression with applications in pharmacogenomics
    • Gui, J. and Li, J. (2005) Threshold gradient descent method for censored data regression with applications in pharmacogenomics. Pacific Symposium on Biocomputing, 10, 272-283.
    • (2005) Pacific Symposium on Biocomputing , vol.10 , pp. 272-283
    • Gui, J.1    Li, J.2
  • 28
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. Nature Reviews Genetics, 5, 101-113.
    • (2004) Nature Reviews Genetics , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 29
    • 34548536008 scopus 로고    scopus 로고
    • On the "Degrees of Freedom" of the Lasso
    • Annals of Statistics, in press
    • Zou, H. Hastie, T. and Tibshirani, R. (2007) On the "Degrees of Freedom" of the Lasso. Annals of Statistics, in press.
    • (2007)
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 32
    • 1342288029 scopus 로고    scopus 로고
    • Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data
    • Luan, Y. and Li, H. (2004) Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics, 20, 332-339.
    • (2004) Bioinformatics , vol.20 , pp. 332-339
    • Luan, Y.1    Li, H.2
  • 33
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma, P., Castillo-Davis, C., Zhong, W. and Liu, J.S. (2006) A data-driven clustering method for time course gene expression data. Nucleic Acids Research, 34 (4), 1261-1269.
    • (2006) Nucleic Acids Research , vol.34 , Issue.4 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.2    Zhong, W.3    Liu, J.S.4
  • 34
    • 33745242945 scopus 로고    scopus 로고
    • Functional hierarchical models for identifying genes with different time-course expression profiles
    • Hong, F. and Li, H. (2006) Functional hierarchical models for identifying genes with different time-course expression profiles. Biometrics, 62, 534-544.
    • (2006) Biometrics , vol.62 , pp. 534-544
    • Hong, F.1    Li, H.2
  • 35
    • 33846036999 scopus 로고    scopus 로고
    • Hidden Markov models for microarray time course data in multiple biological conditions
    • Yuan, M. and Kendziorski, C. (2006) Hidden Markov models for microarray time course data in multiple biological conditions. Journal of American Statistical Association, 101 (476), 1323-1340.
    • (2006) Journal of American Statistical Association , vol.101 , Issue.476 , pp. 1323-1340
    • Yuan, M.1    Kendziorski, C.2
  • 36
    • 33750414249 scopus 로고    scopus 로고
    • A multivariate empirical Bayes statistic for replicated microarray time course data
    • Tai, Y.C. and Speed, T.P. (2006) A multivariate empirical Bayes statistic for replicated microarray time course data. Annals of Statistics, 34, 2387-2412.
    • (2006) Annals of Statistics , vol.34 , pp. 2387-2412
    • Tai, Y.C.1    Speed, T.P.2
  • 38
    • 34547840186 scopus 로고    scopus 로고
    • Group SCAD regression analysis for microarray time course gene expression data
    • Wang, L. Chen, G. and Li, H. (2007) Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics, 23, 1486-1494.
    • (2007) Bioinformatics , vol.23 , pp. 1486-1494
    • Wang, L.1    Chen, G.2    Li, H.3
  • 39
    • 34147179823 scopus 로고    scopus 로고
    • Clustering of genes into regulons using integrated modeling (COGRIM)
    • Chen, G., Jensen, S. and Stockert, C. (2007) Clustering of genes into regulons using integrated modeling (COGRIM). Genome Biology, 8 (1), R4.
    • (2007) Genome Biology , vol.8 , Issue.1
    • Chen, G.1    Jensen, S.2    Stockert, C.3
  • 40
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. Journal of Royal Statistical Society Series B, 68, 49-67.
    • (2006) Journal of Royal Statistical Society Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 41
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of American Statistical Association, 96, 1348-1360.
    • (2001) Journal of American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 44
    • 0033982936 scopus 로고    scopus 로고
    • KEGG:Kyoto encyclopedia of genes and genomes
    • Kanehisa, M. and Goto, S. (2002) KEGG:Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30.
    • (2002) Nucleic Acids Research , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 45
    • 34147120136 scopus 로고    scopus 로고
    • Nonparametric pathway-based regression models for analysis of genomic data
    • Wei, Z. and Li, H. (2007) Nonparametric pathway-based regression models for analysis of genomic data. Biostatistics, 8, 265-284.
    • (2007) Biostatistics , vol.8 , pp. 265-284
    • Wei, Z.1    Li, H.2
  • 46
    • 34547844074 scopus 로고    scopus 로고
    • A Markov random field model for network-based analysis of genomic data
    • Wei, Z. and Li, H. (2007) A Markov random field model for network-based analysis of genomic data. Bioinformatics, 23, 1537-1544.
    • (2007) Bioinformatics , vol.23 , pp. 1537-1544
    • Wei, Z.1    Li, H.2
  • 47
    • 0003663926 scopus 로고
    • Generalized Linear Models
    • 2nd edn, Chapman & Hall
    • McCullagh, P. and Nelder, J. (1989) Generalized Linear Models, 2nd edn, Chapman & Hall.
    • (1989)
    • McCullagh, P.1    Nelder, J.2
  • 48
    • 0003365565 scopus 로고    scopus 로고
    • Spectral Graph Theory
    • American Mathematical Society, Providence, RI
    • Chung, F. (1997) Spectral Graph Theory. CBMS Regional Conferences Series, Vol. 92, American Mathematical Society, Providence, RI.
    • (1997) CBMS Regional Conferences Series , vol.92
    • Chung, F.1
  • 49
  • 50
    • 23644434284 scopus 로고    scopus 로고
    • Genetic interactions between polymorphisms that affect gene expression in yeast
    • Brem, R.B., Storey, J.D., Whittle, J. and Kruglyak, L. (2005) Genetic interactions between polymorphisms that affect gene expression in yeast. Nature, 436, 701-703.
    • (2005) Nature , vol.436 , pp. 701-703
    • Brem, R.B.1    Storey, J.D.2    Whittle, J.3    Kruglyak, L.4
  • 53
    • 33847357312 scopus 로고    scopus 로고
    • A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription
    • Steifeld, I. Shamir, R. and Kupiec, M. (2007) A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription. Nature Genetics, 9 (3), 303-309.
    • (2007) Nature Genetics , vol.9 , Issue.3 , pp. 303-309
    • Steifeld, I.1    Shamir, R.2    Kupiec, M.3
  • 54
    • 22744432660 scopus 로고    scopus 로고
    • Genome-scale identification of nucleosome positions in S. cerevisiae
    • Yuan, G.C., Liu, Y.J., Dion, M.F., Slack, M.D., Wu, L.F., Altschuler, S.J. and Rando, O.J. (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science, 309 (5734), 626-630.
    • (2005) Science , vol.309 , Issue.5734 , pp. 626-630
    • Yuan, G.C.1    Liu, Y.J.2    Dion, M.F.3    Slack, M.D.4    Wu, L.F.5    Altschuler, S.J.6    Rando, O.J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.