메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 61-93

Least angle and ℓ 1 penalized regression: A review

Author keywords

1; Lasso; Penalty; Regression; Regularization; Variable selection

Indexed keywords


EID: 58349104057     PISSN: None     EISSN: 19357516     Source Type: Journal    
DOI: 10.1214/08-SS035     Document Type: Article
Times cited : (228)

References (117)
  • 1
    • 0010924478 scopus 로고
    • A computer experiment to evaluate regression strategies
    • American Statistical Association
    • Adams, J. L. (1990) A computer experiment to evaluate regression strategies. In Proceedings of the Statistical Computing Section, 55-62. American Statistical Association.
    • (1990) Proceedings of the Statistical Computing Section , pp. 55-62
    • Adams, J.L.1
  • 5
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • (to appear)
    • Banerjee, O., El Ghaoui, L. and d'Aspremont, A. (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research. (to appear).
    • (2008) Journal of Machine Learning Research
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 6
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman, L. (1995) Better subset regression using the nonnegative garrote. Technometrics, 37, 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 7
    • 51049123885 scopus 로고    scopus 로고
    • Discussion of "One-step sparse estimates in nonconcave penalized likelihood models" by H. Zou and R. Li
    • (to appear)
    • Bühlmann, P. and Meier, L. (2008) Discussion of "One-step sparse estimates in nonconcave penalized likelihood models" by H. Zou and R. Li. Annals of Statistics. (to appear).
    • (2008) Annals of Statistics
    • Bühlmann, P.1    Meier, L.2
  • 10
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larer than n
    • Candes, E. and Tao, T. (2007) The Dantzig selector: statistical estimation when p is much larer than n. Annals of Statistics, 35, 2313-2351.
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 13
    • 84857375710 scopus 로고    scopus 로고
    • Variable selection with strong heredity/ marginality constraints
    • Department of Statistics, University of Michigan
    • Choi, N. H. and Zhu, J. (2006) Variable selection with strong heredity/ marginality constraints. Tech. rep., Department of Statistics, University of Michigan.
    • (2006) Tech. Rep.
    • Choi, N.H.1    Zhu, J.2
  • 18
    • 50849131900 scopus 로고    scopus 로고
    • Discussion of "the Dantzig selector" by E. Candes and T. Tan
    • Efron, B., Hastie, T. and Tibshirani, R. (2007) Discussion of "the Dantzig selector" by E. Candes and T. Tan. Annals of Statistics, 35, 2358-2364.
    • (2007) Annals of Statistics , vol.35 , pp. 2358-2364
    • Efron, B.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 0001878035 scopus 로고
    • Multiple Regression Analysis
    • (eds. A. Ralston and H. S.Wilf), Wiley
    • Efroymson, M. A. (1960) Multiple regression analysis. In Mathematical Methods for Digital Computers (eds. A. Ralston and H. S.Wilf), vol. 1, 191-203. Wiley.
    • (1960) Mathematical Methods for Digital Computers , vol.1 , pp. 191-203
    • Efroymson, M.A.1
  • 20
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 21
    • 84857424327 scopus 로고    scopus 로고
    • Least-angle regression and Lasso for large datasets
    • Insightful Corporation
    • Fraley, C. and Hesterberg, T. (2007) Least-angle regression and Lasso for large datasets. Tech. rep., Insightful Corporation.
    • (2007) Tech. Rep.
    • Fraley, C.1    Hesterberg, T.2
  • 22
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools, with discussion
    • Frank, I. E. and Friedman, J. H. (1993) A statistical view of some chemometrics regression tools, with discussion. Technometrics, 35, 109-148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 23
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund, Y. and Schapire, R. E. (1997) A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 25
    • 0002432565 scopus 로고
    • Mulivariate adaptive regression splines
    • Friedman, J. H. (1991) Mulivariate adaptive regression splines. Annals of Statistics, 19, 1-67.
    • (1991) Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 27
    • 41549108614 scopus 로고    scopus 로고
    • Sparse Inverse Covariance Estimation With the Graphical Lasso
    • published Online December
    • Friedman, J. H., Hastie, T. and Tibshirani, R. (2007b) Sparse inverse covariance estimation with the graphical lasso. Biostatistics. (published online December 12, 2007).
    • (2007) Biostatistics , vol.12 , pp. 2007
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 30
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • Furnival, G. M. and Wilson, Jr., R. W. (1974) Regression by leaps and bounds. Technometrics, 16, 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson, R.W.2
  • 31
  • 32
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • Genkin, A., Lewis, D. D. and Madigan, D. (2007) Large-scale Bayesian logistic regression for text categorization. Technometrics, 49, 291-304.
    • (2007) Technometrics , vol.49 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 33
    • 62549161415 scopus 로고    scopus 로고
    • Adaptive elastic net: An improvement of elastic net to achieve oracle properties
    • Indiana University-Purdue University, Indianapolis
    • Ghosh, S. (2007) Adaptive elastic net: An improvement of elastic net to achieve oracle properties. Tech. rep., Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis.
    • (2007) Tech. Rep.
    • Ghosh, S.1
  • 34
    • 31344454903 scopus 로고    scopus 로고
    • Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization
    • Greenshtein, E. and Ritov, Y. (2004) Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli, 10, 971-988.
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 35
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui, J. and Li, H. (2005) Penalized Cox regression analysis in the highdimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics, 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 37
    • 33645855858 scopus 로고    scopus 로고
    • Structural modeling with sparse kernels
    • Gunn, S. R. and Kandola, J. S. (2002) Structural modeling with sparse kernels. Machine Learning, 10, 581-591.
    • (2002) Machine Learning , vol.10 , pp. 581-591
    • Gunn, S.R.1    Kandola, J.S.2
  • 38
    • 0001122511 scopus 로고
    • Analysis of designed experiments with complex aliasing
    • Hamada, M. and Wu, C. (1992) Analysis of designed experiments with complex aliasing. Journal of Quality Technology, 24, 130-137.
    • (1992) Journal of Quality Technology , vol.24 , pp. 130-137
    • Hamada, M.1    Wu, C.2
  • 44
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse highdimensional regression models
    • (to appear)
    • Huang, J., Ma, S. and Zhang, C.-H. (2008) Adaptive Lasso for sparse highdimensional regression models. Statisica Sinica. (to appear).
    • (2008) Statisica Sinica
    • Huang, J.1    Ma, S.2    Zhang, C.-H.3
  • 45
    • 0001159321 scopus 로고
    • The impact of model selection on inference in linear regression
    • Hurvich, C.M. and Tsai, C.-L. (1990) The impact of model selection on inference in linear regression. The American Statistician, 44, 214-217.
    • (1990) The American Statistician , vol.44 , pp. 214-217
    • Hurvich, C.M.1    Tsai, C.-L.2
  • 47
    • 70449405755 scopus 로고    scopus 로고
    • Discussion of "Least Angle Regression" by Efron et al
    • Ishwaran, H. (2004) Discussion of "Least Angle Regression" by Efron et al. Annals of Statistics, 32, 452-458.
    • (2004) Annals of Statistics , vol.32 , pp. 452-458
    • Ishwaran, H.1
  • 49
    • 38349026886 scopus 로고    scopus 로고
    • A fast tracking algorithm for generalized lars/lasso
    • Keerthi, S. and Shevade, S. (2007) A fast tracking algorithm for generalized lars/lasso. IEEE Transactions on Neural Networks, 18, 1826-1830.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 1826-1830
    • Keerthi, S.1    Shevade, S.2
  • 52
    • 84857420075 scopus 로고    scopus 로고
    • R package version 0.9
    • R package version 0.9, http://idea.snu.ac.kr/Research/glassojskim/glasso.htm.
  • 54
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Kim, Y., Kim, J. and Kim, Y. (2006) Blockwise sparse regression. Statistica Sinica, 16, 375-390.
    • (2006) Statistica Sinica , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 55
    • 84857425657 scopus 로고    scopus 로고
    • Discussion of "Least Angle Regression" by Efron et al
    • Knight, K. (2004) Discussion of "Least Angle Regression" by Efron et al. Annals of Statistics, 32, 458-460.
    • (2004) Annals of Statistics , vol.32 , pp. 458-460
    • Knight, K.1
  • 56
    • 33846193774 scopus 로고    scopus 로고
    • A note on the LASSO and related procedures in model selection
    • Leng, C., Lin, Y. and Wahba, G. (2006) A note on the LASSO and related procedures in model selection. Statistica Sinica, 16, 1273-1284.
    • (2006) Statistica Sinica , vol.16 , pp. 1273-1284
    • Leng, C.1    Lin, Y.2    Wahba, G.3
  • 57
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • Lin, Y. and Zhang, H. (2006) Component selection and smoothing in multivariate nonparametric regression. Annals of Statistics, 34, 2272-2297.
    • (2006) Annals of Statistics , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.2
  • 60
    • 84857375486 scopus 로고    scopus 로고
    • Discussion of "least angle regression" by Efron et al
    • Loubes, J. and Massart, P. (2004) Discussion of "least angle regression" by Efron et al. Annals of Statistics, 32, 460-465.
    • (2004) Annals of Statistics , vol.32 , pp. 460-465
    • Loubes, J.1    Massart, P.2
  • 61
    • 34548170943 scopus 로고    scopus 로고
    • Variable selection for proportional odds model
    • Lu, W. and Zhang, H. (2007) Variable selection for proportional odds model. Statistics in Medicine, 26, 3771-3781.
    • (2007) Statistics in Medicine , vol.26 , pp. 3771-3781
    • Lu, W.1    Zhang, H.2
  • 62
    • 10844293036 scopus 로고    scopus 로고
    • Discussion of "least angle regression" by Efron et al
    • Madigan, D. and Ridgeway, G. (2004) Discussion of "least angle regression" by Efron et al. Annals of Statistics, 32, 465-469.
    • (2004) Annals of Statistics , vol.32 , pp. 465-469
    • Madigan, D.1    Ridgeway, G.2
  • 64
    • 84897542602 scopus 로고    scopus 로고
    • 1-penalized estimators for highdimensional time-course data
    • Meier, L. and Bühlmann, P. (2007) Smoothing ℓ1-penalized estimators for highdimensional time-course data. Electronic Journal of Statistics, 1, 597-615.
    • (2007) Electronic Journal of Statistics , vol.1 , pp. 597-615
    • Meier, L.1    Bühlmann, P.2
  • 67
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Bühlmann, P. (2006) High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34, 1436-1462.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 68
    • 50849120401 scopus 로고    scopus 로고
    • A tale of three cousins: Lasso, L2Boosting, and Dantzig
    • Meinshausen, N., Rocha, G. and Yu, B. (2007) A tale of three cousins: Lasso, L2Boosting, and Dantzig. Annals of Statistics, 35, 2373-2384.
    • (2007) Annals of Statistics , vol.35 , pp. 2373-2384
    • Meinshausen, N.1    Rocha, G.2    Yu, B.3
  • 69
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • (to appear)
    • Meinshausen, N. and Yu, B. (2008) Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics. (to appear).
    • (2008) Annals of Statistics
    • Meinshausen, N.1    Yu, B.2
  • 76
    • 40749099614 scopus 로고    scopus 로고
    • Regularization path algorithms for detecting gene interactions
    • Department of Statistics, Stanford University
    • Park, M. Y. and Hastie, T. (2006b) Regularization path algorithms for detecting gene interactions. Tech. rep., Department of Statistics, Stanford University.
    • (2006) Tech. Rep.
    • Park, M.Y.1    Hastie, T.2
  • 78
    • 33947227575 scopus 로고
    • Prediction error and its estimation for subset-selected models
    • Roecker, E. B. (1991) Prediction error and its estimation for subset-selected models. Technometrics, 33, 459-468.
    • (1991) Technometrics , vol.33 , pp. 459-468
    • Roecker, E.B.1
  • 79
    • 84898950954 scopus 로고    scopus 로고
    • Following curved regularized optimization solution paths
    • (eds. L. K. Saul, Y. Weiss and L. Bottou, Cambridge, MA: MIT Press
    • Rosset, S. (2005) Following curved regularized optimization solution paths. In Advances in Neural Information Processing Systems 17 (eds. L. K. Saul, Y. Weiss and L. Bottou), 1153-1160. Cambridge, MA: MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1153-1160
    • Rosset, S.1
  • 80
    • 54949159553 scopus 로고    scopus 로고
    • Discussion of "Least Angle Regression" by Efron et al
    • Rosset, S. and Zhu, J. (2004) Discussion of "Least Angle Regression" by Efron et al. Annals of Statistics, 32, 469-475.
    • (2004) Annals of Statistics , vol.32 , pp. 469-475
    • Rosset, S.1    Zhu, J.2
  • 81
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • Rosset, S. and Zhu, J. (2007) Piecewise linear regularized solution paths. Annals of Statistics, 35, 1012-1030.
    • (2007) Annals of Statistics , vol.35 , pp. 1012-1030
    • Rosset, S.1    Zhu, J.2
  • 85
    • 84864030919 scopus 로고    scopus 로고
    • Selecting landmark points for sparse manifold learning
    • (eds. Y. Weiss, B. Schölkopf and J. Platt, Cambridge, MA: MIT Press
    • Silva, J., Marques, J. and Lemos, J. (2005) Selecting landmark points for sparse manifold learning. In Advances in Neural Information Processing Systems 18 (eds. Y. Weiss, B. Schölkopf and J. Platt), 1241-1248. Cambridge, MA: MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.18 , pp. 1241-1248
    • Silva, J.1    Marques, J.2    Lemos, J.3
  • 86
    • 34547524121 scopus 로고    scopus 로고
    • Common subset selection of inputs in multiresponse regression
    • Vancouver, Canada
    • Similä, T. and Tikka, J. (2006) Common subset selection of inputs in multiresponse regression. In IEEE International Joint Conference on Neural Networks, 1908-1915. Vancouver, Canada.
    • (2006) IEEE International Joint Conference on Neural Networks , pp. 1908-1915
    • Similä, T.1    Tikka, J.2
  • 87
    • 84857409169 scopus 로고    scopus 로고
    • Discussion of "Least Angle Regression" by Efron et al
    • Stine, R. A. (2004) Discussion of "Least Angle Regression" by Efron et al. Annals of Statistics, 32, 475-481.
    • (2004) Annals of Statistics , vol.32 , pp. 475-481
    • Stine, R.A.1
  • 90
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997) The lasso method for variable selection in the Cox model. Statistics in Medicine, 16, 385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 93
    • 78650304276 scopus 로고    scopus 로고
    • Discussion of "Least Angle Regression" by Efron et al
    • Turlach, B. A. (2004) Discussion of "Least Angle Regression" by Efron et al. Annals of Statistics, 32, 481-490.
    • (2004) Annals of Statistics , vol.32 , pp. 481-490
    • Turlach, B.A.1
  • 95
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • van de Geer, S. (2008) High-dimensional generalized linear models and the lasso. Annals of Statistics, 36, 614-645.
    • (2008) Annals of Statistics , vol.36 , pp. 614-645
    • van de Geer, S.1
  • 98
  • 99
    • 33846190566 scopus 로고    scopus 로고
    • Regression coefficient and autoregressive order shrinkage and selection via the lasso
    • Wang, H., Li, G. and Tsai, C. (2007b) Regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 69, 63-78.
    • (2007) Journal of the Royal Statistical Society, Series B , vol.69 , pp. 63-78
    • Wang, H.1    Li, G.2    Tsai, C.3
  • 100
    • 64249118378 scopus 로고    scopus 로고
    • 1 regularized solution path in Gaussian graphical models
    • (to appear)
    • Yuan, M. (2008) Efficient computation of the ℓ1 regularized solution path in Gaussian graphical models. Journal of Computational and Graphical Statistics. (to appear).
    • (2008) Journal of Computational and Graphical Statistics
    • Yuan, M.1
  • 101
    • 36849023833 scopus 로고    scopus 로고
    • An efficient variable selection approach for analyzing designed experiments
    • Yuan, M., Joseph, R. and Lin, Y. (2007) An efficient variable selection approach for analyzing designed experiments. Technometrics, 49, 430-439.
    • (2007) Technometrics , vol.49 , pp. 430-439
    • Yuan, M.1    Joseph, R.2    Lin, Y.3
  • 102
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68, 49-68.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-68
    • Yuan, M.1    Lin, Y.2
  • 103
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan, M. and Lin, Y. (2007a) Model selection and estimation in the Gaussian graphical model. Biometrika, 94, 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 105
    • 84857380479 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • To appear
    • Zhang, C.-H. and Huang, J. (2007) The sparsity and bias of the lasso selection in high-dimensional linear regression. Annals of Statistics. To appear.
    • (2007) Annals of Statistics
    • Zhang, C.-H.1    Huang, J.2
  • 106
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazards model
    • Zhang, H. and Lu, W. (2007) Adaptive Lasso for Cox's proportional hazards model. Biometrika, 94, 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.1    Lu, W.2
  • 108
    • 34447335946 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • (to appear)
    • Zhao, P., Rocha, G. and Yu, B. (2008) Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics. (to appear).
    • (2008) Annals of Statistics
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 109
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. and Yu, B. (2006) On model selection consistency of Lasso. Journal of Machine Learning Research, 7, 2541-2567.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 116
    • 34548536008 scopus 로고    scopus 로고
    • On the "Degrees of Freedom" of the Lasso
    • Zou, H., Hastie, T. and Tibshirani, R. (2007) On the "Degrees of Freedom" of the Lasso. Annals of Statistics, 35, 2173-2192.
    • (2007) Annals of Statistics , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 117
    • 51049087316 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • (to appear)
    • Zou, H. and Li, R. (2008) One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics. (to appear).
    • (2008) Annals of Statistics
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.