메뉴 건너뛰기




Volumn 18, Issue 4, 2008, Pages 1603-1618

Adaptive Lasso for sparse high-dimensional regression models

Author keywords

Asymptotic normality; High dimensional data; Oracle property; Penalized regression; Variable selection; Zero consistency

Indexed keywords


EID: 51049096710     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (472)

References (23)
  • 2
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on bias and variance
    • Bolstad, B. M., Irizarry R. A., Astrand, M. and Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19, 185-193
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 3
    • 60149111231 scopus 로고    scopus 로고
    • Candes, E. and Tao, T. (2005). The Dantzig selector: statistical estimation when p is much larger than n. Preprint, Department of Computational and Applied Mathematics, Caltech. Accepted for publication by the Ann. Statist.
    • Candes, E. and Tao, T. (2005). The Dantzig selector: statistical estimation when p is much larger than n. Preprint, Department of Computational and Applied Mathematics, Caltech. Accepted for publication by the Ann. Statist.
  • 6
    • 0009935552 scopus 로고    scopus 로고
    • Comments on "Wavelets in statistics: A review," by A. Antoniadis
    • Fan, J. (1997). Comments on "Wavelets in statistics: A review," by A. Antoniadis. J. ITalian Statist. Sco. 6, 131-138.
    • (1997) J. ITalian Statist. Sco , vol.6 , pp. 131-138
    • Fan, J.1
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348-1360.
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32, 928-961.
    • (2004) Ann. Statist , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 10
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression tools (with discussion). Technometrics 35, 109-148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 11
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • Greenshtein, E. and Ritov, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10, 971-988.
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 12
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 13
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • Huang, J., Horowitz, J. L. and Ma, S. G. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist. 36, 587-613.
    • (2008) Ann. Statist , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.G.3
  • 15
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • Knight, K. and Fu, W. J. (2000). Asymptotics for Lasso-type estimators. Ann. Statist. 28, 1356-1378.
    • (2000) Ann. Statist , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.J.2
  • 16
    • 33846193774 scopus 로고    scopus 로고
    • A note on the Lasso and related procedures in model selection
    • Leng, C., Lin, Y. and Wahba, G. (2004). A note on the Lasso and related procedures in model selection. Statistica Sinica 16, 1273-1284.
    • (2004) Statistica Sinica , vol.16 , pp. 1273-1284
    • Leng, C.1    Lin, Y.2    Wahba, G.3
  • 17
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • Meinshausen, N. and Buhlmann, P. (2006). High dimensional graphs and variable selection with the Lasso. Ann. Statist. 34, 1436-1462.
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 19
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 50949096321 scopus 로고    scopus 로고
    • Model-selection consistency of the LASSO in highdimensional linear regression
    • Zhang, C.-H. and Huang, J. (2008). Model-selection consistency of the LASSO in highdimensional linear regression. Ann. Statist. 36, 1567-1594.
    • (2008) Ann. Statist , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 21
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • Zhao, P. and Yu, B. (2007). On model selection consistency of Lasso. J. Machine Learning Res. 7, 2541-2567.
    • (2007) J. Machine Learning Res , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 22
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101, 1418-1429.
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 23
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67, 301-320.
    • (2005) J. Roy. Statist. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.