메뉴 건너뛰기




Volumn 16, Issue 2, 2006, Pages 375-390

Blockwise sparse regression

Author keywords

Gradient projection method; LASSO; Ridge; Variable selection

Indexed keywords


EID: 33746126624     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (128)

References (17)
  • 2
    • 0003713964 scopus 로고    scopus 로고
    • Athena Scientific, Belmount, Massachusettes. Second edition
    • Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, Belmount, Massachusettes. Second edition.
    • (1999) Nonlinear Programming
    • Bertsekas, D.P.1
  • 4
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. J. Amer. Statist. Assoc. 31, 377-403.
    • (1979) J. Amer. Statist. Assoc. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 5
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via noncocave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via noncocave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348-1360.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 6
    • 0036643063 scopus 로고    scopus 로고
    • Structural modelling with sparse kernels
    • Gunn, S. R. and Kandola, J. S. (2002). Structural modelling with sparse kernels. Machine Learning 48, 137-163.
    • (2002) Machine Learning , vol.48 , pp. 137-163
    • Gunn, S.R.1    Kandola, J.S.2
  • 8
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • Knight, K. and Fu, W. J. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-1378.
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.J.2
  • 9
    • 33746155176 scopus 로고    scopus 로고
    • Learning sparse classifier: Multi-class formulation, fast algorithms and generalization bounds
    • ISDS, Duke university
    • Krishnapuram, B., Carlin, L., Figueiredo, M. A. T. and Hartemink, A. (2004). Learning sparse classifier: Multi-class formulation, fast algorithms and generalization bounds. Technical report, ISDS, Duke university.
    • (2004) Technical Report
    • Krishnapuram, B.1    Carlin, L.2    Figueiredo, M.A.T.3    Hartemink, A.4
  • 10
    • 33644519153 scopus 로고    scopus 로고
    • Component selection and smoothing in smoothing spline analysis of variance models
    • Department of Statistics, University of Wisconsin-Madison
    • Lin, Y. and Zhang, H. (2003). Component Selection and Smoothing in Smoothing Spline Analysis of Variance Models. Technical Report 1072, Department of Statistics, University of Wisconsin-Madison.
    • (2003) Technical Report , vol.1072
    • Lin, Y.1    Zhang, H.2
  • 12
    • 0001287271 scopus 로고    scopus 로고
    • Regression shirinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shirinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 13
    • 0031015557 scopus 로고    scopus 로고
    • The Lasso method for variable selection in the Cox model
    • Tibshirani, R. (1997). The Lasso method for variable selection in the Cox model. Statist, medicine 16, 385-395.
    • (1997) Statist, Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 15
    • 14344258434 scopus 로고    scopus 로고
    • Variable selection and model building via likelihood basis pursuit
    • Department of Statistics, University of Wisconsin, Madison, WI
    • Zhang, H., Wahba, G., Lin, Y., Voelker, M., Ferris, M., Klein, R. and Klein, B. (2003). Variable selection and model building via likelihood basis pursuit. Technical Report 1059r, Department of Statistics, University of Wisconsin, Madison, WI.
    • (2003) Technical Report , vol.1059 R
    • Zhang, H.1    Wahba, G.2    Lin, Y.3    Voelker, M.4    Ferris, M.5    Klein, R.6    Klein, B.7
  • 16
    • 33746107071 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Department of Statistics, University of Wisconsin, Madison, WI
    • Yuan, M. and Lin, Y. (2004). Model selection and estimation in regression with grouped variables. Technical Report 1095, Department of Statistics, University of Wisconsin, Madison, WI.
    • (2004) Technical Report , vol.1095
    • Yuan, M.1    Lin, Y.2
  • 17
    • 33645563794 scopus 로고    scopus 로고
    • Regularization and variable selection via elastic net
    • Department of Statistics, Stanford University
    • Zou, H. and Hastie, T. J. (2004). Regularization and variable selection via elastic net. Technical report, Department of Statistics, Stanford University.
    • (2004) Technical Report
    • Zou, H.1    Hastie, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.