메뉴 건너뛰기




Volumn 51, Issue 6, 2007, Pages 2851-2870

Parsimonious additive models

Author keywords

Function estimation; Interpretable models; Lasso; Model selection; Nonparametric regression; Penalization; Smoothing; Splines; Supervised learning; Variable selection

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; DATA REDUCTION; LEARNING SYSTEMS; LINEAR SYSTEMS; NONLINEAR SYSTEMS; PARAMETER ESTIMATION; REGRESSION ANALYSIS;

EID: 33846588964     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.10.007     Document Type: Article
Times cited : (27)

References (40)
  • 2
    • 0035989860 scopus 로고    scopus 로고
    • Generalized additive models with interval-censored data and time-varying covariates: application to human immunodeficiency virus infection in hemophiliacs
    • Bacchetti P., and Quale C. Generalized additive models with interval-censored data and time-varying covariates: application to human immunodeficiency virus infection in hemophiliacs. Biometrics 58 2 (2002) 443-447
    • (2002) Biometrics , vol.58 , Issue.2 , pp. 443-447
    • Bacchetti, P.1    Quale, C.2
  • 3
    • 33846606269 scopus 로고    scopus 로고
    • Bakin, S., 1999. Adaptive regression and model selection in data mining problems. Ph.D. Thesis, School of Mathematical Sciences, The Australian National University, Canberra.
  • 4
    • 0032374394 scopus 로고    scopus 로고
    • Beyond linearity by default: generalized additive models
    • Beck N., and Jackman S. Beyond linearity by default: generalized additive models. Amer. J. Political Sci. 42 (1998) 596-627
    • (1998) Amer. J. Political Sci. , vol.42 , pp. 596-627
    • Beck, N.1    Jackman, S.2
  • 5
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. Ann. Statist. 24 6 (1996) 2350-2383
    • (1996) Ann. Statist. , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 6
    • 20044381177 scopus 로고    scopus 로고
    • Brendel, K., Legrand, M., Taburet, A.M., Baron, G., Goujard, C., Mentre, F., Cophar 1-ANRS 102 Trial Group, 2005. Population pharmacokinetic analysis of indinavir in HIV-infected patient treated with a stable antiretroviral therapy. Fund. Clin. Pharmacol. 19(3), 373-383.
  • 7
    • 84993778661 scopus 로고    scopus 로고
    • Comment on "Variable selection and function estimation in additive nonparametric regression using a data-based prior" by Shively, T.S. and Khon, R. and Wood, S
    • Brumback B.A., Ruppert D., and Wand M.P. Comment on "Variable selection and function estimation in additive nonparametric regression using a data-based prior" by Shively, T.S. and Khon, R. and Wood, S. J. Amer. Statist. Assoc. 94 447 (1999) 794-797
    • (1999) J. Amer. Statist. Assoc. , vol.94 , Issue.447 , pp. 794-797
    • Brumback, B.A.1    Ruppert, D.2    Wand, M.P.3
  • 8
    • 1042263216 scopus 로고    scopus 로고
    • Degrees of freedom tests for smoothing splines
    • Cantoni E., and Hastie T.J. Degrees of freedom tests for smoothing splines. Biometrika 89 (2002) 251-263
    • (2002) Biometrika , vol.89 , pp. 251-263
    • Cantoni, E.1    Hastie, T.J.2
  • 11
    • 33846571814 scopus 로고    scopus 로고
    • Chen, S., Donoho, D., Saunders, M., 1995. Atomic decomposition by basis pursuit. Technical Report 479, Department of Statistics, Stanford University.
  • 12
    • 0000072755 scopus 로고
    • Fitting multivariate regression functions by interaction spline models
    • Chen Z. Fitting multivariate regression functions by interaction spline models. J. Roy. Statist. Soc. Ser. B 55 2 (1993) 473-491
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , Issue.2 , pp. 473-491
    • Chen, Z.1
  • 13
    • 0036682106 scopus 로고    scopus 로고
    • On the use of generalized additive models in time-series studies of air pollution and health
    • Dominici F., McDermott A., Zeger S.L., and Samet J.M. On the use of generalized additive models in time-series studies of air pollution and health. Amer. J. Epidemiol. 156 3 (2002) 193-203
    • (2002) Amer. J. Epidemiol. , vol.156 , Issue.3 , pp. 193-203
    • Dominici, F.1    McDermott, A.2    Zeger, S.L.3    Samet, J.M.4
  • 15
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: the bridge versus the lasso
    • Fu W.J. Penalized regression: the bridge versus the lasso. J. Comput. Graph. Statist. 7 3 (1998) 397-416
    • (1998) J. Comput. Graph. Statist. , vol.7 , Issue.3 , pp. 397-416
    • Fu, W.J.1
  • 16
    • 0037089240 scopus 로고    scopus 로고
    • A note on variable selection in nonparametric regression with dependent data
    • González-Manteiga W., Quintela-del Río A., and Vieu P. A note on variable selection in nonparametric regression with dependent data. Statist. Probab. Lett. 57 3 (2002) 259-268
    • (2002) Statist. Probab. Lett. , vol.57 , Issue.3 , pp. 259-268
    • González-Manteiga, W.1    Quintela-del Río, A.2    Vieu, P.3
  • 17
    • 0004123838 scopus 로고    scopus 로고
    • Least absolute shrinkage is equivalent to quadratic penalization
    • Niklasson L., Bodén M., and Ziemske T. (Eds), Springer, Berlin
    • Grandvalet Y. Least absolute shrinkage is equivalent to quadratic penalization. In: Niklasson L., Bodén M., and Ziemske T. (Eds). ICANN'98 Perspectives in Neural Computing vol. 1 (1998), Springer, Berlin 201-206
    • (1998) ICANN'98 Perspectives in Neural Computing , vol.1 , pp. 201-206
    • Grandvalet, Y.1
  • 18
    • 0041879258 scopus 로고    scopus 로고
    • Outcomes of the equivalence of adaptive ridge with least absolute shrinkage
    • Kearns M.S., Solla S.A., and Cohn D.A. (Eds), MIT Press, Cambridge, MA
    • Grandvalet Y., and Canu S. Outcomes of the equivalence of adaptive ridge with least absolute shrinkage. In: Kearns M.S., Solla S.A., and Cohn D.A. (Eds). Advances in Neural Information Processing Systems vol. 11 (1998), MIT Press, Cambridge, MA 445-451
    • (1998) Advances in Neural Information Processing Systems , vol.11 , pp. 445-451
    • Grandvalet, Y.1    Canu, S.2
  • 19
    • 0001003992 scopus 로고
    • Minimizing GCV/GML scores with multiple smoothing parameters via the newton method
    • Gu C., and Wahba G. Minimizing GCV/GML scores with multiple smoothing parameters via the newton method. SIAM J. Sci. Statist. Comput. 12 (1991) 383-398
    • (1991) SIAM J. Sci. Statist. Comput. , vol.12 , pp. 383-398
    • Gu, C.1    Wahba, G.2
  • 20
    • 33645855858 scopus 로고    scopus 로고
    • Structural modeling with sparse kernels
    • Gunn S.R., and Kandola J.S. Structural modeling with sparse kernels. Mach. Learn. 10 (2002) 581-591
    • (2002) Mach. Learn. , vol.10 , pp. 581-591
    • Gunn, S.R.1    Kandola, J.S.2
  • 21
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 Special Issue on Variable/Feature Selection (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , Issue.SPEC. ISSUE on Variable-Feature Selection , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 22
    • 0000856943 scopus 로고    scopus 로고
    • Search for significant variables in nonparametric additive regression
    • Härdle W., and Korostelev A. Search for significant variables in nonparametric additive regression. Biometrika 83 3 (1996) 541-549
    • (1996) Biometrika , vol.83 , Issue.3 , pp. 541-549
    • Härdle, W.1    Korostelev, A.2
  • 25
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved akaike information criteria
    • Hurvich C.M., Simonoff J.S., and Tsai C.L. Smoothing parameter selection in nonparametric regression using an improved akaike information criteria. J. Roy. Statist. Soc. Ser. B 60 2 (1998) 271-293
    • (1998) J. Roy. Statist. Soc. Ser. B , vol.60 , Issue.2 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.L.3
  • 26
    • 33846627232 scopus 로고    scopus 로고
    • Lin, Y., Zhang, H.H., 2002. Component selection and smoothing in smoothing spline analysis of variance models. Technical Report 1072r, University of Winconsin-Madison and North Carolina State University (Rev janvier 2003).
  • 27
    • 0032493547 scopus 로고    scopus 로고
    • Direct generalized additive modeling with penalized likelihood
    • Marx B.D., and Eilers P.H.C. Direct generalized additive modeling with penalized likelihood. Comput. Statist. Data Anal. 28 (1998) 193-209
    • (1998) Comput. Statist. Data Anal. , vol.28 , pp. 193-209
    • Marx, B.D.1    Eilers, P.H.C.2
  • 28
    • 33846606267 scopus 로고    scopus 로고
    • A fully automated bandwidth selection method for fitting additive models
    • Opsomer J.D., and Ruppert D. A fully automated bandwidth selection method for fitting additive models. J. Multivariate Anal. 73 (1998) 166-179
    • (1998) J. Multivariate Anal. , vol.73 , pp. 166-179
    • Opsomer, J.D.1    Ruppert, D.2
  • 30
    • 33847674606 scopus 로고    scopus 로고
    • Sparse kernel regressors
    • Dorfner G., Bischof H., and Hornik K. (Eds), Springer, Berlin
    • Roth V. Sparse kernel regressors. In: Dorfner G., Bischof H., and Hornik K. (Eds). Artificial Neural Networks-ICANN 2001, Lecture Notes in Computer Science vol. 2130 (2001), Springer, Berlin 339-346
    • (2001) Artificial Neural Networks-ICANN 2001, Lecture Notes in Computer Science , vol.2130 , pp. 339-346
    • Roth, V.1
  • 32
    • 0000132366 scopus 로고    scopus 로고
    • Semiparametric regression model selections
    • Shi P., and Tsai C.-L. Semiparametric regression model selections. J. Statist. Plann. Inference 77 1 (1999) 119-139
    • (1999) J. Statist. Plann. Inference , vol.77 , Issue.1 , pp. 119-139
    • Shi, P.1    Tsai, C.-L.2
  • 33
    • 0000307942 scopus 로고    scopus 로고
    • Variable selection and function estimation in additive nonparametric regression using a data-based prior
    • Shively T.S., Khon R., and Wood S. Variable selection and function estimation in additive nonparametric regression using a data-based prior. J. Amer. Statist. Assoc. 99 447 (1999) 777-806
    • (1999) J. Amer. Statist. Assoc. , vol.99 , Issue.447 , pp. 777-806
    • Shively, T.S.1    Khon, R.2    Wood, S.3
  • 34
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith M., and Kohn R. Nonparametric regression using Bayesian variable selection. J. Econom. 75 2 (1996) 317-343
    • (1996) J. Econom. , vol.75 , Issue.2 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 35
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B 36 1 (1974) 111-147
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.36 , Issue.1 , pp. 111-147
    • Stone, M.1
  • 36
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R.J. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 1 (1996) 267-288
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.J.1
  • 38
    • 1642479074 scopus 로고    scopus 로고
    • Comparing curves using additive models
    • Walker E., and Wright S.P. Comparing curves using additive models. J. Qual. Technol. 34 1 (2002) 118-129
    • (2002) J. Qual. Technol. , vol.34 , Issue.1 , pp. 118-129
    • Walker, E.1    Wright, S.P.2
  • 39
    • 0034364945 scopus 로고    scopus 로고
    • Modelling and smoothing parameter estimation with multiple quadratic penalties
    • Wood S.N. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. Roy. Statist. Soc. Ser. B 62 2 (2000) 413-428
    • (2000) J. Roy. Statist. Soc. Ser. B , vol.62 , Issue.2 , pp. 413-428
    • Wood, S.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.