메뉴 건너뛰기




Volumn 36, Issue 4, 2008, Pages 1534-1541

Discussion: One-step sparse estimates in nonconcave penalized likelihood models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 51049123885     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-AOS0316A     Document Type: Note
Times cited : (48)

References (17)
  • 1
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • BEER, M. A. and TAVAZOIE, S. (2004). Predicting gene expression from sequence. Cell 117 185-198.
    • (2004) Cell , vol.117 , pp. 185-198
    • BEER, M.A.1    TAVAZOIE, S.2
  • 2
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • MR 1425957
    • BREIMAN, L. (1996). Heuristics of instability and stabilization in model selection. Ann. Statist. 24 2350-2383. MR 1425957
    • (1996) Ann. Statist , vol.24 , pp. 2350-2383
    • BREIMAN, L.1
  • 3
    • 0037453009 scopus 로고    scopus 로고
    • Integrating regulatory motif discovery and genome-wide expression analysis
    • CONLON, E. M., LIU, X. S., LIEB, J. D. and LIU, J. S. (2003). Integrating regulatory motif discovery and genome-wide expression analysis. Proc. Natl. Acad. Sci. USA 100 3339-3344.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 3339-3344
    • CONLON, E.M.1    LIU, X.S.2    LIEB, J.D.3    LIU, J.S.4
  • 5
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • MR1946581
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1366. MR1946581
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1348-1366
    • FAN, J.1    LI, R.2
  • 6
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • GENKIN, A., LEWIS, D. D. and MADIGAN, D. (2007). Large-scale Bayesian logistic regression for text categorization. Technometrics 49 291-304.
    • (2007) Technometrics , vol.49 , pp. 291-304
    • GENKIN, A.1    LEWIS, D.D.2    MADIGAN, D.3
  • 7
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • To appear
    • HUANG, J., MA, S. and ZHANG, C.-H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statist. Sinica. To appear.
    • (2008) Statist. Sinica
    • HUANG, J.1    MA, S.2    ZHANG, C.-H.3
  • 10
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • MEINSHAUSEN, N.1    BÜHLMANN, P.2
  • 11
    • 51049110657 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • To appear
    • MEINSHAUSEN, N. and YU, B. (2008). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist. To appear.
    • (2008) Ann. Statist
    • MEINSHAUSEN, N.1    YU, B.2
  • 12
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • MR1773265
    • OSBORNE, M., PRESNELL, B. and TURLACH, B. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403. MR1773265
    • (2000) IMA J. Numer. Anal , vol.20 , pp. 389-403
    • OSBORNE, M.1    PRESNELL, B.2    TURLACH, B.3
  • 13
    • 34547849507 scopus 로고    scopus 로고
    • 1 regularization path algorithm for generalized linear models
    • MR2370074
    • 1 regularization path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 659-677. MR2370074
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.69 , pp. 659-677
    • PARK, M.-Y.1    HASTIE, T.2
  • 14
    • 51049124662 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • To appear
    • VAN DE GEER, S. (2007). High-dimensional generalized linear models and the lasso. Ann. Statist. To appear.
    • (2007) Ann. Statist
    • VAN DE GEER, S.1
  • 15
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • To appear
    • ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist. To appear.
    • (2008) Ann. Statist
    • ZHANG, C.-H.1    HUANG, J.2
  • 16
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • MR2274449
    • ZHAO, P. and YU, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2541-2563
    • ZHAO, P.1    YU, B.2
  • 17
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • ZOU, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.